
A WYSIWYG Approach for
Configuring Model Layout using Model Transformations

Yu Sun
Department of Computer and

Information Sciences
University of Alabama at Birmingham

Birmingham, AL
yusun@cis.uab.edu

Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL
gray@cs.ua.edu

Philip Langer
Department of Telecooperation
Johannes Kepler University Linz

Austria
philip.langer@jku.ac.at

Manuel Wimmer
Business Informatics Group

Vienna University of Technology
Austria

wimmer@big.tuwien.ac.at

Jules White
Department of Electrical and Computer Engineering

Virginia Tech
Blacksburg, VA
julesw@vt.edu

ABSTRACT
Model transformation is a core technology in Domain-Specific

Modeling (DSM). While a number of model transformation

languages and tools have been developed to support model

transformation activities, the layout of visual models in the

transformation process is not often considered. In many cases,

after a transformation is performed the layout of the resulting

model must be manually rearranged, which can be time

consuming. The automatic layout arrangement features provided

by some modeling tools usually do not take a user’s preferences

or the semantics of the model into consideration, and therefore

could potentially alter the desired layout in an undesired manner.

This paper describes a new approach to enable users to specify

the model layout in a model transformation. We applied the

Model Transformation By Demonstration (MTBD) approach

and extended it to let users specify the layout information using

the concept of “What You See Is What You Get” (WYSIWYG),

so that the complex layout specification can be simplified.

Categories and Subject Descriptors
D.2.2-2.6 [Software Engineering]: Design Tools and

Techniques; Programming Environments; I.6.5 [Simulation and

Modeling]: Model Development

General Terms
Algorithms, Design, Languages.

Keywords
Model transformation, Model Layout, Demonstration.

1. INTRODUCTION
Model transformation is an essential part of Domain-Specific

Modeling (DSM) and plays an indispensible role in many

applications of model engineering (e.g., model evolution, model

mapping and synchronization) [1]. A number of model

transformation languages and tools have been developed

providing great flexibility and power to realize various types of

transformation tasks.

Although the implementation of model transformations has been

well-supported, the layout of models is rarely considered. It is

more straightforward to specify how the concepts and relations

in one domain should be mapped to another domain (e.g., UML

models to ER models). However, preserving the original layout

information in the target domain is not an easy and direct task,

especially with visual models. Similarly, tools and languages are

available to change and evolve models in the same domain (i.e.,

scaling up models, model refactoring), but how to put the newly

created or modified model elements at the desired positions is

often handled by manual arrangement. Ignoring the desired

layout after model transformation has a strong potential to

undermine the scalability of modeling approaches. Furthermore,

the readability of the transformed model may be compromised,

and may even unexpectedly affect the semantics under certain

circumstances (e.g., when the positions of nodes correspond to

special coordinates in the real world).

Several model editors (e.g., MetaCase+ [9], GMF [11], GEMS

[10], and GME [12]) support automatically arranging the layout

of models through fixed layout algorithms, in order to make the

model more readable. However, these algorithms do not

consider the original layout information and the semantics of the

models, which is likely to destroy the user’s Mental Map [15];

i.e., a user’s understanding of the relationship between the

entities in a diagram. Some approaches have been developed to

specify a separate layout transformation [3], or a composition

script that integrates the layout transformation information [2].

With these approaches, the layout configuration becomes part of

the model transformation process, but the drawback is that it

forces the layout to be a crosscutting concern that becomes

coupled with the semantics of the model transformation. This

may lead to an overwhelming amount of layout information

within the transformation rule.

To simplify the configuration of layout information in a model

transformation, we designed a new approach to address this

problem in a WYSIWYG manner. The idea is based on our

previous work on Model Transformation By Demonstration

(MTBD) [4][5], which enables end-users to specify model

transformations without using model transformation languages

or knowing metamodel definitions. Instead of manually writing

model transformation rules in a certain language, users

demonstrate the specific model transformation process on a

concrete example by editing the source model and changing it

into the desired target model. Then, a generic model

transformation pattern is inferred and generated by analyzing a

user’s demonstrated behavior. By extending this environment,

users are also enabled to demonstrate the desired layout by

putting the target model elements at the correct positions, so that

the generated transformation pattern can incorporate the layout

information in the model transformation process.

The rest of the paper is organized as follows: a motivating

example will be presented in Section 2 to better illustrate the

problem and the desired results. Then, we give some

background information about MTBD in Section 3. Section 4

describes how to apply and extend MTBD to ease layout

configuration, followed by some discussion about the benefits

and limitations of this approach in Section 5. Related works are

compared in Section 6, and Section 7 offers concluding remarks.

