Integrating Models with
Domain-Specific Modeling Languages

Juha-Pekka Tolvanen
MetaCase
Ylistbnméaentie 31
FI-40500 Jyvaskyla, Finland
+358 14 641 000

jpt@metacase.com

ABSTRACT

Model integration is inescapable: any non-trivigstem will be
too large to fit sensibly in a single model. Thedmlowill have to
be split, maybe into different aspects or languagbfierent
modeler roles and tasks, different phases of th#wae
development life cycle, etc. In Domain-Specific Mtidg, the
possibilities to integrate models are fundamentalbtter than
with general-purpose languages as the companyutieectess to
the language definitions. We describe and compiffiereht ways
to integrate DSM models, based on real world expee of what
has been shown to work in practice on industrialesc

Categories and Subject Descriptors

D.2.2 [Software Engineering Design Tools and Techniques -
user interfaces, state diagrani3.2.6 [Software Engineering
Programming Environmentsprogrammer workbenchgraphical
environments D.3.2 [Programming Language$ Language
Classifications -Specialized application languagegery high-
level languages

General Terms
Design, Languages.

Keywords

Domain-specific modeling, language integration,aneidel

1. INTRODUCTION

To model any non-trivial software system inevitabdyuires the
integration of multiple models (‘model’ here meaassingle
graph, often represented as a diagram.). A largeado further
requires the use of multiple modeling languages @mtesent-
ational views. Splitting the system over differéabguages and
models can be done in various ways: modularizaténthe

system; different aspects of the system; diffepatple and their
roles in development; different phases of the dgmeknt life-

cycle. In all cases there is a need and expectétianindividual

models and their elements can be linked and integnaith other
models. This reintegrates the separate models antmhesive
whole, allows modelers to see and reuse work dgrahers, and
allows the checking of system-wide properties.

This paper examines approaches for integrating hmape
languages. We focus solely on Domain-Specific Mioge(DSM)
languages, as opposed to General-Purpose Langy&iss).

Steven Kelly
MetaCase
Ylistbnméaentie 31
FI-40500 Jyvaskyla, Finland
+358 14 641 000

stevek@metacase.com

This difference is important since with DSM the qamies have
full control of the individual languages and howeyhcan be
integrated. Since there is plenty of work focusimgthe technical
side of integration (such as model transformatamglages and
metamodeling languages), we focus on integratioadsieand
approaches coming from the higher, tool-independemtl of

language engineer work in practice. Where possiderefer to

industrial experiences from public cases includiaysche [1],
Polar Electro [2] and Panasonic [7].

We start by introducing an example domain for mautlgration:
embedded Ul applications. We use this to compacecamtrast
the two basic integration paradigms, string matghis. direct
reference. We then identify and describe differevetys to
integrate models, first looking at those that canabcomplished
independently of the modeling language, e.g. towalnodelers
with different roles to use the same model in tl@n ways, and
then at ways of integrating the modeling languagesnselves to
provide the best integration on the model level.

2. INTEGRATION EXAMPLE

To demonstrate the different integration alterretiwe use a
common domain in the article. We show how domaieetit
languages can be integrated for developing embedssst
interface application. This is a commonly addres$echain with
DSM and public solutions are presented in autoradih], home
automation [7], medical devices [2] and mobile pé®nand
professional radios [4]. It is useful for our pusgs as it spans
multiple people, roles and phases of the developrifencycle,
allowing us to consider the whole range of facttrat may
require multiple languages and views.

Figure 1 shows a model of a sample Ul applicatfon,making
shopping lists on a mobile phone. The model shbwaise of the
various Ul widgets, the navigation between thend aocess to
phone services.

Developing Ul applications covers many tasks, &ivbich may
involve modeling: concept demonstration, prototgpimteraction
design, localization, implementation, testing, e@ften these
tasks are performed by different persons and sasiestoccur in
parallel. For example, while interaction desigremes still seeking
optimal usability, localization and application ilementation
may have already started. The same interactiogul@sformation
is being read and updated at the same time. THis foa highly
integrated languages and views to the models, hasvgood tool
support for multiple simultaneous modelers.

