
ESEML — Empirical Software
Engineering Modeling Language

Bruno Cartaxo, Ítalo Costa, Dhiego Abrantes, André Santos, Sérgio Soares, Vinicius Garcia
Informatics Center - Federal University of Pernambuco

Av. Professor Luís Freire, s/n, Cidade Universitária
CEP 50740-540, Recife-PE, Brazil

bfsc,imac,daom,alms,scbs,vcg@cin.ufpe.br

ABSTRACT
New processes, patterns, structures, tools, languages, and
practices are being proposed for software development, but
technology transfer is hard to achieve. One of the objec-
tives of empirical studies is easing technology transfer from
academy to industry. On the other hand, there are a num-
ber of issues that hinder the application of empirical studies,
more specifically, controlled experiments. This paper defines
a visual DSL for modeling controlled experiments support-
ing researchers that are not experts in such study. By using
the language, the researcher is guided to define the elements
of an experimental plan and connections, which is automat-
ically generated, resulting a complete document of experi-
mental plan. The proposed environment assists the defini-
tion of controlled experiments, increasing empirical evalu-
ation of the proposed technologies. More specifically, the
current version of our proposal generates the experimental
plan from the experiment model defined using the DSL.

1. INTRODUCTION
Researches in Software Engineering normally proposes new
processes, patterns, structures, tools, languages, or practices
for software development, typically in order to increase pro-
ductivity and quality of products and services. However,
technology transfer is hard to achieve and empirical studies
tries to help in moving technology from academy to industry
[15, 12, 2].

A great part of these researches that propose new meth-
ods fail to present empirical evaluation. Only through these
evaluations it is possible to establish whether and in which
context the proposed technique is efficient, effective, and can
be applied [6, 15, 11, 10], therefore easing technology trans-
fer. According to Sjøberg et al [11], among 5,453 scientific
articles published in 12 of the main journals of software engi-
neering between 1993 and 2002, only 1.9% had a controlled
experiment involved.

In order to make an empirical evaluation, it is necessary

to point out empirical methods and techniques. Also, it is
possible to adapt these in the context of software engineer-
ing. Empirical Software Engineering includes several types
of studies, such as Surveys [6] Case studies [15], Secondary
studies [7] and Controlled experiments [15, 10].

Each one of these studies has its own characteristics and
should be used in specific contexts. In this paper we will fo-
cus on controlled experiments, which is the most controlled
technique and is also commonly used within a very specific
context [15, 10]. Therefore, such controlling and specificity
use to compromise experiments generalization. On the other
hand, experiments are a good technique to validate the ef-
fects of each small change in the observed environment, not
requiring real world conditions, which are often difficult to
obtain in academic research [6, 15]. Thus, a controlled
experiment can be a good method to pinpoint if a tech-
nique, method or process in software engineering does what
it claims it does. Additionally, it creates a setting for even
more applied and less controlled empirical research condi-
tions, such as surveys and case studies [6].

To conduct a controlled experiment it is necessary to bring
together a wide range of skills that often create a barrier for
adopting the technique. The conduction of an experiment
requires skills in the matters we want to check (software engi-
neering in this case), experience with technical terminology,
statistics, as well as expertise in designing the experiment.
Above all, the controlled experiment is a very particular
knowledge domain.

In order to limit, define, and accelerate the development of
solutions in a specific field, the concept of domain-specific
languages (DSLs) has been created. These languages tend
to be very expressive and natural, even for people without
previous programming knowledge. DSLs are largely used to
express problems within a specific domain in a natural and
fluent way.

Since DSLs are good alternatives to model solutions in a
specific domain, adding the fact that controlled experiments
have their own domain vocabulary, the definition of a DSL
is adequate to the problem of modeling and conduction of
controlled experiments in software engineering. It mitigates
social barriers between stakeholders in the field we want to
validate, the team of statisticians, the experiments design-
ers, and the domain expert.



In the face of all those previously explained reasons, this
paper presents the definition and development of a visual
DSL for modeling controlled experiments in software engi-
neering. Our solution generates the experimental plan doc-
ument from an instantiation of our domain model. By using
the language, the researcher is guided to define the elements
of an experimental plan and connections, which is automat-
ically generated, resulting a complete document of experi-
mental plan. This DSL is the kickoff for a major research
initiative that is the development of a platform for conduct-
ing empirical studies in software engineering. Such platform
and computer-aided systems are necessary tools to increase
the volume and quality of empirical studies in software en-
gineering [14].