Figure 1. Function model instances

2. MOTIVATING EXAMPLE
To emphasize the motivation for our approach, we present an

endogenous model transformation (i.e., model transformation

within the same domain) that illustrates the idea of model

scalability and associated challenges with model layout. Figure

1a shows an excerpt of a domain-specific model used to specify

the data communication among functions in embedded systems.

Functions contain Input / Output Ports, and SignalFlow

connects an Input Port with an Output Port. With the growing

data communication demands, more functions are required to

handle the increasing data transmission and receive requests,

such that the model needs to be scaled up by adding more sets of

function combinations, as shown in Figure 1b.

Because this is a typical endogenous model transformation

scenario, most model transformation languages (e.g., ATL [13],

C-SAW [14]) could be used to implement the process by

specifying the rules about how to add new Functions, Ports, and

SignalFlows, and how many of them are needed. By executing

the rules, a transformation can be carried out automatically to

scale the selected models. However, although the transformed

model contains the semantically correct elements (i.e., the

required number of newly added sets of function combinations),

the newly created elements might be placed in a random location

in the model editor (e.g., all of the elements that are added to a

model are placed and overlapped in the upper-left corner in

GEMS), so that they could be very difficult to understand

without manual rearrangement (as shown in Figure 1c).

Manually arranging the additional model elements is usually

tedious, time-consuming and error-prone, especially when a

large number of elements are involved.

Tools like GEMS and GMF provide auto-layout arrangement

features as shown in Figure 1d, but the relocation resulting from

the auto-layout algorithm does not consider semantic issues of

the domain (e.g., the length of SignalFlow may indicate the

amount of cable to be used, and the model in Figure 1d is not as

illustrative as Figure 1b), nor a user’s mental map (e.g., users

might prefer to have the functions connected in a triangle as in

Figure 1b, but all the function combinations are listed vertically

in the same y-axis as shown in Figure 1d). It is possible to

specify layout information in the model transformation rules

(i.e., the <x, y> coordinates of model elements is often an

inherent property that can be modified with model

transformation languages), but this forces the semantic intent of

the model transformation rules to be entangled with layout

concerns. Furthermore, even if the layout issue is specified as

part of the transformation, the large amount of calculation in the

design of a transformation may be overwhelming (e.g., consider

the calculation of layout coordinates for 200 different types of

new nodes and connections to be added in the model).

Additionally, in many cases, when general model users (e.g.,

domain experts who are not familiar with model transformation

languages) encounter the same layout problems, it would be too

challenging for them to learn the languages and specify the

layout information in transformation rules. Therefore, a new

approach is needed to solve the layout problem with the desired

features being: 1) capable of considering user preferences, 2)

having the layout concern separated from the original model

transformation when needed, 3) easy to arrange and specify the

layout information, 4) simple to learn and use even by general

users who have no programming experience.

a) An excerpt of a model to

describe data

communication among

functions

b) The original model is

scaled up by adding

more sets of function

combinations

c) Newly created elements

are placed randomly in

the editor after model

transformation

d) Automatic layout feature

may not be capable of

realizing users’ mental

map

3. OVERVIEW OF MTBD
Model Transformation By Demonstration (MTBD) [4][5] is a

new approach to implement model transformations, with the

goal being to enable general users like domain experts or non-

programmers to realize the transformation tasks without

knowing model transformation languages or metamodel

definitions. While it simplifies the implementation of model

transformations, it also offers a potential to improve the layout

transformation as well. In this section, we first give an

introduction to MTBD by explaining how to use MTBD to

realize the model scalability transformation example presented

in Section 2. We also show how to extend this approach to

support layout specification in the next section.

Figure 2 provides an overview of MTBD. The core idea is that

instead of manually using transformation languages to specify

transformation rules, users are asked to demonstrate how the

model transformation should be done by directly editing the

source model to simulate the transformation process step-by-

step. During the demonstration process, a recording and

inference engine captures all the user operations (e.g., add an

element, update a property, remove a connection, etc.) and infers

the user’s intention in a model transformation task, generating a

transformation pattern that summarizes the precondition of a

transformation (i.e., where a transformation should be done) and

the actions needed in a transformation (i.e., how a

transformation should be done). This generated pattern can be

executed by the engine in any model instance to carry out the

same transformation process.

To use MTBD to scale a functional model, a demonstration

could be made containing the following operations as listed in

Table 1. These operations add another set of function

combinations in the model editor, changing the model instance

from Figure 1a to Figure 3a. All the operations are recorded by

the engine in the process of demonstration. Once it is done, the

engine analyzes the information recorded, and infers a generic

transformation pattern that could execute the same task in any

other model instance when the precondition can be satisfied.

