
Towards Integration of Policies into DSMLs

Frank Hernandez and Peter J. Clarke
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

{fhern006, clarkep}@fiu.edu

ABSTRACT
As domain-specific modeling languages (DSMLs) become
more widely used, it is important to develop approaches for
creating DSMLs that allow different aspects of the language
to be incrementally added. For these approaches to be ef-
fective the new aspects (or features) of the DSML should
be added using an automated or semi-automated approach.
By creating such approaches the developers of a DSML can
start with the constructs to describe the main functionality
in the domain, then add those features to the DSML neces-
sary to specify the non-functional constraints in the domain.
In this paper we present a semi-automatic approach to inte-
grate a policy language into an existing DSML. As proof of
concept we apply the approach to a simple DSML from the
bookstore domain.

Keywords
Graphical Domain-Specific Language, Model-Driven Devel-
opment, Model Composition, Policy

1. INTRODUCTION
The use of domain-specific modeling languages (DSMLs)

continues to grow as software developers seek new techniques
to increase their productivity in developing applications for
specific domains [9]. A key aspect of domain-specific mod-
eling (DSM) is raising the level of abstraction by thinking
about the solution to a problem in concepts from the given
domain. During the past three years we have been involved
with the development of a DSML for user-centric commu-
nication services, the Communication Modeling Language
(CML) [14]. CML models created by the user (novice or
expert) are interpreted and realized by the Communication
Virtual Machine (CVM). We have recently started the de-
velopment of a DSML for the Smart Microgrid domain, Mi-
crogrid Modeling Language (MGridML) [1], using a similar
approach to CML. Models created in MGridML will be in-
terpreted and realized using the MGridVM.

An iterative approach was used to develop CML thereby
making it easy to get a prototype working quickly in order
to test the feasibility and practicality of our DSML. The
first iteration of CML focused on the basic communication
primitives such as create connection, add party to commu-
nication, send files, stream media and so on. We are about
to add a policy component to CML that will allow users to
specify constraints on communication services, such as (1) if
bandwidth falls below a given value do not use audio video
streaming, or (2) if remote a party has a given user role

then encrypt all files sent to that user. The naive approach
would be to extend the CML meta-model using a manual
approach by integrating the policy aspects into the existing
CML meta-model1. We would then have to use a similar
approach to MGridML.

An alternative approach to integrating a policy compo-
nent into CML would be to create a partially automated
approach base on the research done on model composition
[8, 13] and aspect-oriented modeling [6]. We expect that our
approach will be generic enough to easily integrate a policy
language semi-automatically into both CML and MGridML.
In this paper we present our approach to integrating a pol-
icy language into an existing DSML with less effort than a
totally manual approach. We illustrate how our approach
will work using a simple DSML from the bookstore domain.

The remainder of this paper is organized as follows: Sec-
tion 2 presents some of the current approaches for model
composition. Section 3 presents our proposed approach to
integrating policies into domain-specific languages. Section 4
has our concluding remarks.

2. LITERATURE REVIEW
The work on model composition has recently gained much

attention in the modeling community. Bézivin et al. [2] de-
scribe a canonical scheme for model composition that pro-
vides a core set of common definitions based on the com-
parison of three composition frameworks. In this section we
describe work in the areas of model composition and mod-
eling aspects using transformations, which is similar to our
approach. Although we do not completely use any of the
approaches described in this section we do extract some of
the basics from model composition and modeling aspects in
our approach.

2.1 Model Composition
There are several approaches used to perform model com-

position including signature-based composition and the use
of languages built to support model composition. The signa-
ture-based composition approach aims to merge separate
models into a single model [8]. These models could be differ-
ent views of a system containing differing information e.g.,
security concerns or persistence concerns. This approach is
symmetric and requires a mapping to be created between the
models based on signatures. Signatures could be retrieved
from the model elements and their properties. The signa-
ture can be anything such as a class name or the name and

1http://cml.cs.fiu.edu//

type of an attribute. This approach suffers from two issues:
conflicts and misalignment. Conflicts occur when two ele-
ments have two matching signatures but are different on one
or more properties. Misalignment on the other hand, hap-
pens when two elements have the same signature but refer
two separate concepts. Recent work in this area used the
notion of composition directive that allows the modeler to
define simple model modification that can be done to the
model before or after the merge [5].

Kolovos et al. [3, 10] describe the Epsilon Merging Lan-
guage (EML) which is a rule-based language for merging
models of diverse metamodels and technologies. EML in-
cludes model comparison and model transformation languages
as subsets, and is built on top of the Epsilon (Extensi-
ble Platform for Specification of Integrated Languages for
mOdel maNagement) platform. EML uses the Epsilon Ob-
ject Language (EOL) which is a generic model management
language that provides other model management facilities
such as, model modification, statement sequencing error re-
porting, among others. The approach by Kolovos et al. uses
the following four phases to merge models: comparison, con-
formance checking, merging, and reconciliation and restruc-
turing. Unlike EML, which is built on the Epsilon platform,
we intend to use a more lightweight approach. Our approach
use similar phases during the integration of policies into a
DSML.

