
Heterogeneous Multi-core Systems:
UML Profiles vs. DSM Approaches

David McKean
Advanced Fusion Technologies
mckean@aft-worldwide.com

Jonathan Sprinkle
University of Arizona

sprinkle@ECE.Arizona.Edu

Abstract
This paper examines tradeoffs in extending a UML profile, or de-
veloping a new DSML for a particular domain. Questions are pre-
sented which help to make an objective decision. A case study is
presented to address system design in heterogeneous multi-core
systems. Since throughput, application-specific data streams, and
the desired output executable language are each complicated by
design constraints or process constraints, this decision is weighed
against timeliness of delivery, and the availability of tools to ana-
lyze, design, and validate the solution.

General Terms Design

Keywords Domain-specific modeling, UML profiles, MARTE,
multi-core design, high-performance computing

1. Introduction
Model-based design represents the future of systems design, due to
the ability of models to scale to complex systems, and the practice
to synthesize large portions of a codebase. However, for someone
just learning to leverage model-based approaches for their own do-
main problems, there is a pivotal question that must be answered
early in any system’s design: “Do I design a domain-specific mod-
eling language, or take advantage of UML profiles?” This ques-
tion is not easy to answer. This position paper aims to describe how
some of the tradeoffs can be made, with discussion relating these
questions to the domain of multi-core, high-performance comput-
ing.

2. Approach
In order to discuss the tradeoffs, the key axes of comparison must
be identified. In this paper, we consider the following metrics:

• Effort required to adopt the schema (i.e., profile or language)
• Effort required to design/build models in the adopted schema
• Analysis methods available in the schema
• Output artifacts available from the schema
• Reuse available with the schema

2.1 Effort required to adopt the schema
Effort for adoption includes training on the new technology, as
well as expertise necessary to build/adapt the Unified Modeling
Language (UML) profile or domain-specific modeling language
(DSML). For many domains this question is difficult to answer at
the beginning of the design: nonetheless, it is worth considering the
following questions:

• Does anyone in the organization have previous experience with
profiles?

• Does anyone in the organization have experience with domain-
specific modeling?

If the answer to only one question is “yes,” then that answer tips the
balance in favor of that response. Note that it does not necessarily
imply that none of the other questions should be answered!

2.2 Effort required to design/build models
The core value of domain-specific modeling is that it elevates
elements of the system design to types, thus reducing the effort
to design a problem through abstraction techniques. For example,
within the context of a heterogeneous application domain model the
domain-specific types will include Device, Kernel, Program and
Memory, and their association rules will constrain how the models
may be built.

The UML profile approach will have similar types, but a profile
is fundamentally an annotation of existing UML types, even if
those types are a subset of UML’s types. If the modeler takes into
account the UML profile when creating the new models, then it is
fundamentally a domain-specific approach. If the UML profile is
not known when the models are created, there may be additional
effort in constructing the various models prior to annotating them
with profile types.

If the number of types is small, then a DSM approach is favored.
However, if the number of types is large, then a UML profile has its
benefits because those types will actually be implicitly realized as
varying objects and associations, not as new types in a UML profile.
This is perhaps counterintuitive, but is related to the effort required
to develop semantic maps for a DSM approach, and it depends on
a UML profile’s reliance on existing maps.

It is worth noting, though, that a large number of types, with
complex associations, will be difficult to build correctly in a UML
profile approach, and leaves open the possibility that design errors
will not be caught until later in the lifecycle.

2.3 Analysis methods available
A DSM approach traditionally utilizes analysis methods that are
either performed in the framework, or performed on generated
system artifacts. This means that some form of code generator or
model transformation is required when taking a DSM approach.
This fact is not news to those in the DSM field, where it is well-
known that the definition of the semantics of a modeling language
is by far the highest cost in terms of effort.

A UML profile approach may benefit from the availability of
analysis methods that operate just on the state models, sequence
models, or class models of the design. However, note that the
analysis methods for many profiles still require some sort of model
transformation to put the models in an acceptable structure for
analysis. Thus, the UML profile technique usually requires some
semantic attachment.



The key question here is: what kind of analysis is most impor-
tant to my output? If an analysis tool already exists but just re-
quires reformatting in order to obtain results, then each approach
has about equal effort. If the analysis tool does not already exist,
then a DSM approach has an edge, depending on how difficult it is
to define the analysis methods, because the (generally) fewer num-
ber of created objects will make defining the analysis algorithms
easier.