Users can also provide more specific constraints on the

precondition (e.g., adding the function combination only when

each existing function has exactly one input and one output

port). However, we skip this step in our example to simplify the

explanation and focus on the layout issue.

Figure 2. Overview of MTBD

Table 1. The operations needed for model transformation

Step No. Description

1 Add a new Function1

2 Add a new InputPort1 in Function1

3 Add a new OutputPort1 in Function1

4 Add a new Function2

5 Add a new InputPort2 in Function2

6 Add a new OutputPort2 in Function2

7 Add a new Function3

8 Add a new InputPort3 in Function3

9 Add a new OutputPort3 in Function3

10 Connect OutputPort1 to InputPort2

11 Connect OutputPort2 to InputPort3

12 Connect OutputPort3 to InputPort1

a) User demonstrates how to

scale the model

b) User demonstration

about how to place

the new elements

c) Executing the

transformation for

multiple times may

cause new elements

overlap at the same

absolute coordinates

d) Absolute coordinates may

not fit different model

instances

Figure 3. Model instances in demonstration and execution

After the transformation pattern is generated, it can be executed

any time to implement the transformation task. The MTBD

engine first traverses the model selected and tries to match the

precondition of the transformation pattern through a back-

tracking algorithm. If the precondition is satisfied, the

transformation actions are carried out to transform the model.

The number of execution times can also be controlled. For

example, we can execute the generated transformation pattern 4

times to obtain the scaled model as shown in Figure 1c. The

execution engine accesses and creates the model elements by

applying corresponding APIs provided by the modeling editor.

Without manual arrangement, the newly created Functions are

placed in the upper-left corner of the editor randomly.

4. EXTENDING MTBD TO LAYOUT
MTBD enables users to demonstrate the model transformation

on a concrete example in the editor. We further extended it to

allow users to demonstrate how to place each element in the

editor, so that the layout information could be summarized and

integrated in the generated transformation pattern. In most

modeling tools, the location of a model element is stored in a

coordinates property. Whenever model elements are placed or

moved in the editor, this property will be changed

correspondingly. Therefore, we modified and improved the

recording engine in MTBD to be capable of recording those

operations concerned with placing or moving model elements in

a WYSIWYG manner, so that users can focus on demonstrating

the layout without being aware of the low-level information.

4.1 Configuring Absolute Layout
As the first experiment on this approach, the most direct and

simplest layout configuration is implemented using absolute

coordinates. After users demonstrate their desired model

transformation, the user can continue to demonstrate where to

place each element in their desired location. Two new operations

are added to the editor to support locating and choosing the

coordinates of a certain element: 1) Set X as Current: Set X in

the current coordinates as the desired X; 2) Set Y as Current: Set

Y in the current coordinates as the desired Y.

Considering the motivating example, after demonstrating the 12

operations listed in Table 1, a user may begin to consider where

to place each modeling element. A user may move the three new

functions from the locations in Figure 3a to a new desired

location, as shown in Figure 3b. Then, to confirm their decision,

a user may perform the operations as listed in Table 2.

Table 2. Operations needed to set up absolute coordinates

Step No. Description

13 Set X as Current on Function1

14 Set Y as Current on Function1

15 Set X as Current on Function2

16 Set Y as Current on Function2

17 Set X as Current on Function3

18 Set Y as Current on Function3

The recording engine reads the exact values of the coordinates

when these operations are performed and stores them together

with the operations. The generated transformation pattern will

not only contain the generic operations to transform a model at

the semantic level (inferred from operations 1 – 12), but also

include the operations to set up the coordinates of the elements

(inferred from operations 13 – 18).

When this new transformation pattern is executed, new model

elements are created and also placed at the desired location

corresponding to the user’s mental map (i.e., the absolute

coordinates given in the demonstration) as shown in Figure 3b.

4.2 Configuring Relative Layout
Obviously, using the two Set X / Y as Current operations to

specify absolute coordinates is not flexible enough in practice.

When applying the generated transformation pattern for multiple

times, newly created elements will be placed in the same

locations. For instance, executing the transformation pattern

with the absolute coordinates 4 times will lead to creating 4 sets

of function combinations, but being placed and overlapped at the

same location as shown in Figure 3c. In some other cases, the

absolute coordinates in the demonstration might not fit other

model instances in different scenarios. An example is shown in

Figure 3d - applying the transformation pattern to a model

instance that already has some elements in the desired location.

Thus, a more flexible and generic mechanism is needed.

Relative coordinates offer a promising solution.