In some industries the specification and realiratiteps occur in
different companies. For example in automotivei{i$ common

that car manufacturers make specifications and anttectors
provide applications along with hardware. In otimelustries, like
home automation [7], the developers generally woithin the

same company.

=] L LIS
Asking & passwort
FhkHkFF
—
@ S
oK
I
=] [11 Is]

Select aperation

Stored list #1, ddmmyyyy,
Stored list #2, ddmmyyyy, b

Changes not saved
>

Open lNew Close

OJer\ I Cllse 3 <:>

=] L1 Is]
Shopping list

=] [11 I=]
ey shopping ist

1.2.2008,13:45:
trerm: Wik
Quartity: 2 pos

Mame:
termn: Butter Date:

Guartity: 1 pes
I =—1
Accept changes Edit Save Back
Egiit
Sejve Edit Save
? n
Changes made?
M —— True ———

o

Accept changes

False

Figure 1. A sample model for interaction design.

3. INTEGRATION PARADIGMS

Several approaches have been suggested as thelyimyler
mechanism to support model integration. We shalbig simple
duplication — the deep copying of whole elementsraltiple
models — because of its obvious problems, as sgegxémple in
the PIMs and PSMs of original UML-based MDA andritedel-
to-model transformations [6]. The remaining appheacfall into
two main paradigms: string matching and direct cjeferences.

3.1 Splitting and string matching

Simplistic modeling tools provide no support foteigration: you
can save a model as a file, often as XML, and ofbety

containing a single diagram. Elements within thatei can refer
to each other, but not to elements in other mo@elsother XML

files).

Such tools inevitably face the need for some meshato allow
references outside a single diagram. Typically,ehdy approach
is based on simple filenames and string matching: leok in
“Shopping List.xml” for the element called “New giging list”.
Variants of this approach include omitting the rfdene and
searching through all files in the current diregtquath, project

etc.; specifying the type of the model elementearsh for; and
using XML ids rather than name properties.

Simplistic modeling tools generally start this wagplitting
models into small, separate files and recombinirent based on
string matching. Multiple source files and stringsbd references
are of course familiar from textual programmingjethmay make
adoption easier.

Textual DSLs will of course also follow this pargdi; indeed, in
text even links within a single file are accompéidhby string
matching, as seen in Listing 1.

Listing 1. Textual DSL, "Shopping list" string matches in bold

WIDGET Select operation
ON Open GOTO Shopping list
WIDGET Shopping list
ON Save GOTO Accept changes
ON Edit GOTO Shopping list
ON Back GOTO Changes made?

Pseudo-textual tools, e.g. JetBrains’ MPS, actufillynto the
other paradigm, which we shall look at next.

3.2 Direct object references in a repository

As we have seen, textual languages use string mgtawven

within a single file; XML models can use directerefnces within

a single model file but string matching outsideeTtext logical

step is to expand the space in which direct referemre possible,
to encompass all the models in a project.

This is generally talked of as the repository apphy as used for
example in MetaEdit+ [5]. The models and their edata can be
considered like the objects in a running objectmieéd program:
they all have their own independent existence, eaml refer to
each other directly. This of course also nicelyahes the graph
structures visible in model diagrams, at least to first
approximation.

Of course, where desired the references can stithéde by string
matching, i.e. one object including the explicitreaof another
object, e.g. to add a level of indirection. Withthbcoptions
available, language engineers can look for the rapgtropriate
model integration approach for their situation.

3.3 Choosing an integration approach

Both integration approaches have their place anl &pproaches
should be available for language engineers to densiwhile
different options are possible the suitable languagegration
approach should be investigated from the modelioggss point
of view:

- Who is going to use the models - create, read, fydvhat
are the different persons and roles involved?

