
Integrating Models with
Domain-Specific Modeling Languages

Juha-Pekka Tolvanen
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

jpt@metacase.com

Steven Kelly
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

stevek@metacase.com

ABSTRACT
Model integration is inescapable: any non-trivial system will be
too large to fit sensibly in a single model. The model will have to
be split, maybe into different aspects or languages, different
modeler roles and tasks, different phases of the software
development life cycle, etc. In Domain-Specific Modeling, the
possibilities to integrate models are fundamentally better than
with general-purpose languages as the company has full access to
the language definitions. We describe and compare different ways
to integrate DSM models, based on real world experience of what
has been shown to work in practice on industrial scales.

Categories and Subject Descriptors
D.2.2 [Software Engineering] Design Tools and Techniques -
user interfaces, state diagrams D.2.6 [Software Engineering]
Programming Environments - programmer workbench, graphical
environments D.3.2 [Programming Languages] Language
Classifications - Specialized application languages, very high-
level languages

General Terms
Design, Languages.

Keywords
Domain-specific modeling, language integration, metamodel

1. INTRODUCTION
To model any non-trivial software system inevitably requires the
integration of multiple models (‘model’ here means a single
graph, often represented as a diagram.). A large domain further
requires the use of multiple modeling languages and represent-
ational views. Splitting the system over different languages and
models can be done in various ways: modularization of the
system; different aspects of the system; different people and their
roles in development; different phases of the development life-
cycle. In all cases there is a need and expectation that individual
models and their elements can be linked and integrated with other
models. This reintegrates the separate models into a cohesive
whole, allows modelers to see and reuse work done by others, and
allows the checking of system-wide properties.

This paper examines approaches for integrating modeling
languages. We focus solely on Domain-Specific Modeling (DSM)
languages, as opposed to General-Purpose Languages (GPLs).

This difference is important since with DSM the companies have
full control of the individual languages and how they can be
integrated. Since there is plenty of work focusing on the technical
side of integration (such as model transformation languages and
metamodeling languages), we focus on integration needs and
approaches coming from the higher, tool-independent level of
language engineer work in practice. Where possible we refer to
industrial experiences from public cases including Porsche [1],
Polar Electro [2] and Panasonic [7].

We start by introducing an example domain for model integration:
embedded UI applications. We use this to compare and contrast
the two basic integration paradigms, string matching vs. direct
reference. We then identify and describe different ways to
integrate models, first looking at those that can be accomplished
independently of the modeling language, e.g. to allow modelers
with different roles to use the same model in their own ways, and
then at ways of integrating the modeling languages themselves to
provide the best integration on the model level.

2. INTEGRATION EXAMPLE
To demonstrate the different integration alternatives we use a
common domain in the article. We show how domain-specific
languages can be integrated for developing embedded user
interface application. This is a commonly addressed domain with
DSM and public solutions are presented in automotive [1], home
automation [7], medical devices [2] and mobile phones and
professional radios [4]. It is useful for our purposes as it spans
multiple people, roles and phases of the development life cycle,
allowing us to consider the whole range of factors that may
require multiple languages and views.

Figure 1 shows a model of a sample UI application, for making
shopping lists on a mobile phone. The model shows the use of the
various UI widgets, the navigation between them, and access to
phone services.

Developing UI applications covers many tasks, all of which may
involve modeling: concept demonstration, prototyping, interaction
design, localization, implementation, testing, etc. Often these
tasks are performed by different persons and some tasks occur in
parallel. For example, while interaction designers are still seeking
optimal usability, localization and application implementation
may have already started. The same interaction design information
is being read and updated at the same time. This calls for highly
integrated languages and views to the models, as well as good tool
support for multiple simultaneous modelers.

In some industries the specification and realization steps occur in
different companies. For example in automotive [1] it is common
that car manufacturers make specifications and subcontractors
provide applications along with hardware. In other industries, like
home automation [7], the developers generally work within the
same company.

Figure 1. A sample model for interaction design.

3. INTEGRATION PARADIGMS
Several approaches have been suggested as the underlying
mechanism to support model integration. We shall ignore simple
duplication – the deep copying of whole elements to multiple
models – because of its obvious problems, as seen for example in
the PIMs and PSMs of original UML-based MDA and its model-
to-model transformations [6]. The remaining approaches fall into
two main paradigms: string matching and direct object references.