2.4 Output artifacts available
Similar to the analysis question, here the most important question
is: what will I do with these models when the design is complete?
Modeling approaches are gaining ground because of their ability to
synthesize executable systems (or high-valued configuration files)
from the models. There is no straightforward way to answer this
question, except that if a definition for valuable output artifacts al-
ready exists (e.g., an XML schema, or a template for code synthe-
sis), then the specific details required to generate that output artifact
will help the modeler understand which approach is more useful.

Generally, DSM approaches are more flexible in how they gen-
erate their output artifacts, but UML profiles have an edge if the de-
sired output artifact is stub code, rather than fully functional code,
because of the large number of commercial code skeleton gener-
ators available for UML tools (e.g., tools by Altova, eUML, Mi-
crosoft, AlphaSimple). Note this is most applicable if the existing
code generators are suitable.

2.5 Potential for Reuse
By its nature, DSM attacks a specific problem and does not lend
itself to model reuse in the same way as UML. Because UML pro-
files are (typically) annotation models for existing model designs,
then portions of a UML design can be used for many different pro-
files, if that makes sense (semantically). For DSM, reuse is gener-
ally obtained when languages are composed (e.g., state models that
contain dynamic system models). Even in that case, composition of
models only rarely results in straightforward semantic composition.

If reuse of models (to other applications) is important to the
problem, then this tips the scale dramatically toward UML profiles.
If the design is intended to be used to solve a specific problem, then
the reuse question is obviously of less importance

3. Context: Heterogeneous Application Design
The core question addressed by this paper is: “Will the best ap-
proach be a UML profile, or a domain-specific language?” In order
to concretely discuss how this tradeoff can be made, some discus-
sion of the domain in question is merited. The relevant UML profile
that would be evaluated is also described.

3.1 Heterogeneous programming
The past decade has seen the evolution of affordable parallel
computer architectures in the Personal Computer (PC) market-
place. This is evidenced by the emergence of multi-core Processors
(MCPs) and Massively Parallel Processors (MPPs). A current MCP
example is the Intel Core i7-800. It has 4 cores and 2 virtual pro-
cessors for a total of 8 processor threads [4]. The processors use
a Multiple Instruction, Multiple Data (MIMD) architecture, as de-
fined by Flynn’s taxonomy [2], where each processor has separate
instruction and data access to shared program and data memory.

A current example of a MPP is the Nvidia Kepler GK110, which
contains 15 Streaming Multiprocessors (SMX). Each SMX con-
tains 192 single-precision Compute Unified Device Architecture
(CUDA) cores [6]. The SMXs use a Single Instruction, Multiple
Data (SIMD) architecture, as defined by Flynn’s taxonomy [2],
where all processors execute the same instructions from a shared

program memory but each processor has both a private memory
and access to shared data memory. Within the next few years, MCPs
will evolve to many-core CPUs (100s of physical processors with
2+ virtual processors) and GPUs will evolve to General Purpose
GPUs (GPGPUs). The combination of multi-/many- CPUs with
GPUs/GPGPUs will be referred to as a node. Programming in a
node environment is referred to as heterogeneous programming [1].
Various programming models using a shared memory model have
been identified [1, 8] (such as OpenCL, OpenMP, Array Building
Blocks (ArBB), etc.) that facilitate implementation of software ap-
plications in a heterogeneous node environment.

3.2 Interconnection Networks
In addition, future software applications will require the use of mul-
tiple nodes that communicate via an interconnection network [9].
Programming in a multi-node, or cluster, environment is referred to
as hybrid programming. Hybrid programming models support the
concept of a Partitioned Global Address Space (PGAS) using Dis-
tributed Shared Memory (DSM) as discussed in [1]. DSM models
are built on a message passing parallel programming model, such
as the Message Passing Interface (MPI). The PGAS DSM model
is partitioned into a runtime layer (e.g. Global-Address Space Net-
working (GASNet), Aggregate Remote Copy Interface (ARMCI),
Kernel Lattice Parallelism (KeLP)) and programming languages
that support the PGAS DSM model [1] (e.g. Unified Parallel C,
Titanium, X10, Chapel, Fortress).

3.3 OpenCL
OpenCL is an open industry standard for programming a hetero-
geneous collection of CPUs, GPUs, and other discrete computing
devices organized into a single application platform. OpenCL is a
framework for parallel programming that includes a language, API,
libraries and a runtime system to support software application de-
velopment [3, 5].