2.2 Modeling Aspects using Transformations
The Modeling Aspects using a Transformation Approach

(MATA) [7, 13] uses an asymmetric approach. In asymmet-
ric approaches, one model plays the role of a base model,
and another model plays the role of an aspect. In MATA,
the aspect model is interpreted as a graph transformation
to be applied to the base model. Composition in MATA is
achieved in two steps: (1) search for a match pattern in the
base model which represents the location where the aspect
will be applied. (2) If a match is found, the base model
is modified per the composition specification in the aspect
model.

In the case of our approach, see Section 3, most of the
compositions follow the MATA approach. Such examples
are the composition of the Linker and the DSML Specific
Linker where the policy and the DSML meta-models are
interpreted as node additions, and the base model is the
Abstract Linker and the Linker respectively.

3. PROPOSED APPROACH
This section presents our model composition approach for

integrating a policy language into an existing DSML. This
section also presents an example of our approach which uses
a simplified meta-model for DSML from the bookstore do-
main and integrates a policy language. The policies added
to this sample language are of the event-condition-action
(ECA) paradigm.

3.1 Approach
The first step in integrating a policy language into an

existing DSML is to choose the policy language itself. Once
the policy language is selected it is provided to the Linker
Composer along with the Abstract Linker model in order
to generate the Linker meta-model. This linker model is a
variation of the the weave model mentioned in the literature
[4]. The Linker meta-model represents the definition of the

Linker
Composer

Abstract
Linker

(P)

Linker
(G)

DSML Linker
Compser

DSML
(P)

DSML
Specific
Linker

(G)

DSML
Specific
Linker

(U)
DSML Policy

Composer

Policy
(P)

DSML
+

Policy

(G) DSML
+

Policy

(U)

Key:

- - - Metamodel

Instance

(G) Generated

(P) Provided

(U) User Generated

Figure 1: Proposed Approach.

weave [8] model as it pertains to the policy language. It
contains the components related to the policy language used.
The Linker meta-model is then passed to the DSML Linker
Composer in order to produce a linker that is specific to
the domain to which policies will be applied to. During
this stage, the possible anchor points to which policies can
be added are identified and become part of the final DSML
Specific Linker meta-model. The attributes of the nodes in
the language are then identified and provided as targets for
the policies observers.

Once the DSML Specific Linker meta-model is generated
the user can then specify the specific join points to which
to apply policies. This step in the process requires human
intervention due to the fact that only the developer of the
DSML himself knows what specific nodes require policies.
Until this point, all the DSML Specific Linker does is provide
the user with the set of possible join points from which the
user must choose. After the instance model is generated, it is
then fed to the DSML Policy Composer along with the policy
language meta-model and the DSML meta-model. This final
step produces a meta-model for the new DSML which now
supports policies. This is achieved by providing the nodes
specified in the DSML Specific Linker instance model with a
policy attribute which is an instance of the policy component
of the policy language.

3.2 Illustrative Example
In this illustrative example both models (base and aspect)

are created using ECore [12], since dealing with models de-
veloped in different formats is beyond the scope of this work.
The input DSML for this example is the bookstore DSML
[11] (Figure 2). For the policy DSML we selected a sim-
ple policy language for expressing policies using the event-
condition-action paradigm (Figure 3). As can be seen from
Figure 4 the Linker meta-model has a similar structure to
the policy language. The Linker meta-model has some of the
features from the policy language and it is intended to allow
the user to provide information that cannot be extracted

from the DSML but is required for the policies.

Figure 2: DSML Initial Meta-Model.

For example, in this case, the original DSML had no in-
formation regarding events, which is needed to create ECA
policies. While this information is not in the language it
is known to the language developer. Using the linker the
DSML developer can now choose the set of valid events that
each of the nodes can have. Some information obtained from
the DSML that is required for the integration process is the
list of possible anchor points or join points where the poli-
cies can be applied. This initial list contains every node in
the original DSML that the user can select when generating
an instance of the linker model. A user is allowed to select
those nodes in the DSML that ultimately will have policies
applied to them, since not all nodes in the DSML can have
policies applied to them. Only the DSML creator is aware
of which nodes one can apply policies to.

Figure 3: Policy Meta-Model.

As shown in Figure 4 the Linker model now contains a
notion of events, conditions, and actions. This informa-
tion was derived from the policy meta-model (Figure 3).
In the case of this example, during the composition step,
every node in the policy DSML was transfered to the final
linker while maintaining their relationships in the original
language. At the same time, the nodes have been provided
with a source field of type SourcesTypes. This field repre-
sents the possible application location for the events, policies
or actions. At this stage of the process, the SourceTypes are
yet to be initialized thus it remains as an empty enumera-
tion. The SourceTypes will be instantiated during the next
phase when we examine the original DSML (Figure 2).

Next, we provide this newly created model to the DSML
Linker Composer along with the bookstore DSML (Figure 2).
During this step, the SourceType will be populated with

Figure 4: Policy Linker Meta-Model.