This paper is organized as follows. Section 2 addresses the
main concepts of empirical software engineering and con-
trolled experiments. The approach we used to propose a
DSL is discussed in Section 3. Section 4 presents the DSL
and the workbench we defined to model controlled experi-
ments. Section 5 presents the related work. Conclusions are
discussed in Section 6 and future work in Section 7.

2. EMPIRICAL SOFTWARE ENGINEERING
AND CONTROLLED EXPERIMENTS

The use of scientific method involves the comparison of the-
ories and techniques with reality in order to verify if those
are valid enough to be taken forward. A major problem in
the current scenario is that software engineering has used
time as a parameter for validity of its theories in detriment
of confrontation with reality through experimentation. The
value of an idea is judged by whether or not people use the
idea. If many people use the idea, for a long time, it seems
to be certain [6].

Since it is critical to use empirical methods to evaluate the-
ories for software engineering, it is also necessary to master
technologies for conducting the studies, as well as expertise
to overcome the problems inherent to them. Some of the
impediments to the systematization of empiricism in soft-
ware engineering are: lack of familiarity with the scientific
method, lack of experience in analyzing the data, and lack of
comprehension to deal with the burden related to the human
factors in software development.

In order to remove or at least reduce the presented obsta-
cles, some actions are necessary. If software developers are
not familiar with the scientific method, it is interesting to
present them with positive results in other disciplines such as
engineering and medicine. This would be a way of showing
that the cycle of hypothesis confrontation with the reality
is of great value to have a better understanding of the con-
struction of a software. In the case of developers lacking
the experience to analyze the data, just show them that the
necessary statistical and mathematical foundation is part of
their own education as engineers. If the experiment exam-
ples are more common in other areas such as agronomy and
medicine, a good solution is to increase the volume of em-
pirical studies in software engineering to create a body of
knowledge and appropriate terminology. Finally, if human
factors are strong confounders in the development of soft-
ware, we can make use of knowledge from human sciences
in conducting empirical studies in order to control and min-

imize such biases [6].

Once the obstacles are removed or controlled, it is possible to
say that we are ready to conduct an empirical study. So the
next step is to select which type of study is best suited to our
research. For now, it is important to know the categories of
empirical studies. Thus, we have two types of classifications
for empirical studies: according to the nature of the data and
regarding the process of conducting the study. Concerning
the nature of data, there are qualitative and quantitative
studies. On the strategy of conduction, there are surveys,
case studies, secondary studies, and controlled experiments.

Quantitative studies investigate the relationship between the
numerical variables being examined. Qualitative research,
on the other hand, tries to understand the objects in their
natural state without having to establish numerical relation-
ships [6].

In addition to the types of studies by the nature of the data,
there are studies on the strategy of conduction. Surveys,
for example, are investigations made in retrospect, typically
through interviews and questionnaires, when some method
or tool is already being used, seeking to interpret the re-
sults to generate descriptive and explanatory conclusions.
Case Studies, on the other hand, are widely used to mon-
itor projects and activities during its execution, collecting
data and doing statistical analysis without much control over
the observed environment. Secondary and tertiary studies,
such as systematic reviews and mapping studies are made
by gathering up the empirical research done in a particular
area of knowledge aiming to organize and take nontrivial
conclusions about the subject in question [7]. Finally, con-
trolled experiments are usually careful examinations made
in a laboratory with a high degree of control. These studies
are intended to manipulate variables and to observe their
effects, to perform statistical analysis and draw conclusions
about the impacts of variables in their contexts [15].

The experimentation process is done at different levels by
various groups within the software engineering community,
which means that each group must take a specific responsi-
bility in verifying knowledge. The first link in the chain is
the researcher, which proposes theories, methods, tools, and
techniques to address open problems. This level of testing
is most commonly performed in laboratories at highly con-
trolled environments, in contrast to the studies in the real
world. However, this first level of research is extremely nec-
essary to answer preliminary questions such as: Does the
methodology have some effect on the team productivity?
Does the programming paradigm X have an impact on the
readability and maintainability of the code? These are some
of the recurring questions in software engineering [6].

In order to obtain reliable results when conducting a con-
trolled experiment, it is important to follow a well defined
systematic process. When we say process, we should un-
derstand it as guide to support some activity from the very
beginning to its own end. Within this perspective we can
characterize the process of conducting a controlled experi-
ment with the following phases: definition, planning, oper-
ation, analysis, and presentation [15].