3.1 Splitting and string matching
Simplistic modeling tools provide no support for integration: you
can save a model as a file, often as XML, and often only
containing a single diagram. Elements within that model can refer
to each other, but not to elements in other models (i.e. other XML
files).

Such tools inevitably face the need for some mechanism to allow
references outside a single diagram. Typically, the early approach
is based on simple filenames and string matching: e.g. look in
“Shopping List.xml” for the element called “New shopping list”.
Variants of this approach include omitting the filename and
searching through all files in the current directory, path, project

etc.; specifying the type of the model element to search for; and
using XML ids rather than name properties.

Simplistic modeling tools generally start this way, splitting
models into small, separate files and recombining them based on
string matching. Multiple source files and string-based references
are of course familiar from textual programming, which may make
adoption easier.

Textual DSLs will of course also follow this paradigm; indeed, in
text even links within a single file are accomplished by string
matching, as seen in Listing 1.

Listing 1. Textual DSL, "Shopping list" string matches in bold

WIDGET Select operation
 ON Open GOTO Shopping list
WIDGET Shopping list
 ON Save GOTO Accept changes
 ON Edit GOTO Shopping list
 ON Back GOTO Changes made?

Pseudo-textual tools, e.g. JetBrains’ MPS, actually fit into the
other paradigm, which we shall look at next.

3.2 Direct object references in a repository
As we have seen, textual languages use string matching even
within a single file; XML models can use direct references within
a single model file but string matching outside. The next logical
step is to expand the space in which direct references are possible,
to encompass all the models in a project.

This is generally talked of as the repository approach, as used for
example in MetaEdit+ [5]. The models and their elements can be
considered like the objects in a running object-oriented program:
they all have their own independent existence, and can refer to
each other directly. This of course also nicely matches the graph
structures visible in model diagrams, at least to a first
approximation.

Of course, where desired the references can still be made by string
matching, i.e. one object including the explicit name of another
object, e.g. to add a level of indirection. With both options
available, language engineers can look for the most appropriate
model integration approach for their situation.

3.3 Choosing an integration approach
Both integration approaches have their place and both approaches
should be available for language engineers to consider. While
different options are possible the suitable language integration
approach should be investigated from the modeling process point
of view:

- Who is going to use the models - create, read, modify? What
are the different persons and roles involved?

- How is the work of different developers? Are there certain
preferable ways for reusing others work?

- When would it be best, or possible, to integrate models from
different developers?

- How do changes in the life-cycle influence to the models
already made?

- Performance considerations: Speed of network, distance of
developers, speed of the tooling; size of models.

- Versioning and integration into existing processes.

There can also be business reasons for keeping the models
separate: A company may not want to reveal everything to its
subcontractors, or may want its customers to only use certain
DSLs to modify part of the system.

4. INTEGRATING MULTIPLE ROLES IN
A SINGLE LANGUAGE
In the following we describe some of the main alternatives to
integrate different roles or tasks of users, without having to have a
different model for each role or task. If we can make a single
model usable for two distinct user roles, without having to split
the model in two, we reduce the friction caused by splitting and
reintegration.

4.1 Different representations
Some tools offer support for multiple views, filters or
representations of the same model, with no extra work required of
the language engineer creating the metamodel. For instance, the
same set of model elements could be represented in two different
diagrams, e.g. one showing navigation flow (Figure 1) and
another showing data use (Figure 2). Since the shared model
elements are the same among both diagrams there is no extra work
needed to keep models up-to-date and consistent with each other.
For example, a change of name from "Asking a password" to
"Request password" will be seen in both representations.

Figure 2. A diagram for Figure 1’s model showing data use.

Figure 1 could alternatively be complemented by a matrix
representation, as in Figure 3, which gives a better overview of
which elements access which data elements. As before, each
model element exists only once, just with multiple representations
of the shared elements.

Figure 3. A matrix representation.

4.2 Different tool behavior
One approach is just to hide part of the model data in the tool user
interface, and/or prevent the user from entering or editing it. For
example, in MetaEdit+ [5] the dialogs used to edit and view
model data can be modified to be suitable for different users. Tool
behavior is thus changed for different needs rather than creating
different versions of the language. In Figure 4, the dialogs show
two different views on the same underlying model. The dialog on
the left shows the data needed for interaction designers and the
dialog on the right information about implementation details.