Figure 5: DSML Specific Linker Meta-Model.

all the nodes found in the library DSML. As shown in Fig-
ure 5 the SourceType enumeration now contains both the
BookStore and the Book nodes from the original DSML. This
step is performed to limit the number of choices available to
the user to those found in the original DSML. This is done
to reduce the number of errors that could happen during the
creation of the linker instance if we just allowed the user to
type the names for the language nodes himself.

Once the linker instance is created, it is provided as an
input for the DSML Policy Composer along with the policy
meta-model and the DSML meta-model to produce the final
DSML meta-model (Figure 6). The linker instance is used
by the user to specify the actual nodes that will be part
of the final language. In the case of this example the user
specified only the BookStore as a valid join point for poli-
cies (Figure 6). Also, the bookOld event and the sellBook

action, and the bookstore node has been enhanced with a
reference to BookStore_Policy. This meta-model can now
be used to generate models for the bookstore that supports
the policies.

4. CONCLUSION
In this paper we presented our proposed approach to inte-

grating policies into existing domain-specific modeling lan-

Figure 6: Final DSML + Policy Meta-Model.

guages (DSMLs). We believe that most of the work behind
this integration can be automated with some human inter-
vention to supply the information that cannot otherwise be
derived from the models. This extra information is provided
in our approach via the use of a weave model used to link
the DSML meta-model and the policy language meta-model.
Finally, we also discussed an initial example of our current
implementation of our proposed approach. Our future work
includes integrating policies into a DSML for user-centric
communication services (CML - Communication Modeling
Language) and updating the semantics for realizing CML
models to include policies. We also plan to perform a sim-
ilar task on the a DSML for modeling applications in the
Smart Microgrid domain, (MGridML - Microgrid modeling
language).

5. REFERENCES
[1] M. Allison, A. A. Allen, Z. Yang, and P. J. Clarke. A

software engineering approach to user-driven control
of the microgrid. In In Proceedings of the 23rd
International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 59–64, 2011.

[2] J. Bézivin, S. Bouzitouna, M. Del Fabro, M.-P.
Gervais, F. Jouault, D. Kolovos, I. Kurtev, and
R. Paige. A canonical scheme for model composition.
In A. Rensink and J. Warmer, editors, Model Driven
Architecture âĂŞ Foundations and Applications,
volume 4066 of Lecture Notes in Computer Science,
pages 346–360. Springer Berlin / Heidelberg, 2006.

[3] R. P. Dimitios Kolovos, Louis Rose. Epsilon merging
language, September 2011.
http://www.eclipse.org/gmt/epsilon/doc/eml/.

[4] M. D. D. Fabro, J. Bezivin, F. Jouault, E. Breton, and
G. Gueltas. Amw: a generic model weaver. In
Proceedings of the 1ère Journée sur l’Ingénierie
Dirigée par les Modèles (IDM05), 2005.

[5] R. France, F. Fleurey, R. Reddy, B. Baudry, and
S. Ghosh. Providing support for model composition in

metamodels. In Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing
Conference, pages 253–, Washington, DC, USA, 2007.
IEEE Computer Society.

[6] R. B. France, I. Ray, G. Georg, and S. Ghosh.
Aspect-oriented approach to early design modelling.
IEE Proceedings - Software, 151(4):173–186, 2004.

[7] P. Jayaraman, J. Whittle, A. Elkhodary, and
H. Gomaa. Model composition in product lines and
feature interaction detection using critical pair
analysis. In G. Engels, B. Opdyke, D. Schmidt, and
F. Weil, editors, Model Driven Engineering Languages
and Systems, volume 4735 of Lecture Notes in
Computer Science, pages 151–165. Springer Berlin /
Heidelberg, 2007.

[8] C. Jeanneret. An analysis of model composition
approaches. Master’s thesis, Colorado State University
and Ecole Polytechnique Federale de Lausanne, 2006.

[9] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society Pr, Mar. 2008.

[10] D. S. Kolovos, R. F. Paige, and F. A. C. Polack.
Merging models with the epsilon merging language
(eml. In In Proc. ACM/IEEE 9th International
Conference on Model Driven Engineering Languages
and Systems (Models/UML 2006, 2006.

[11] N. Singh and R. Babbar. Build metamodels with
dynamic emf, August 2011. http://www.ibm.com/
developerworks/library/os-eclipse-dynamicemf/.

[12] The Eclipse Foundation. Eclipse modeling framework,
March 2010.
http://www.eclipse.org/modeling/emf/.

[13] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman,
A. Elkhodary, and R. Rabbi. An expressive aspect
composition language for uml state diagrams. In
G. Engels, B. Opdyke, D. Schmidt, and F. Weil,
editors, Model Driven Engineering Languages and
Systems, volume 4735 of Lecture Notes in Computer
Science, pages 514–528. Springer Berlin / Heidelberg,
2007.

[14] Y. Wu, A. A. Allen, F. Hernandez, R. B. France, and
P. J. Clarke. A domain-specific modeling approach to
realizing user-centric communication. SP&E, 2011.
http://onlinelibrary.wiley.com/doi/10.1002/

spe.1081/pdf.