- How is the work of different developers? Are thesstain
preferable ways for reusing others work?

- When would it be best, or possible, to integratelet® from
different developers?

- How do changes in the life-cycle influence to thedels
already made?

- Performance considerations: Speed of network, riistaf
developers, speed of the tooling; size of models.

- Versioning and integration into existing processes.

There can also be business reasons for keepingmtbaels
separate: A company may not want to reveal evargtho its
subcontractors, or may want its customers to orgly oertain
DSLs to modify part of the system.

4. INTEGRATING MULTIPLE ROLES IN
A SINGLE LANGUAGE

In the following we describe some of the main al&ives to
integrate different roles or tasks of users, withtwaving to have a
different model for each role or task. If we cankma single
model usable for two distinct user roles, withoaving to split
the model in two, we reduce the friction causedspltting and
reintegration.

4.1 Different representations

Some tools offer support for multiple views, fikeror

representations of the same model, with no extn& wexuired of
the language engineer creating the metamodel. istarice, the
same set of model elements could be representedbinifferent
diagrams, e.g. one showing navigation flow (Figure and
another showing data use (Figure 2). Since theeghamodel
elements are the same among both diagrams theoeeistra work
needed to keep models up-to-date and consistenteaith other.
For example, a change of name from "Asking a pasfwto

"Request password" will be seen in both represientst

E= Mobile Application Specification: Shopping list, 10. August 2010, 13:06
Graph Edit View Iypes Format Help

& yh@ o
.EEEQDEEJD,@D@IE¢./;‘41 f A A oas

+lanb x

Asking a password
[QUERY _PASSWORD_TEXT]

Password &+ kK
Passvvord stest Read — | oo ovord?
[PROMPT_PASSWORD_TE
Lsk | | msi | | Rsk

Accept changes

(QLUERY _ACCEPT_TEXT]

Select operation
LIST_SELECT_OPERATION

Queny) Stored list #1, demmyyyy, ¥
= L croate Stored lists Read Store list #2, demmyyyy,
Accept changes atray
[PROMPT_SURE_TEXT]
Update
Lk | [msk | [Rsk Lsk | [msic | [Rsx

New shapping list
FORM_SHOPPINGLIST_TEXT]

Shopping list
FORM_SHOPPINGLIST_TEXT]

Mame: 1.2.2008, 1345
Date: Shopping It ttem: Ml
tem: Butier
Update Guantity: 1 pes
Lk | [msk | [Rsk Lsk | [msic | [Rsx
x| [rarc | -
< >
Active: None Subgraph(s): None Grid: 10@10 Snap [] Show | @ | 100% |~ @

Figure 2. A diagram for Figure 1's model showing dta use.

Figure 1 could alternatively be complemented by atrix

representation, as in Figure 3, which gives a betterview of

which elements access which data elements. As daefeach
model element exists only once, just with multipresentations
of the shared elements.

BE Mobile Application Specification: Shopping list, 10. August 2010, 12:49
Graph Edit View Types Axis Cell Format Analysis Help

EBX
E&|y bR vt algde [cloc B e x

@TESEH (O A @ | A ur A A ~ou
I JPassword | | Stored lists | | Shopping list

=] Asking a password | |Read
E‘ Select operation Read

Mew shopping list Create
E Shopping list
5 Accept changes

Read, Update
Create, Update

Figure 3. A matrix representation.