Figure 4. Property dialog for interaction design (left) and for

detailed view (right) on one modeling concept.

If some development role requires access to only certain kinds of
model data a viable approach may be to extend this beyond
dialogs to give subsets of the whole language, often by hiding the
rest. For example, technical engineers may want to see all the data
whereas for localization it is enough to see only the elements that
will appear directly to the end user.

While both these examples had one view as a subset of the other,
that is not always the case: both views could be subsets of a
larger, complete, set of information, with no one view showing
everything. In practice, however, this seems rare.

Creating such alternative tool behavior has a cost, so will
probably not be done if the differences between the needs of users
are small: users simply see the whole model and ignore the parts
that are not relevant to their role.

4.3 Different notations
A more advanced approach is to provide alternative visualizations
of the same model data: The language definition may provide
different notations to different users of the models. For example,
in [7] a view closer to a realistic, pixel accurate, notation was
required. While in some cases close imitation of final products
greatly improves readability and validation of models, often a
more abstract notation allows seeing important details that would
be swamped by the realistic view.

A proven approach is to define different sets of symbols for the
language concepts. These different symbol sets can then be
selected in different stages and by different persons. Figure 5
shows the same model data as in Figure 1, but now from the angle
of detailed design. The choice of which symbol set to use can be
made globally, for a certain diagram, or per element; in this case
the notation was selectable for each diagram.

Tools that support multiple simultaneous modelers can use this
approach to enable collaboration and early feedback during
modeling work. Different visualizations can also be applied to
show errors, inconsistencies or incompleteness of the model. The
model checking can be visualized for example by using special
coloring, icons or special texture. In Figure 5, red text is used to
illustrate errors and missing data. For example, the red text
“Undefined!” is shown for the “Asking a password” dialog to
indicate that its Title ID property has not yet been filled in.

Figure 5. Detailed view of the same application model diagram

as illustrated in Figure 1.

Technically the different notations can be defined by specifying
them all as conditional parts of a single symbol for the concept, or
by importing them from external files when the view must be
changed. The former is particularly good if the amount of
alternative choices is small and the notational elements can be
defined in advance. Including the notation to the language
definition also simplifies sharing and using the language among
other modelers. Figure 6 shows how a symbol element is made
conditional based on the choice of realistic or detailed view.

Figure 6. Defining conditional symbols for a language.

The latter, importing notation from external sources, is preferable
if the number of alternative visualizations per language element is
big and the individual notational elements are not yet known.
Separating notational elements from the rest of the language
definition does however make its management, sharing,
versioning, and updating more challenging.

Notation elements may also be partly derivative: a symbol may
have parts that fetch information from other models. The symbol
defines the path to the information either declaratively or as a
script or generator. This is particularly useful when data is needed
in read-only mode: model data is available but it is not allowed to
be changed from that point of the language. For example, some of
the details specified in a submodel, such as ports, are shown in the
upper diagram to give the wider context.

5. INTEGRATING LANGUAGES
A more powerful approach for integrating models is to integrate
the languages, their underlying concepts and constraints. The
following approaches have been identified to be used in practice.

5.1 The best integration is no integration
In GPLs, it is often impossible to integrate several points of view
or aspects in a single language (i.e. diagram type) without that
language and its models becoming too big. In DSM, the modeling
language for a given aspect in a given domain would be smaller
than for that aspect in all situations. It thus becomes possible to fit
several aspects into one language without it becoming unwieldy.
This also has the benefit that a single diagram can express several
aspects in one coherent view, rather than the modeler having to
split the information over several diagrams, maintain the links,
and reconstitute them together mentally to see the whole picture.

5.2 Relationships between models
The simplest integration is where an element in one model points
to another model, often to describe the internal details of that
element. For example, in Figure 5, the details of the Shopping list
element, like list content, could be described in another
(sub)model. It is the task of the language engineer to define what
kind of relationships could be made between models, such as:

- If a model element can have more than one (sub)model

- If several model elements can have the same (sub)model

- If the submodel is the same language as the parent model or
a different language.

This kind of relationship between models can be used for various
purposes. When several model elements can refer to same
submodel, the top level model elements can be used to configure
the submodels: each model element then adds its own details to
the common part.