The Platform Model for OpenCL consists of a host connected
to one or more OpenCL devices. An OpenCL device is divided
into one or more compute units (CUs) which are further divided
into one or more processing elements (PEs). Computations on a
device occur within the processing elements. An OpenCL applica-
tion runs on a host according to the Platform Independent Model
(PIM) native to the host platform. The OpenCL application sub-
mits commands (via a command queue) from the host to execute
computations on the processing elements within a device. If con-
structed, the proposed HAD UML profile will extend the MARTE
UML profile [7] to support the OpenCL framework.

3.4 HAD UML Profile
The state of heterogeneous application development in today’s en-
vironment is uncertain with no less than 20 programming mod-
els available for single node (MCP/MPP) computer configurations.
However, modern software engineering makes a distinction be-
tween the design of a software application and its implementa-
tion (i.e. programming). This paper proposes a design approach for
heterogeneous applications that uses Unified Modeling Language
(UML) [10] semantics for design representation. The UML seman-
tics are collected into multiple Platform Specific Models (PSMs)
with each PSM targeting a specific domain area (e.g. OpenCL PSM
targets, single node MPPs, openMP targets, single node MCPs,
MPI targets, multiple nodes). The PSMs are collected into a pro-
posed Heterogeneous Application Domain (HAD) UML Profile.

All HAD software applications must employ concurrent design
and implementation principles. In fact, HAD application design
considerations extend many of the design considerations for Real-
Time Embedded System (RTES) applications. The Object Man-
agement Group (OMG) has defined a Modeling and Analysis of



Real-Time Embedded Systems (MARTE) UML Profile [7] to sup-
port model-based analysis and design of RTES applications1. The
MARTE profile provides semantics to annotate models with infor-
mation necessary to perform performance and schedulability anal-
yses. It also provides an analysis framework that allows refine-
ment/specialization to other kinds of analysis (e.g. power analysis).
The profile provides the following:

• A common method of modeling hardware and software aspects
of an RTES application to improve communication among de-
velopers.

• Interoperability among tools used for specification, design,
code generation, etc.

• The construction of models that enable derivation of quan-
titative predictions of various real-time design characteristics
which consider both hardware and software

The MARTE UML profile defines precise semantics for time
and resource modeling, which will enable automatic model trans-
formation to lower abstraction levels (e.g. C++ source code). The
HAD UML profile extension to MARTE defines precise semantics
for parallel frameworks (e.g. OpenCL, such as in [? ]) and also en-
ables automatic model transformation to lower abstraction levels.

4. Discussion
With the previously defined metrics in mind, and now a discussion
of the context of the question for this paper, we can describe how
the answers are traded off.

4.1 Effort required for adoption
In this case, team members have expert knowledge of domain-
specific modeling, as well as the MARTE UML profile. No clear
advantage goes in either direction here, as one member has exper-
tise in the MARTE UML profile, while the other is a researcher for
the last decade in DSM and has produced numerous DSM tools.
Regardless of which technology is chosen, an expert will be avail-
able.

4.2 Effort required to design/build models
The HAD designs will be compositions of several different PSM
models and their structures. This means that a relatively large
number of types will be used, but not an excessive number (e.g.,
perhaps 10-20 types in total). Since a significant amount of the
semantics (whether a DSM or UML profile approach is taken) will
be achieved through the inclusion of software blocks for existing
algorithm implementations, the emphasis for design will be on the
correct association of objects when instantiated.

This tips the scale slightly in favor of a DSM approach, because
of the ability of DSM to reduce the number of design blocks
based on abstractions of the problem space. If models already exist
in UML, then the DSM advantage would be lessened or could
disappear.

4.3 Analysis methods available
The MARTE profile has significant analysis that already exists
for schedulability, performance, and power analysis. Clearly, the
DSM approach could require significant effort to duplicate this
analysis, so most DSM experts would generate a system artifact
that would be ingestible by those analysis tools. If the analysis
(within MARTE) takes place inside the modeling tool, this would
be problematic for DSM to generate. However, if MARTE profiles

1 The MARTE UML profile replaces the Schedulability, Performance, and
Time (SPT) UML profile

also synthesize an artifact, the format of that artifact could be used
to guide the design of the DSM generators.

4.4 Output artifacts available
The MARTE profile provides significant output artifacts, and sup-
port for the verification/validation stages. However, in order to be
used in the HAD designs, additional output artifacts will be needed,
and it is not clear exactly how these can be generated. For example,
one goal is to use OpenCL as an execution semantics for the gener-
ated code, and this is not clearly available from UML’s MARTE.

