Experiences with Automotive Service Modeling

Akihito Iwai, DENSO CORPORATION
Norio Oohashi, NEC Corporation
Steven Kelly, MetaCase
Background: Service Integrated Systems

- Automotive Software Systems become more large-scale and complex year by year
- \[\Rightarrow \text{Evolving to "Service Integrated System" as "Connected Vehicle"} \]
 - Vehicle + "Traffic Infrastructure"
 - + "IT service"
 - + "Power Grid"
 - ...
Motivation: Need for a Service Integration Platform

- **Big GAP** between vehicle world and IT world!
 - Static vs Dynamic, Quality vs Speed, ….

- Current Approach
 - Component-based approach

- Further Approach
 - *Service-oriented* approach
 - Service modeling
 - Standardization

Service Integration Platform: *Darwin*
Challenges for Service Integration

• **Service Modeling (Today’s topic)**
 – Service model definition and implementation
 – Abstract model of vehicle service
 – Capturing requirements from *multiple stakeholders*
 – Developed by *multiple vendors*

• **Secure Platform**
 – Protection mechanism against invalid external access
 – Highly dependable OS
 – Firewall

• **Pervasive Computing**
 – Adapting to dynamic change of system configuration
 – Installing ad-hoc communication system
 – Dynamic configuration
• Situation Matching
 - Car moves through various situations.
 - Service Integration platform executes appropriate services according to the requirements of the situation autonomously.

Situation = Space (Where) & Time (When)
Case study: Intelligent Parking Service

- Car, service provider and mobile phone work collaboratively to provide parking navigation, remote security and road pricing.
- Car provides appropriate services according to the requirements of the situation autonomously.

![Diagram of Intelligent Parking Service]

- Situation: Approach
- Remote Security Service
- Parking Navigation Service
- Parking Service provider
- Surveillance Center
- Parking Lot
- Parking gate
- Smart key with monitor
- Road Pricing Service

©DENSO CORPORATION All rights reserved.
• Easy Integration of services using Service Interface

SPM (Service Process Manager)

DSS (DARWIN Service Space)

Road Pricing Service
Remote Security Service

Parking Navigation Service

SIE (Situation Inference Engine)

Start Condition
Approaching Parking Area

Search Parking Lot

[Parking Open]

Auto-Parking-Assist Start

Parking Full Indication

[Parking Full]

Open Parking Service Search

Auto-Parking-Assist

Display

Service Interface

ECU SWC

Service Integration Platform

*BPEL: Standard for describing “business process orchestration” by using XML representation.
Experiences with BPEL

• Problems with BPEL
 – No facilities for describing the **dependability** of a service such as real-time guarantee, safety, reliability, and security
 • This capability is strongly required for automotive modeling
 – No model of **resources**
 • Many of the choices we want to make in the models are based on whether resources are available
 – No native facilities for **autonomous** choice among multiple possible services
 • Start and end conditions had to be expressed outside of BPEL.
 – Poor facilities for **fault tolerance**
 • e.g. modeling the behavior of a system with failures. Higher-level facilities than try-catch would be needed.
 – Poor facilities for splitting a model into **multiple parts**, with each part only ultimately being decided at **runtime**
 • The underlying assumption in BPEL is more that the whole model of a service is available in one place at design time.
Attempt to minimally extend BPEL

Example of BPEL description

(1)
```
<invokeAbstractService when="always" where="area:Osaka" what="Search parking" execute="all" timing="start">
  <params>
    <param type="int">latitude</param>
    <param type="int">longitude</param>
  </params>
  <return type="string">ParkingServiceName</return>
</invokeAbstractService>
```

(2)
```
<invoke name="InvokeNotifyEmptySpaceNumber" partnerLink="ParkingServer" operation="GetEmptySpaceNumber" portType="GetEmptySpaceNumberPT" inputVariable="ParkingServiceName" outputVariable="ParkingNumber">
</invoke>
```

(3)
```
<invoke name="InvokeCheckParkingCar" partnerLink="CAR" operation="CheckParkingCar" portType="CheckParkingCarPT" inputVariable="ParkingNumber" outputVariable="bParkCar">
  <toParts>
    <toPart part="partnerLinkName" toVariable="ParkingServiceName"/>
    <toPart part="partnerLinkName" toVariable="ParkingNumber"/>
  </toParts>
</invoke>
```
Proposed Solutions

• Domain Specific Approach will be needed
• Two possible approaches
 – Extend BPEL fundamentally (chosen as first step)
 – New DSM Language from scratch
• Proposed BPEL extension
 – **Resource Contract Function (RCF)**
 • Resource Model for choosing appropriate BPEL description along with platform resource capability
 • (See details on later slide)
 – **Fault Tolerant Network**
 • Monitoring running service, failures, degradation of service for reliability
 • No example created yet
 • (Skip in this presentation)
• Motivations
 – A service process reserves resources needed to execute, so that loading of servers and network should affect its execution.
 – If platforms could not keep resources assigned to a process, the process could switch an alternative service description.

• Example
 – When a platform cannot keep a bandwidth for a service process which uses video, the platform warns the process to degrade its quality of service: to use only voice guides, when it cannot keep the bandwidth, to use text data for text-to-speech.
Resource Contract Function (RCF) mechanism

Service process X

- X asks resources
- PF assigns resources
- PF raises exceptions

Platform PF

- resource servers
- resource monitor

BPEL Description A
- required res. A

BPEL Description B
- required res. B

BPEL Description C
- required res. C

choice
Process Start Condition
 - When(SearchingParkingLotMode ∈ modeOf(Navi.Process)),
 Who(userOf(Navi.Process) ∈ customersOf("A1ParkingCompany"))

Parking Reservation Process

(1)
Navi. Proc. Desc. for a Sightseeing Tour

Hand off (suspend)

Hand off (resume)

resource contract with platform

Select a description according to the contract result

Script Selection Condition
 - HasTextToSpeech(Navi.HID),

for parking lots with only voice guidance

Script Selection Condition
 - Has3DGraphics(Navi.HID),
 Bandwidth(user.HID) ≥ 3DAnimationLoad

for parking lots with 3D animation

Set of Navi. Proc. Desc. to the reserved parking space

(2)

Look up parking lot

Select parking lot

Reserve a space

Generate a navi. proc. to guide to parking space

Switch to navi. script that guides to parking space

(3)

Navigation Process

(4)

(5)

Human Interface Device

Example of Resource Contract Function
Summary and Future Work

• Growing importance of approaches like SOA in automotive
 – to integrate work by multiple partners
• “One size fits all” often doesn’t fit so well
 – for our needs, BPEL could not be applied unaltered
 – main problems: low level, necessary things missing
• Altering or extending a standard stops it being a standard
 – loses its main value
 – in our case, extensions didn’t help enough anyway
• Creating a new language is a viable alternative
 – good tools allow experimentation and evolution
• Future Work
 – Virtual models of service elements in the real world
 – Models of implicit synchronization of service processes
 – Situation description models
Thank you for your attention!

Prototype DENSO Electronic Vehicle,
which commemorates the 60th anniversary of DENSO CORPORATION