With relationships to several kind of models (each having a
different language) different aspects can be separated to their own
models. For example, the shopping list could be described in more
detail from the content and operation point of view – and for
describing both views there are different (sub)languages.

Often the relationships among models are not just targeting
another whole model but refer to the content of the other model.
This calls for sharing the language concepts among the languages.

5.3 Common language concepts
Where the model information is split over several diagrams, it can
also be useful to allow reuse of elements between models, e.g. to
provide different perspectives on the same model element. The
same language concept will then be used in multiple languages.

For example, in [1] a set of integrated languages for developing
automotive infotainment systems is presented (see Figure 7). The
approach identifies a set of roles such as graphical designers
defining the layout elements (fonts, icons, colors etc.), usability
experts defining the structure and layout of individual displays
and developers specifying the interaction logic and behavior. To
support model integration among the various persons and their
roles the languages are defined into a common metamodel of
several sublanguages, with shared domain concepts.

Figure 7. Different languages for different roles (from [1]).

Sometimes elements are reused by placing them directly in several
diagrams; other times an element may be directly in one diagram,
but included in another diagram only as a reference or property of
an element there. For example, in Figure 7 each state in the right-
hand column refers to a Display defined in the middle column.

On the metamodel level this means that Display object is shared
among the different modeling languages. Figure 8 shows the
metamodel for this (simplified for this example). The language
definition on the left hand side, called Display content, is used to

define individual displays and their detailed structure. The
language on the right hand side, called Interaction & behavior,
has a State object which has a reference to one Display definition.
The reference can be seen in Figure 8 (highlighted here by the red
dashed arrow). This language integration structure allows
developers to refer to existing display definitions while focusing
on interaction design.

Figure 8. Using the same language construct, Display, in two
different languages.

Integrated language definition can also determine the workflow:
how individual model elements should be reused. An individual
display defined by usability experts can be reused in the models
describing interaction design. Interaction designers and technical
developers can then reuse the defined displays and decide if they
want changes made to the reused displays to be applied in
interaction designs.

The integrated metamodel may give different names or labels for
the shared concepts. Usability experts may want to call a thing
“display” while technical developers speak about a “state” having
a “view”.

A language may also include constraints to define if reuse is
mandatory, constraining where elements can be reused from, and
who can create new reusable elements. In the case of the display
concept, the language engineer could define that interaction
designers may only reuse existing displays, or that they could
define and use their own displays but that these would only be
local, not available for reuse by other designers.

5.4 Creating a metamodel from models
A special case of model integration is when a first model M1
effectively defines a language to be used for writing a second
model M2. M2 is thus an instance of M1, and M1 therefore
determines the very form of the data that can be entered into M2,
not just some constraints on the content of that data. Examples of
this can be found from generic languages, e.g. UML’s Class
Diagram and Object Diagram. For each attribute defined in a class
in a Class Diagram M1, the corresponding object in the Object
Diagram M2 should be able to provide a value for that attribute –
but not change the details of the attribute such as its name or type.
Similarly, in a language workbench the language used to define
metamodels allows the metamodeler to create an M1, and a
modeler can then create an M2 (or several) that are instances of
M1.

This approach can also be used in cases where there is a strong
dependency that what is legal in M2 is determined by the contents
of M1, even though it may not initially be seen as a clear-cut case
of instantiation. The primary mechanism offered by a language

workbench for constraining models is the modeling language, so
leveraging this mechanism to handle the constraint enforcement
may be better than trying to cobble together an ad hoc solution.

In industrial use of MetaEdit+ we have seen several cases where
the customer initially wanted strong constraints from one model to
another. On closer examination the models were to be made by
different people; those building the second models should have
only read-only access to the first model; and the process for
defining the first model would be stricter. Often the first model
was talked about as “defining the components that the second
models would use”. Sometimes there would be one first model
and several second models, or then each second model could
“import” a set of first models, which would together provide the
set of legal components to use.

Allowing the first model (or a set of them) to form a metamodel
for the second models fit these requirements well. In most cases
there was a base metamodel for all the second models, which was
then extended in parts by the contents of the first models. The
automation, integration and evolution facilities of MetaEdit+
allowed the modelers to create a second model then add
references to extra first models, and have the modeling language
be extended on the fly to include the new concepts.