During the definition phase, the researcher is concerned with
the experiment setup, in terms of problems and objectives.
Then, in the planning phase, the researcher must design
the experiment in order to specify variables, treatments and
threats to validity. Later, during the operation, the experi-
ment is actually executed according to a plan and the data
originated by the execution collected. Once the data was
collected, the next step is to perform an exploratory analy-
sis of these data, which is to perform a statistical analysis
and further hypothesis tests of these. Finally, the researcher
must present the analysis and further conclusions for the
experiment [15].

In addition, it is still necessary for the researcher to know the
terminology inherent to the field of experimentation. With
these terms in mind, the researcher will be able to map each
concept to the experiment to be performed. Some key con-
cepts are: experimental unit, experiment participants, re-
sponse variables, parameters, factors, levels, block variables,
validity, and others [15, 6].

The experimental unit or experimental object is the entity
who “suffers” the execution of the experiment and can only
be well defined in accordance with the objectives of the ex-
periment. Patients are typically the units of a medical ex-
periment. A software project or a phase of a development
process can be the experimental unit of a software engineer-
ing experiment.

Participants are those individuals who apply, in the exper-
imental unit, the techniques and methods that are being
tested. In some branches of knowledge, the participant ex-
ercises little or no influence on the outcome of the exper-
iment. However, it is known that in software engineering
participants are key players influencing both positively and
negatively the results of the experiment.

Response variables or dependent variables are typically the
outputs (or results) of an experiment. In case of controlled
experiments, these variables are typically quantitative. The
execution time of an algorithm may be a response variable
within the context of an experiment that evaluates perfor-
mance on multiple implementations of an algorithm.

Parameters are characteristics fixed at a given value, so they
do not vary throughout the experiment execution’s process.
In order to compare the quality of code to implement a so-
lution using and not using design patterns, we could set as
a parameter the programming language to ensure that the
improvement in execution time would be inherent to the use
of the pattern and the experiment would be valid within the
scope of the language set as parameter.

Factors are features that intentionally vary during execu-
tions of an experiment. Thus, the understanding of their
effects on response variables are the goals of an experiment.
Levels (or alternatives) are the values that a factor can as-
sume. If an experiment is conducted to assess which lan-
guage is more efficient to solve a given problem, one factor
could be the programming language, and the alternatives
could be Java and C++.

Blocking variables are undesired variations that occur dur-

ing the experiment and, thus, cannot be fixed as parameters.
However, blocking variables influence the response variables
and in many cases invalidate experiments. An experiment
focused on assessing the quality of a code written in some
particular language can be strongly influenced by the ex-
perience of the developer. Therefore, experience may be a
blocking variable [6].

Another key concept in the scope of experiments is how valid
are their results. A misguided planning, execution or data
collection may completely invalidate the results of an ex-
periment. For that reason, it is important to ensure that
all aspects that guarantee the validity of an experiment are
performed correctly. It is common to define the existence of
four types of validity: conclusion, internal, construction and
external [15].

When the basics are known, as well as the process of exper-
imentation, we are already able to conduct an experiment.
Recalling those after conducting a controlled experiment is
very important to replicate it. Replication of an experiment
consists in run it again, preferably by another group of re-
searchers, to ensure the validity of the results and adjust
possible mistakes in planning, analysis, and conclusions.

3. DOMAIN-SPECIFIC LANGUAGES
According to Fowler [4], a Domain-specific language is a
computer programming language and, like any other lan-
guage, is as a way of manipulating abstractions. Domain-
specific languages are languages of limited expressiveness fo-
cused on a particular domain.

DSLs are composed by two key concepts: Like any other
computer programming language, it should run on a com-
puter attending to a purpose; Every language should have
a sense of fluency where the expressiveness comes not just
from individual expressions but also from the way they can
be composed together.

A general-purpose programming language provides lots of
capabilities: supporting varied data, control, and abstrac-
tion structures. All of this is useful, but makes it harder to
learn and use. A DSL, on the other hand, provides a bare
minimum of features needed to support its domain. You
cannot build an entire software system in a DSL; rather,
you use a DSL for one particular aspect of a system.

Fowler states that a limited language is only useful if it has
a clear focus on a small domain. The domain focus is what
makes a limited language worthwhile.