This particular case tips the favor to DSM, because the DSM
and UML profile approaches will require some additional artifact
synthesis to be designed, and the DSM approach permits fewer
models (due to abstraction) which results in more generated code
per model built. This implies that the code generator is a bit easier
to write, which is true for DSM experts.

4.5 Potential for Reuse
In this case, model reuse (that is, reusing a model for a purpose not
intended for this domain) is not important. That is, most models
will be built for a particular application, and when a new applica-
tion is built, those models may be easily reused, whether the ap-
proach used is MARTE or a DSM. However, if the models may be
used in a completely different domain (say, client/server models),
then UML’s profiles carry an advantage.

Here, the favor tips again to a DSM approach. When a model is
built in UML, it should have both class models, and state models.
Those states and classes (if renamed) could have different applica-
tion. However, in DSM, usually the state models are either fixed for
each type (in which case, they are taken care of by the code genera-
tor) or are generated based on context. This is an apples-to-oranges
comparison to UML’s profiling approach, because the approaches
are fundamentally different. However, it reinforces that the goals of
DSM—which include raising the level of abstraction—frequently
contradict with model reuse in a different problem domain.

5. Conclusion
The presented context for discussion gives a slight edge to a DSM
approach, since the output artifacts are not readily generated. How-
ever, a likely approach could be to generate UML within a MARTE
profile from a DSM, and simultaneously generate the OpenCL out-
put from the same DSM model. This can be produced with standard
DSM model transformation approaches, and takes (in a sense) the
best of both approaches.

This paper has examined how to determine whether a UML
profile, or DSM, approach should be considered for a specific
problem. While the answers are always dependent on the expertise
of those involved, and the specifics of the problem, this paper
presents a series of questions to be asked, which will help to
weigh the decision before making an effort investment. Finally it
is important to note that these questions and decisions are based on
the authors’ experience. Future work may indicate whether these
are a comprehensive set.

This work is supported by the National Science Foundation,
under award #CNS 0930919. The authors thank the reviewers for
their suggestions to improve the quality of the manuscript.

References
[1] A. W. De Oliveira Rodrigues, F. Guyomarc’H, and J.-L. Dekeyser.

An MDE Approach for Automatic Code Generation from MARTE to
OpenCL. Rapport de recherche RR-7525, INRIA, Feb. 2011.

[2] J. Diaz, C. Muñoz-Caro, and A. Niño. A survey of parallel program-
ming models and tools in the multi and many-core era. IEEE Trans-
actions on Parallel and Distributed Systems, 23, 2012.



[3] M. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 23(9), 1972.

[4] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa. Heterogeneous
Computing with OpenCL. Elsevier, 2012.

[5] D. Marr, F. Binus, D. Hill, G. Hinton, D. Konfaty, J. Miller, and M. Up-
ton. Hyper-threading technology architecture and microarchitecture.
Intel Technology Journal, 6(1), 2002.

[6] A. Munshi, B. Gaster, T. Mattson, J. Fung, and D. Ginsburg. OpenCL
Programming Guide. Addison-Wessley, 2012.

[7] NVIDIA. Nvidia’s next generation cuda compute architecture. Tech-
nical Report Kepler GK110.

[8] Object Management Group. UML profile for modeling and analysis
of real-time and embedded systems (MARTE).

[9] T. Rauber and G. Runger. Parallel Programming for Multicore and
Cluster Systems. Springer, 2010.

[10] A. Varbanescu, P. Hijma, R. van Nieuwpoort, and H. Bal. Towards
an effective unified programming model for many-cores. In IEEE
International Parallel Distributed Processing Symposium, pages 681–
692, 2011.


	1 Introduction
	2 Approach
	2.1 Effort required to adopt the schema
	2.2 Effort required to design/build models
	2.3 Analysis methods available
	2.4 Output artifacts available
	2.5 Potential for Reuse

	3 Context: Heterogeneous Application Design
	3.1 Heterogeneous programming
	3.2 Interconnection Networks
	3.3 OpenCL
	3.4 HAD UML Profile

	4 Discussion
	4.1 Effort required for adoption
	4.2 Effort required to design/build models
	4.3 Analysis methods available
	4.4 Output artifacts available
	4.5 Potential for Reuse

	5 Conclusion