Technically, it would have been possible to have the builders of
the first model use the normal metamodeling language or form-
based metamodeling tools of MetaEdit+. Instead, we used the
natural form of the language for the first domain, and simply made
generators for that language that could create the desired
corresponding metamodel for use by the second models. With the
appropriate generator, any model in MetaEdit+ can thus
effectively be a metamodel.

6. RELATED WORK
The splitting and string matching of 3.1 can also be a deliberate
policy, as in [9]. The wider questions of string matching vs. direct
references and model versioning are covered in more detail in [3].

To our knowledge, out of the box no other tool offers multiple
simultaneously editable representational paradigms of the same
model, as in 4.1. Extending a model as in 4.2 is accomplished in
[8] by storing the extra information in external XML files.

A similar approach to the common language concepts of 5.3 is the
use of “gateway metaclasses” in [8]. However, in that case whole
elements are reused by copying, not by reference; to avoid that
duplication it is suggested to have one end of the reference just
use the element’s name, with matching based on identical names.
The ModelBus add-on to Microsoft DSL Tools has a similar
approach.

7. CONCLUSIONS
In DSM, language engineers have full control over the languages,
and can thus decide on an appropriate model integration approach
for their situation. Sometimes it can be possible to integrate
several areas of interests, e.g. persistency, navigation, layout, data,
into a single modeling language, whereas at other times the use of
different languages, and explicit integration among the models is
preferred. In any case, there will always be multiple model
diagrams to integrate, whether by elements having subdiagrams,
or elements being reused or referenced in several diagrams.

We have described some of the main model integration
approaches by analyzing language integration cases based on our
consulting work in various industries, including automotive,
telecom, and consumer electronics. The approaches described
have been illustrated by extending a common base example
model.

The range of integration approaches described probably reflects
our experience with a repository-based tool, which makes linking
and reusing across models and languages easy. While all of the
approaches could in theory also be implemented in a tool based
on separate files, e.g. XML files with string matching, the amount
of work necessary to provide good support to modelers with those
tools may be prohibitive in some cases.

Whatever the tool, avoiding the need to split and recombine data
is a useful tactic where possible. A single language integrating
multiple aspects, tool support that can present different views for
different users, and multiple representations and notations of a
single language are all approaches that can achieve this.

Where it is necessary or desirable to split information over
multiple models, possibly of different languages, they can be kept
integrated by shared elements, relationships between models, and
even by creating metamodels from models on the fly.

It is important that there are several possibilities for integration
and that tools applied do not limit the language engineer’s, and
later modelers’, choices on how best to integrate models.

8. REFERENCES
[1] Bock, C., Görlich, D., and Zühlke, D. 2006. Using Domain-

Specific Languages in the Design of HMIs: Experiences and
Lessons Learned, In Proceedings of the MoDELS'06
Workshop on Model Driven Development of Advanced User
Interfaces, CEUR Workshop Proceedings, Vol-214.

[2] Kärnä, J., Tolvanen, J.-P., and Kelly, S. 2009. Evaluating the
Use of Domain-Specific Modeling in Practice, In
Proceedings of the 9th OOPSLA workshop on Domain-
Specific Modeling.
http://www.dsmforum.org/events/DSM09/Papers/Karna.pdf

[3] Kelly, S. 2010. Mature Model Management,
ObjektSpektrum, October 2010 (in German, to appear).

[4] Kelly, S., and Tolvanen, J-P. 2008. Domain-Specific
Modeling: Enabling Full Code Generation, Wiley.

[5] MetaCase 2008. MetaEdit+ Workbench 4.5 SR1 User’s
Guide, http://www.metacase.com/support/45/manuals/

[6] OMG 2003. MDA Guide V1.0.1, http://www.omg.org/cgi-
bin/doc?omg/03-06-01

[7] Safa, L. 2007. The Making Of User-Interface Designer, A
Proprietary DSM Tool. In Procs of 7th OOPSLA Workshop
on Domain-Specific Modeling, Technical Reports, TR-38,
University of Jyväskylä, Finland.
http://www.dsmforum.org/events/DSM07/papers/safa.pdf

[8] Stahl, T., and Völter, M. 2006. Model-Driven Software
Development, Wiley.

[9] Warmer, J. 2007. Building a flexible software factory using
small DSLs and Small Models. Presentation at Code
Generation 2007, Cambridge, UK.