There are three different kinds of DSLs: Internal DSLs, Ex-
ternal DSLs and DSL Workbenches. A DSL within a gen-
eral purpose programming language is an Internal DSL (i.e.:
Regular Expression in some languages). A DSL that runs
separate from the language of the application it works with
is an External DSL (i.e.: XML). External DSLs will usu-
ally be parsed by a code in the host application using text
parsing techniques. When you have a specialized IDE for
defining and building DSLs, used not just to determine the
structure of a DSL but also as a custom editing environment
for people to write DSL scripts, you have a DSL Workbench.



3.1 DSL Lifecycle
Fowler states that a common alternative is firstly define the
DSL. He mentions that you should begin defining some sce-
narios and the way you would like the DSL to look. Ad-
ditionally, he emphasizes the presence of a domain expert
during the construction of the language: “This is a good
first step to using the DSL as a communication medium”.

When you sit down with some people who understand the
customers’ needs, you come up with a set of controlled be-
haviors, either based on what people wanted in the past, or
on something you think they will desire. That is the input
you need to create a way to write it in a DSL form.

For every interaction in this workflow, you will modify the
DSL to support new capabilities. By the end of the exercise,
you will have worked through a reasonable sample of cases
and will have a pseudo-DSL description of each of them.
Once you have a representative set of pseudo-DSLs, i.e. a
representative set of features for a given domain, you can
start implementing them.

3.2 DSL Workbench
In the present study, we constructed a DSL Workbench to
improve productivity in the experiment execution, minimize
flaws in the experiment modeling, and to mitigate the so-
cial barriers in the understanding and sharing of knowledge
among stakeholders in controlled experiments. The first two
goals can be achieved by systematizing the process of con-
trolled experiments. The third goal, which is our main focus,
can be achieved by a DSL Workbench.

A DSL workbench is an environment designed to help peo-
ple create new DSLs, together with high-quality tooling re-
quired to use those DSLs effectively [4]. This visualization
representation is similar to the DSL itself in that it allows
a human to understand the model. The visualization differs
from the source in that it is not editable, but on the other
hand, it can do something an editable form cannot, such as
a render diagrams. Communication with the customers and
users is the most common source of project failure in soft-
ware development. By providing a clear yet precise language
to deal with domains, a DSL can help improve this commu-
nication. Additionally, as Fowler states: “I do think DSLs
can improve communication. It is not that domain experts
will write the DSLs themselves; but they can read them and
thus understanding what the system thinks it is doing. By
being able to read DSL code, domain experts can spot mis-
takes. The biggest gain from using a DSL in this way comes
when domain experts start reading it. Involving domain ex-
perts in a DSL is very similar to involving domain experts in
building a model. I have often found great benefit by build-
ing a model together with domain experts; constructing a
Ubiquitous Language deepens the communication between
software developers and domain experts” [4].

4. ESEML
In order to develop the DSL for the present study, our work
started based on the lifecycle defined by Fowler to create Do-
main Specific Languages [4]. Instead of starting by the Do-
main Specific Language itself, a preliminary informal review
of models, ontologies [5, 9] and other formal representations
for controlled experiments has been done. Our objective

Figure 1: Part of ESEML domain model.

was to provide a rationale of concepts and their relations for
controlled experiments. The idea was to define our Domain
Model and then proceed with the DSL itself.

Based on concepts, entities, and relations raised by relevant
studies, we came to a leverage for our model. Due to space
constraints, part of the ESEML domain model is depicted
in Figure 11. The starting point for the implementation of
our DSL was creating, through code generation, the experi-
mental plan.

We chose the Microsoft DSL Tools to create the DSL. We
first need to define a domain model, therefore we proceed
with a preliminary definition of the model and implement
the entire DSL later. After the conception of the model,
the next step was defining the visual representation of the
DSL. Just like the lifecycle mentioned by Fowler, a couple of
interviews with experienced researchers and further valida-
tion with the proposed visual representation were done. Our
objective was to follow the first step mentioned by Fowler,
to start using the DSL as a communication medium among
stakeholders.

These interviews led to the conception of new features and
ideas for the DSL. Anyhow, we chose not to add new fea-
tures, avoiding to exceed time and scope limitations we had
due to the nature of this project, making us to stick with
our preliminary domain model. Additionally, no semantic
validators were implemented due to the same restrictions.

By using the ESEML Workbench, the user can instantiate
his own experiment from a pre-defined model for controlled
experiments. The whole idea of our domain model was to
summarize, through a rationale of models in software exper-
imentation, the entities involved in a controlled experiment.
Part of the ESEML workbench is presented in Figure 2. The
experiment elements that the researcher will use to define
his experiment are on the objects palette in the left-hand
side. Each element corresponds to one specific experiment
element in the domain model (see Section 2). On the right-
hand side you can see the diagram with the domain elements
of the experiment being modeled.