To enable users to specify relative coordinates, four more

operations are introduced: 1) Set Y Relative to Uppermost: set

the desired Y to be the current Y relative to the uppermost

boundary of the current model instance; 2) Set Y Relative to

Lowermost: set the desired Y to be the current Y relative to the

lowermost boundary of the current model instance; 3) Set X

Relative to Leftmost: set the desired X to be the current X

relative to the leftmost boundary of the current model instance;

4) Set X Relative to Rightmost: set the desired X to be the

current X relative to the rightmost boundary of the current

model instance. The boundary of a model instance is specified

by the minimum rectangle that includes all the current model

elements as shown in Figure 4 (the single Function at the bottom

is a newly added element, and the boundary is decided by the

original model instance).

Figure 4. The boundary of an existing model instance

With these relative coordinate operations, we are able to

implement the desired layout as Figure 1b. Instead of

performing the operations listed in Table 2, the new operations

that are recorded are listed in Table 3. Operations 13, 15 and 17

guarantee that all sets of function combinations are placed in the

same y-axis, by using the absolute X coordinate. Operations 14,

16 and 18 set the desired Y coordinate to be relative to the

lowermost boundary of the current model instance. The relative

distance (i.e., the distance to the lowermost boundary) is the

distance users make in the current editor.

Table 3. Operations needed to set up relative coordinates

Step No. Description

13 Set X as Current on Function1

14 Set Y Relative to Lowermost on Function1

15 Set X as Current on Function2

16 Set Y Relative to Lowermost on Function2

17 Set X as Current on Function3

18 Set Y Relative to Lowermost on Function3

Similarly to processing the absolute coordinates, the recording

engine calculates the distance from the current Function to the

lowermost boundary of the model instance, and stores it in the

generated transformation pattern.

Finally, when the transformation pattern is executed, the

execution engine will read the boundary of the specific model

instance and calculate the new coordinates during

transformation-time. Figure 1b shows the model after executing

the transformation for 4 times. In this way, the new elements

created from each execution will be placed separately by the

relative distance from each other, so the overlapping problem

when using absolute coordinates will be prevented. Moreover,

even applying the transformation pattern to a totally different

model instance, the new elements can still be added at the

desired relative location, rather than altering the original model

in Figure 3d.

5. DISCUSSION AND FUTURE WORK
In our initial implementation, although only simple layout

operations are supported, we observed several advantages to aid

model users in configuring the layout needed in model

transformations. According to the criteria proposed in Section 2,

the extended MTBD satisfies these very well.

Foremost, the layout is specified by users rather than applying

fixed automatic layout algorithms, so that it can truly reflect a

user’s desire and preserve a user’s mental map. Furthermore, the

separation of the layout concern from semantic model

transformations can be realized by first demonstrating the model

transformation process at the semantic level and then focusing

on arranging the location of the models and configuring the

desired coordinates. In addition, the configuration of the

coordinates is simplified through the WYSIWYG approach.

Users can set up the layout by dragging and moving model

elements without having to do any calculation on the X or Y

coordinates. Finally, because the approach is based on MTBD, it

extends the advantages of MTBD to enable general model users

(including domain experts and non-programmers) to specify the

layout they need without using any model transformation

languages or knowing metamodel definitions.

However, some limitations also exist in the current

implementation which we plan to address in the future. For

instance, the relative coordinate configuration currently can only

be based on the outside of the model instance boundary, rather

than inside. Also, it is not yet possible to choose a certain model

element as the relative center, or set up the new coordinates

according to multiple relative elements.

In future work, we will tackle these limitations by introducing

further layout operations allowing new elements to be positioned

relatively to existing elements, as well as to be placed inside

container elements (e.g., internal states within a function block).

Furthermore, we also plan to provide operations to configure

layout properties other than coordinates (e.g., font styles,

background colors, and styles for edges).

It might also be beneficial to enable prioritized and conditional

layout operations. This, for instance, facilitates the placement of

a new element on the right side of an existing element, only if

there is enough space; otherwise, the new element should be

placed below the existing element. To enable such operations,

we will first have to provide means to query the layout of

existing diagrams.

We will also explore recurrently used layout patterns such as

vertical or horizontal trees and stacks. Having identified such

patterns, we aim to derive configurable layout operations from

these patterns enabling, for instance, to automatically position

UML classes in a class hierarchy below their super classes. With

this, we might be able to leverage the benefits of both

approaches, configurable layout operations and automatic

diagram layout algorithms.

Finally, we plan to also implement the configuration of model

layout also for exogenous model transformations so that the

layout of a target model is set up based on the source model’s

layout.