4.2 Different tool behavior

One approach is just to hide part of the model otathe tool user
interface, and/or prevent the user from enteringditing it. For
example, in MetaEdit+ [5] the dialogs used to eatid view
model data can be modified to be suitable for diffie users. Tool
behavior is thus changed for different needs rathan creating
different versions of the language. In Figure & thalogs show
two different views on the same underlying moddile Hialog on
the left shows the data needed for interactiongiess and the
dialog on the right information about implementatietails.

ol Query: Object El
Query title: | Confirmation

“|Query: Object E| Title ID: QUERY_CONF_TEXT v

Query title: | Confirmation Title icon: asking_confirmation

Title icon: asking_confirmation Prompt: Are you sure

Prompt: Are you sure Prompt ID: | PROMFT_SURE_TEXT v

Query type: | Query - Query type: | Query v

Style: (&) Application modal Style: (%) Application modal

() Primary modal) Primary modal
| oK ‘ [Cancel l l Info...] | oK | l Cancel] [Info... l

Figure 4. Property dialog for interaction design (kft) and for
detailed view (right) on one modeling concept.

If some development role requires access to ontaicekinds of
model data a viable approach may be to extend hkisond
dialogs to give subsets of the whole languagendfiehiding the
rest. For example, technical engineers may wasé¢oall the data
whereas for localization it is enough to see ohby ¢lements that
will appear directly to the end user.

While both these examples had one view as a sualbské other,
that is not always the case: both views could hesets of a
larger, complete, set of information, with no oriew showing
everything. In practice, however, this seems rare.

Creating such alternative tool behavior has a cest, will
probably not be done if the differences betweemtrexs of users
are small: users simply see the whole model andreggthe parts
that are not relevant to their role.

4.3 Different notations

A more advanced approach is to provide alternatisealizations
of the same model data: The language definition payvide
different notations to different users of the madé&lor example,
in [7] a view closer to a realistic, pixel accuratmtation was
required. While in some cases close imitation oflffiproducts
greatly improves readability and validation of misdeoften a
more abstract notation allows seeing importantildetiaat would
be swamped by the realistic view.

A proven approach is to define different sets ohlsgls for the
language concepts. These different symbol sets than be
selected in different stages and by different pessd-igure 5
shows the same model data as in Figure 1, but rmw the angle
of detailed design. The choice of which symbolteetise can be
made globally, for a certain diagram, or per eletmenthis case
the notation was selectable for each diagram.

Tools that support multiple simultaneous modelexs ase this
approach to enable collaboration and early feedbaekng
modeling work. Different visualizations can also &gplied to
show errors, inconsistencies or incompletenestefiodel. The
model checking can be visualized for example bygisipecial
coloring, icons or special texture. In Figure & text is used to
illustrate errors and missing data. For example thad text
“Undefined!” is shown for the “Asking a passwordiathg to
indicate that its Title ID property has not yet bdiled in.

Asking & passwort

[GUERY _PASSWORD_TEXT]

Passward FhkHkFF

—
@ —
[PROMPT_PASSWORD_TE

LEK MEK REK
K

[sKmiq

Select aperation
[LIST_SELECT OPERATION]

Stored list #1, ddmmyyyy,
Stored list #2, ddmmyyyy, b

Information

Changes not saved
[MB_HO_SAVING_TEXT]

A
A

LSK MSK RSk
Ofen I Clgse
[5K_DPEN] [$K_NE]

3

ey shaopping st
[FORM_SHOPFINGLIST TEXT]

Shopping list
[FORM_SHOPPINGLIST_TEXT]

1.2.2008,13:45:
trerm: Wik
Quartity: 2 pos

Mame:
ttem: Butter Dater
Guartity: 1 pos

Accept changes LSk MSK REK

[QUERY _ACCEPT_TEXT] Eht
Back
i LSk MSK RSK

TRET ol

Accept changes Changes macle? BR_EDIT)
[PROMPT_SURE_TEXT] == True ———

o

[ER_sAvE]
LK MK REK

o
[SK_ND] vhs

[5R_TES]

False

Figure 5. Detailed view of the same application mad diagram
as illustrated in Figure 1.

Technically the different notations can be defilmdspecifying

them all as conditional parts of a single symboltf@ concept, or
by importing them from external files when the viemust be
changed. The former is particularly good if the amto of

alternative choices is small and the notationaimelets can be
defined in advance. Including the notation to tlmguage
definition also simplifies sharing and using thedaage among
other modelers. Figure 6 shows how a symbol elergentade
conditional based on the choice of realistic oatled view.