At the elements palette the user can define both null and
alternative hypothesis, factors, related treatments, parame-
ters, dependent variables, subjects, experimental units, ad-
herence tests, hypothesis test, define threats and valida-

1The complete domain model is available at
http://bit.ly/Sr2mqu.



Figure 2: Part of ESEML Workbench.

tions (internal, external, conclusion and construction), and
a Goal-Question-Metrics structure for the experiment. The
complete list of elements is presented in Table 1. All those
elements of an experiment were explained in Section 2.

Our objective was to define each element and its relation-
ships in a model reflecting a controlled experiment. Thus,
in a GQM structure, for example, a controlled experiment
is linked to a goal that has an embedded relationship with
questions, and each question have a set of metrics.

Elements within the ESEML model have properties that can
be defined during the construction of the experiment model.
The final graph that represents the experiment is going to
be syntactically and semantically validated. Thus, in order
to minimize errors during the configuration of the experi-
ment, the ESEML will be capable of prompting the user
for possible experiment threats of validity, also it can iden-
tify confounding factors or even show that questions are not
based on any metrics.

The model represents the experiment. Thus, it might work
as an effective communication channel between different stake-
holders in the experimentation process mitigating doubts
and conflicts in the experiment configuration.

Finally, from the defined model, there is information to gen-
erate the experimental plan, forms to collect data, scripts
to perform statistical analysis of the defined metrics, and
other artifacts related to your experiment. Thus, ESEML
is intended to ease the burden in the process of experiment-
ing, from planning through data collection and analysis,
those can be achieved through transformations of the do-
main model instance. We believe that these transformations
might improve productivity of experimentation in software
engineering.

We focused our work on implementing a language that en-
ables researcher to represent all the data needed to allow the
automated generation of an experimental plan. Microsoft
DSL Tools Framework [3] uses T4 transformation templates
to generate code. A set of conditions and rules has been
defined to iterate through our Domain model structure and
transform the model into a PDF document. The document
is intended to contain all demands to the experimental plan.
After defining your controlled experiment through the vi-
sual representation of our DSL, you are just one click away

from generating the experimental plan. Due to space con-
traints, an example of the experimental plan generated by
our DSL using a real experiment definition is available at
http://bit.ly/RusZYm.

5. RELATED WORK
Initially, an informal review of the literature looking for sim-
ilar studies has been done. No studies involving the defi-
nition of a DSL and a Language Workbench for modeling
empirical studies in software engineering were found. It was
possible to find some tools focused on supporting the con-
duction of empirical studies in software engineering, which
are presented in this section.

Torii et al [13] presented a Computer-Aided Empirical Soft-
ware Engineering (CAESE) framework and Ginger2, a par-
tial implementation of this framework, that aims to support
all phases of an in vitro study (controlled experiment) in
software engineering. However, the experiment design phase
support was not implemented in the Ginger2 as reported in
[13] and this phase is exactly what our work focus. Punter
et al [8] show the advantages of online surveys making use
of some web survey tools management systems like Glob-
alpark iSurvey, or eSurvey. Bandara et al [1] propose an
overall approach to conduct systematic literature review in
the context of information systems making use of NVIVO, a
qualitative data management tool, and ENDNOTE, a per-
sonal reference database.

6. CONCLUSION
In the present work we have reviewed the concepts of Ex-
perimental Software Engineering focused on controlled ex-
periments. Additionally, we have addressed challenges found
throughout different phases of an experiment, from an initial
experimental plan to final study validations. Issues found
throughout the process of experimenting were listed in or-
der to present the complexity of the domain and confirm the
need of better tools to realize experimentation.

A domain-specific language was defined and presented ac-
cording to the needs aforementioned and based on experi-
enced researchers in the empirical software engineering topic.
The process described by Fowler was followed in the concep-
tion of the ESEML Workbench, its domain model, and the
visual representation of the DSL. At last, we present a case
of an automatic generation of the experimental plan, which
was the starting point for the present study. See a generated
plan at http://bit.ly/RusZYm.

Finally, the potential of the proposed DSL was emphasized
through the exemplification of what can be done in code
generation applied in model transformation, for the activi-
ties involved in a controlled experiment.

7. FUTURE WORK
For future work, our DSL Workbench is intended to generate
any artifacts necessary to conduct a controlled experiment,
including software to collect data effectively from the exper-
imental units. Limited transformations and validators were
implemented in our DSL due to scope and time limitations.
Those are intended to be included in the next release.