6. RELATED WORK
Handling and preserving model layout in model transformations

according to a user’s mental map was first introduced by Pilgrim

[3], who proposed to use a separate model transformation to

transform the notation model that contains the layout

information. Several algorithms were used to scale and adjust

the layout afterwards. However, the transformation is explicitly

specified and implemented by users, rather than being

automatically integrated and generated, as in our approach.

Johannes and Gaul performed similar work on layout

composition for domain-specific models [2], which also focuses

on endogenous model transformation. In their approach, the

layout composition information is delivered through a model

composition script, which specifies how the source models

should be composed. They also applied some algorithms to

adjust the final layout to remove overlaps. Compared with our

approach, the relative layout is not supported in the composition

script, which is not generic enough to support the addition of

layout properties.

Automatic model layout arrangement is already provided by a

number of modeling tools such as MetaCase+ [9], GME [12],

GMF [11], and GEMS [10]. They usually arrange the layout

based on fixed algorithms. For example, such algorithms may

always place children elements directly under their parent

elements. However, as mentioned in Section 1, such fixed

approaches do not take into consideration the domain concept or

a user’s mental map.

There are also some other similar approaches to simplify the

implementation of model transformations [6][7][8], but these

approaches do not explicitly consider model layout

configuration.

7. CONCLUSION
In this paper, we presented an innovative approach to configure

the layout of models in a model transformation process. By

using MTBD, users are enabled to demonstrate the layout

information in the model editor by dragging and moving

elements, while the engine will record the detailed information

and generate the transformation pattern. Our initial

implementation and experiments show a great improvement

over the current practice in terms of the simplicity and effort in

specifying the layout in model transformations. The current

limitations were identified as well, which will be our future

work.

8. ACKNOWLEDGEMENT
This work is supported by NSF CAREER award CCF-0643725.

9. REFERENCES
[1] Czarnecki, K., Helsen, S.: Feature-based survey of model

transformation approaches. IBM Systems Journal 45(3),

2006, pp. 621–645.

[2] Johannes, J., Gaul, K.: Towards a generic layout

composition framework for domain specific models. In

Proceedings of the 9th OOPSLA Workshop on Domain-

Specific Modeling, Orlando, FL, October 2009, 6 pages.

[3] Pilgrim, J.: Mental map and model driven development. In

Proceedings of the 1st Workshop on the Layout of

Software Engineering Diagrams. Coeur d'Alene, Idaho,

September 2007, 16 pages.

[4] Sun, Y., White, J., Gray, J.: Model transformation by

demonstration. In Proceedings of International Conference

on Model Driven Engineering Languages and Systems,

Denver, CO, October 2009, pp. 712-726.

[5] Langer, P., Wimmer, M., Kappel, G.: Model-to-Model

Transformations By Demonstration. In Proceedings of

International Conference on Model Transformation,

Malaga, Spain, June 2010, pp. 153-167.

[6] Balogh, Z., Varró, D.: Model transformation by example

using inductive logic programming. Software and Systems

Modeling, 8(3), 2009, pp. 347-364.

[7] Strommer, M., Wimmer, M.: A framework for model

transformation by-example: Concepts and tool support. In

Proceedings of the 46th International Conference on

Technology of Object-Oriented Languages and Systems,

Zurich, Switzerland, July 2008, pp. 372–391.

[8] Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer,

M., Kappel, G., Retschitzegger, W., Schwinger, W.: An

Example is Worth a Thousand Words: Composite

Operation Modeling By-Example. In Proceedings of

International Conference on Model Driven Engineering

Languages and Systems, Denver, CO, October 2009, pp.

271-285.

[9] MetaCase+. http://www.metacase.com/, 2010

[10] Generic Eclipse Modeling System (GEMS).

http://www.eclipse.org/gmt/gems/, 2010.

[11] Graphical Modeling Framework (GMF),

http://www.eclipse.org/modeling/gmf/, 2010.

[12] Lédeczi, A., Bakay, A., Maróti, M., Völgyesi, P.,

Nordstrom, G., Sprinkle, J., Karsai, G.: Composing

domain-specific design environments. IEEE Computer, vol.

34, no. 11, 2001, pp. 44-51.

[13] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A

model transformation tool. Science of Computer

Programming, vol. 72, nos. 1/2, 2008, pp. 31-39.

[14] Gray, J., Lin, Y., Zhang, J.: Automating change evolution

in model-driven engineering. IEEE Computer, Special

Issue on Model-Driven Engineering, vol. 39, no. 2, 2006,

pp. 51-58.

[15] Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout

adjustment and the mental map. Journal of Visual

Languages and Computing, vol. 6, no. 2, 1995, pp. 183-

210.