Ling and Fill | Location and Size | Condition
Condition source
() Property
(3) Generatar

Condition

(&) String
= ¥

() RegExp

Clear

RUETA R

Detail view

Close

Figure 6. Defining conditional symbols for a languge.

The latter, importing notation from external sowcis preferable
if the number of alternative visualizations perdaage element is
big and the individual notational elements are yet known.
Separating notational elements from the rest of ldrgguage
definition does however make its management, sbarin
versioning, and updating more challenging.

Notation elements may also be partly derivativesymbol may

have parts that fetch information from other mod&lse symbol

defines the path to the information either decieefif or as a

script or generator. This is particularly usefulemidata is needed
in read-only mode: model data is available bus iat allowed to

be changed from that point of the language. Fomgi@, some of

the details specified in a submodel, such as partsshown in the
upper diagram to give the wider context.

5. INTEGRATING LANGUAGES

A more powerful approach for integrating modelgdsntegrate
the languages, their underlying concepts and cainsst The
following approaches have been identified to beluseractice.

5.1 The best integration is no integration

In GPLs, it is often impossible to integrate selents of view

or aspects in a single language (i.e. diagram tyytjout that

language and its models becoming too big. In D3 ,modeling

language for a given aspect in a given domain wdedmaller
than for that aspect in all situations. It thusdrees possible to fit
several aspects into one language without it becgmnwieldy.

This also has the benefit that a single diagramesgumess several
aspects in one coherent view, rather than the raodelving to

split the information over several diagrams, mamtde links,

and reconstitute them together mentally to seevti@e picture.

5.2 Relationships between models

The simplest integration is where an element in moeel points
to another model, often to describe the internahitie of that
element. For example, in Figure 5, the detailthef$hopping list
element, like list content, could be described inother
(sub)model. It is the task of the language engiteetefine what
kind of relationships could be made between modeish as:

- If a model element can have more than one (sub)mode
- If several model elements can have the same (sw®&imo

- If the submodel is the same language as the paredé! or
a different language.

This kind of relationship between models can baldee various
purposes. When several model elements can refesatoe
submodel, the top level model elements can be tesednfigure
the submodels: each model element then adds itsdetails to
the common part.

With relationships to several kind of models (edthving a
different language) different aspects can be ség@ita their own
models. For example, the shopping list could berilssd in more
detail from the content and operation point of viewand for
describing both views there are different (sub)lsages.

Often the relationships among models are not jaseting
another whole model but refer to the content ofdtreer model.
This calls for sharing the language concepts anoedanguages.

5.3 Common language concepts

Where the model information is split over seveiabgcams, it can
also be useful to allow reuse of elements betweedefs, e.g. to
provide different perspectives on the same modaineht. The
same language concept will then be used in mulkipiguages.

For example, in [1] a set of integrated languagesdeveloping
automotive infotainment systems is presented (sgaré7). The
approach identifies a set of roles such as graplieaigners
defining the layout elements (fonts, icons, colets.), usability
experts defining the structure and layout of indixdl displays
and developers specifying the interaction logic aetiavior. To
support model integration among the various persont their
roles the languages are defined into a common neetelnof
several sublanguages, with shared domain concepts.

) @ o® °®
Graphical A~
.d apiue || Usability . .
CRLgners experts Developers

Interaction &
behavior

GUI stylesheet Display content

Formal specification Formal specification Formal specification

] | N

' ‘ 7 '

—‘ ‘ Code generator ‘
v

Domain framework }

Figure 7. Different languages for different roles from [1]).

Sometimes elements are reused by placing thentlglireseveral
diagrams; other times an element may be directyniaa diagram,
but included in another diagram only as a referemgeroperty of
an element there. For example, in Figure 7 eadk Btahe right-
hand column refers to a Display defined in the dd@ddlumn.