Table 1: ESEML domain model elements.
Element Short description
Controlled Experiment The main element that starts the controlled experiment modeling.
Design Specifies the experiment design (i.e. latin square, one or two sample comparison and so on).
Object The same as experimental unit.
Subject The participants of the experiment.
Dependent Variable Variables that carries experiment response value.
Factor The provoked variations or independent variables.
Hypothesis Used to modeling the experiment hypotheses.
Parameter Fixed independent variables.
Treatment Values that factors can assume.
Goal Experiment objectives.
Question Experiment research questions related to specific goal.
Metric Metrics associated with specific question.
Adhesion Test Goodness-of-fit statistical test.
Hypothesis Test Describes the statistical hypotheses tests and its level of significance.
Validity Used to modeling internal, construction, external and conclusion validities.

We found out that a Systematic Review of Studies proposing
a formal model for controlled experiments became necessary
to proceed with our domain model. Thus, we are now in-
tended to start a Systematic Review of Studies to provide
the deeper rationale that is needed.

Furthermore, we want to obtain a deeper understanding on
how to automate validation of formalized hypothesis and
identify confounders within these. Thus, through systemati-
zation, our DSL will try to minimize bias in the controlled
experiments using our tool or, in other cases, provide visual
cues so domain experts can fix the formalized hypothesis
manually.

When the language and environment achieve a greater de-
gree of maturity, we intend to use empirical methods in a
systematic way to assess whether the proposed ESEML re-
ally facilitates the modeling process and the definition of an
experimental plan.

8. REFERENCES
[1] W. Bandara, S. Miskon, and E. Fielt. A systematic,

tool-supported method for conducting literature
reviews in information systems. In V. Tuunainen,
J. Nandhakumar, M. Rossi, and W. Soliman, editors,
19th European Conference on Information Systems :
ICT and Sustainable Service Development (ECIS
2011), Helsinki, Finland, 2011.

[2] V. Basili. The role of experimentation in software
engineering: past, current, and future. In Software
Engineering, 1996., Proceedings of the 18th
International Conference on, pages 442 –449, mar
1996.

[3] S. Cook and G. Jones. Domain-specific development
with visual studio dsl tools. 2007.

[4] M. Fowler. Domain-specific languages. pages 0–321,
2010.

[5] R. E. Garcia, E. N. Höhn, E. F. Barbosa, and J. C.
Maldonado. An ontology for controlled experiments on
software engineering. In SEKE, pages 685–690, 2008.

[6] Juristo and Moreno. Basics of Software Engineering
Experimentation. Kluwer Academic Publishers,

Norwell, MA, USA, 2001.

[7] B. Kitchenham and S. Charters. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[8] T. Punter, M. Ciolkowski, B. Freimut, and I. John.
Conducting on-line surveys in software engineering. In
Empirical Software Engineering, 2003. ISESE 2003.
Proceedings. 2003 International Symposium on, pages
80 – 88, sept.-1 oct. 2003.

[9] H. Siy and Y. Wu. An ontology to support empirical
studies in software engineering. In Computing,
Engineering and Information, 2009. ICC ’09.
International Conference on, pages 12 –15, april 2009.

[10] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen. The
future of empirical methods in software engineering
research. In 2007 Future of Software Engineering,
FOSE ’07, pages 358–378, Washington, DC, USA,
2007. IEEE Computer Society.

[11] D. I. K. Sjoberg, J. E. Hannay, O. Hansen,
V. By Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. C. Rekdal. A survey of controlled experiments
in software engineering. IEEE Trans. Softw. Eng.,
31(9):733–753, Sept. 2005.

[12] W. Tichy. Should computer scientists experiment
more? Computer, 31(5):32 –40, may 1998.

[13] K. Torii, K. Matsumoto, K. Nakakoji, Y. Takada,
S. Takada, and K. Shima. Ginger2: an environment
for computer-aided empirical software engineering.
Software Engineering, IEEE Transactions on,
25(4):474 –492, jul/aug 1999.

[14] G. Travassos, P. dos Santos, P. Neto, and J. Biolchini.
An environment to support large scale
experimentation in software engineering. In
Engineering of Complex Computer Systems, 2008.
ICECCS 2008. 13th IEEE International Conference
on, pages 193 –202, 31 2008-april 3 2008.

[15] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
software engineering: an introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.