On the metamodel level this means that Displayathfeshared
among the different modeling languages. Figure 8wshthe
metamodel for this (simplified for this example)hel language
definition on the left hand side, called Displayntant, is used to

define individual displays and their detailed staie. The
language on the right hand side, called Interac&hehavior,

has a State object which has a reference to orpaidefinition.

The reference can be seen in Figure 8 (highlightzd by the red
dashed arrow). This language integration structateows

developers to refer to existing display definitiomkile focusing

on interaction design.

Dizplay content

Display
Mame: String

Uinteraction & kehavior

State
State name: String

Detailz: Collection v. Applied Display: Object [Display]

Ta Fram

Iatvig ation

Figure 8. Using the same language construct, Disglain two
different languages.

Integrated language definition can also determiree vworkflow:

how individual model elements should be reused.itividual

display defined by usability experts can be reusethe models
describing interaction design. Interaction desigreard technical
developers can then reuse the defined displaysiacide if they
want changes made to the reused displays to beedppi

interaction designs.

The integrated metamodel may give different namesakmels for
the shared concepts. Usability experts may wartatba thing
“display” while technical developers speak abotistate” having
a “view”".

A language may also include constraints to defineeuse is
mandatory, constraining where elements can be defusm, and
who can create new reusable elements. In the dabe dlisplay
concept, the language engineer could define thudrdation
designers may only reuse existing displays, or thay could
define and use their own displays but that thesaldvonly be
local, not available for reuse by other designers.

5.4 Creating a metamodel from models

A special case of model integration is when a firgidel M
effectively defines a language to be used for mgita second
model M. M, is thus an instance of Mand M therefore
determines the very form of the data that can lered into M,
not just some constraints on the content of thtd.daxamples of
this can be found from generic languages, e.g. WMClass
Diagram and Object Diagram. For each attributengefiin a class
in a Class Diagram M the corresponding object in the Object
Diagram M should be able to provide a value for that attebu
but not change the details of the attribute sudtsasame or type.
Similarly, in a language workbench the languaged usedefine
metamodels allows the metamodeler to create an aid a
modeler can then create ar, lbr several) that are instances of

This approach can also be used in cases where itharstrong
dependency that what is legal in, M determined by the contents
of M,, even though it may not initially be seen as amtat case
of instantiation. The primary mechanism offered doyanguage

workbench for constraining models is the modeliagguage, so
leveraging this mechanism to handle the constrfibrcement
may be better than trying to cobble together ahadsolution.

In industrial use of MetaEdit+ we have seen sevesiabs where
the customer initially wanted strong constraintsrfrone model to
another. On closer examination the models wereetanade by
different people; those building the second modisuld have
only read-only access to the first model; and thecgss for
defining the first model would be stricter. Oftdmetfirst model
was talked about as “defining the components that gecond
models would use”. Sometimes there would be orst fitodel
and several second models, or then each secondl roodlel

“import” a set of first models, which would togethgrovide the
set of legal components to use.

Allowing the first model (or a set of them) to formnmetamodel
for the second models fit these requirements welinost cases
there was a base metamodel for all the second sodbklch was
then extended in parts by the contents of the firgtlels. The
automation, integration and evolution facilities bfetaEdit+

allowed the modelers to create a second model thed

references to extra first models, and have the tmapéanguage
be extended on the fly to include the new concepts.

Technically, it would have been possible to hawe bhilders of
the first model use the normal metamodeling languagform-
based metamodeling tools of MetaEdit+. Instead,used the
natural form of the language for the first domaing simply made
generators for that language that could create dbesired
corresponding metamodel for use by the second moWéth the
appropriate generator, any model in MetaEdit+ cdmust
effectively be a metamodel.

6. RELATED WORK

The splitting and string matching of 3.1 can algoabdeliberate
policy, as in [9]. The wider questions of stringtoféng vs. direct
references and model versioning are covered in ohetal in [3].

To our knowledge, out of the box no other tool ffenultiple
simultaneously editable representational paradigmthe same
model, as in 4.1. Extending a model as in 4.2 ®aplished in
[8] by storing the extra information in external XMiles.

A similar approach to the common language conoefpis3 is the
use of “gateway metaclasses” in [8]. However, iat ttase whole
elements are reused by copying, not by referemcevoid that
duplication it is suggested to have one end ofréference just
use the element’s name, with matching based onig@mames.
The ModelBus add-on to Microsoft DSL Tools has milsir
approach.

7. CONCLUSIONS

In DSM, language engineers have full control ower languages,
and can thus decide on an appropriate model irttegrapproach
for their situation. Sometimes it can be possileirtegrate
several areas of interests, e.g. persistency, atwig layout, data,
into a single modeling language, whereas at otherstthe use of
different languages, and explicit integration amamg models is
preferred. In any case, there will always be migtipnodel

diagrams to integrate, whether by elements haviiglisgrams,
or elements being reused or referenced in seviergitains.

We have described some of the main model integratio
approaches by analyzing language integration das®sd on our
consulting work in various industries, including t@motive,
telecom, and consumer electronics. The approaclkessrided
have been illustrated by extending a common basempbe
model.

The range of integration approaches described piplraflects
our experience with a repository-based tool, whi@kes linking
and reusing across models and languages easy. ahié the
approaches could in theory also be implemented timohbased
on separate files, e.g. XML files with string matah the amount
of work necessary to provide good support to madeidth those
tools may be prohibitive in some cases.

Whatever the tool, avoiding the need to split amcbmbine data
is a useful tactic where possible. A single languagegrating
multiple aspects, tool support that can preserierdifit views for
different users, and multiple representations aathtions of a
single language are all approaches that can actfiesze

Where it is necessary or desirable to split infdiom over
multiple models, possibly of different languagd®yt can be kept
integrated by shared elements, relationships betwesdels, and
even by creating metamodels from models on the fly.

It is important that there are several possibditier integration
and that tools applied do not limit the languaggimeer’s, and
later modelers’, choices on how best to integratdets.

8. REFERENCES

[1] Bock, C., Goérlich, D., and Zihlke, D. 2006. Usingrdain-
Specific Languages in the Design of HMIs: Experesnand
Lessons Learned, Rroceedings of the MoDELS'06
Workshop on Model Driven Development of Advancest Us
Interfaces CEUR Workshop Proceedings, Vol-214.

[2] Karna, J., Tolvanen, J.-P., and Kelly, S. 2009.l&&ting the
Use of Domain-Specific Modeling in Practice, In
Proceedings of the"™8OOPSLA workshop on Domain-
Specific Modeling
http://www.dsmforum.org/events/DSMO09/Papers/Kard&.p

[3] Kelly, S. 2010. Mature Model Management,
ObjektSpektrumOctober 2010 (in German, to appear).

[4] Kelly, S., and Tolvanen, J-P. 200Bomain-Specific
Modeling: Enabling Full Code Generatipiiley.

[5] MetaCase 2008VietaEdit+ Workbench 4.5 SR1 User’s
Guide http://www.metacase.com/support/45/manuals/

[6] OMG 2003.MDA Guide V1.0.1http://www.omg.org/cgi-
bin/doc?omg/03-06-01

[7] Safa, L. 2007. The Making Of User-Interface Desighe
Proprietary DSM Tool. IfProcs of ¥ OOPSLA Workshop
on Domain-Specific Modelin@echnical Reports, TR-38,
University of Jyvaskyla, Finland.
http://www.dsmforum.org/events/DSMO7/papers/safa.pd

[8] Stahl, T., and Vélter, M. 20084odel-Driven Software
DevelopmentWiley.

[9] Warmer, J. 2007Building a flexible software factory using
small DSLs and Small ModeBresentation at Code
Generation 2007, Cambridge, UK.

