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ABSTRACT 
Model transformation is a core technology in Domain-Specific 

Modeling (DSM). While a number of model transformation 

languages and tools have been developed to support model 

transformation activities, the layout of visual models in the 

transformation process is not often considered. In many cases, 

after a transformation is performed the layout of the resulting 

model must be manually rearranged, which can be time 

consuming. The automatic layout arrangement features provided 

by some modeling tools usually do not take a user’s preferences 

or the semantics of the model into consideration, and therefore 

could potentially alter the desired layout in an undesired manner. 

This paper describes a new approach to enable users to specify 

the model layout in a model transformation. We applied the 

Model Transformation By Demonstration (MTBD) approach 

and extended it to let users specify the layout information using 

the concept of “What You See Is What You Get” (WYSIWYG), 

so that the complex layout specification can be simplified. 

Categories and Subject Descriptors 
D.2.2-2.6 [Software Engineering]: Design Tools and 

Techniques; Programming Environments; I.6.5 [Simulation and 

Modeling]: Model Development 

General Terms  
Algorithms, Design, Languages. 

Keywords  
Model transformation, Model Layout, Demonstration. 

1. INTRODUCTION 
Model transformation is an essential part of Domain-Specific 

Modeling (DSM) and plays an indispensible role in many 

applications of model engineering (e.g., model evolution, model 

mapping and synchronization) [1]. A number of model 

transformation languages and tools have been developed 

providing great flexibility and power to realize various types of 

transformation tasks. 

Although the implementation of model transformations has been 

well-supported, the layout of models is rarely considered. It is 

more straightforward to specify how the concepts and relations 

in one domain should be mapped to another domain (e.g., UML 

models to ER models). However, preserving the original layout 

information in the target domain is not an easy and direct task, 

especially with visual models. Similarly, tools and languages are 

available to change and evolve models in the same domain (i.e., 

scaling up models, model refactoring), but how to put the newly 

created or modified model elements at the desired positions is 

often handled by manual arrangement. Ignoring the desired 

layout after model transformation has a strong potential to 

undermine the scalability of modeling approaches. Furthermore, 

the readability of the transformed model may be compromised, 

and may even unexpectedly affect the semantics under certain 

circumstances (e.g., when the positions of nodes correspond to 

special coordinates in the real world). 

Several model editors (e.g., MetaCase+ [9], GMF [11], GEMS 

[10], and GME [12]) support automatically arranging the layout 

of models through fixed layout algorithms, in order to make the 

model more readable. However, these algorithms do not 

consider the original layout information and the semantics of the 

models, which is likely to destroy the user’s Mental Map [15]; 

i.e., a user’s understanding of the relationship between the 

entities in a diagram. Some approaches have been developed to 

specify a separate layout transformation [3], or a composition 

script that integrates the layout transformation information [2]. 

With these approaches, the layout configuration becomes part of 

the model transformation process, but the drawback is that it 

forces the layout to be a crosscutting concern that becomes 

coupled with the semantics of the model transformation. This 

may lead to an overwhelming amount of layout information 

within the transformation rule. 

To simplify the configuration of layout information in a model 

transformation, we designed a new approach to address this 

problem in a WYSIWYG manner. The idea is based on our 

previous work on Model Transformation By Demonstration 

(MTBD) [4][5], which enables end-users to specify model 

transformations without using model transformation languages 

or knowing metamodel definitions. Instead of manually writing 

model transformation rules in a certain language, users 

demonstrate the specific model transformation process on a 

concrete example by editing the source model and changing it 

into the desired target model. Then, a generic model 



transformation pattern is inferred and generated by analyzing a 

user’s demonstrated behavior. By extending this environment, 

users are also enabled to demonstrate the desired layout by 

putting the target model elements at the correct positions, so that 

the generated transformation pattern can incorporate the layout 

information in the model transformation process.  

The rest of the paper is organized as follows: a motivating 

example will be presented in Section 2 to better illustrate the 

problem and the desired results. Then, we give some 

background information about MTBD in Section 3. Section 4 

describes how to apply and extend MTBD to ease layout 

configuration, followed by some discussion about the benefits 

and limitations of this approach in Section 5. Related works are 

compared in Section 6, and Section 7 offers concluding remarks. 

Figure 1. Function model instances 

2. MOTIVATING EXAMPLE 
To emphasize the motivation for our approach, we present an 

endogenous model transformation (i.e., model transformation 

within the same domain) that illustrates the idea of model 

scalability and associated challenges with model layout. Figure 

1a shows an excerpt of a domain-specific model used to specify 

the data communication among functions in embedded systems. 

Functions contain Input / Output Ports, and SignalFlow 

connects an Input Port with an Output Port. With the growing 

data communication demands, more functions are required to 

handle the increasing data transmission and receive requests, 

such that the model needs to be scaled up by adding more sets of 

function combinations, as shown in Figure 1b. 

Because this is a typical endogenous model transformation 

scenario, most model transformation languages (e.g., ATL [13], 

C-SAW [14]) could be used to implement the process by 

specifying the rules about how to add new Functions, Ports, and 

SignalFlows, and how many of them are needed. By executing 

the rules, a transformation can be carried out automatically to 

scale the selected models. However, although the transformed 

model contains the semantically correct elements (i.e., the 

required number of newly added sets of function combinations), 

the newly created elements might be placed in a random location 

in the model editor (e.g., all of the elements that are added to a 

model are placed and overlapped in the upper-left corner in 

GEMS), so that they could be very difficult to understand 

without manual rearrangement (as shown in Figure 1c). 

Manually arranging the additional model elements is usually 

tedious, time-consuming and error-prone, especially when a 

large number of elements are involved. 

Tools like GEMS and GMF provide auto-layout arrangement 

features as shown in Figure 1d, but the relocation resulting from 

the auto-layout algorithm does not consider semantic issues of 

the domain (e.g., the length of SignalFlow may indicate the 

amount of cable to be used, and the model in Figure 1d is not as 

illustrative as Figure 1b), nor a user’s mental map (e.g., users 

might prefer to have the functions connected in a triangle as in 

Figure 1b, but all the function combinations are listed vertically 

in the same y-axis as shown in Figure 1d). It is possible to 

specify layout information in the model transformation rules 

(i.e., the <x, y> coordinates of model elements is often an 

inherent property that can be modified with model 

transformation languages), but this forces the semantic intent of 

the model transformation rules to be entangled with layout 

concerns. Furthermore, even if the layout issue is specified as 

part of the transformation, the large amount of calculation in the 

design of a transformation may be overwhelming (e.g., consider 

the calculation of layout coordinates for 200 different types of 

new nodes and connections to be added in the model). 

Additionally, in many cases, when general model users (e.g., 

domain experts who are not familiar with model transformation 

languages) encounter the same layout problems, it would be too 

challenging for them to learn the languages and specify the 

layout information in transformation rules. Therefore, a new 

approach is needed to solve the layout problem with the desired 

features being: 1) capable of considering user preferences, 2) 

having the layout concern separated from the original model 

transformation when needed, 3) easy to arrange and specify the 

layout information, 4) simple to learn and use even by general 

users who have no programming experience.  
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3. OVERVIEW OF MTBD 
Model Transformation By Demonstration (MTBD) [4][5] is a 

new approach to implement model transformations, with the 

goal being to enable general users like domain experts or non-

programmers to realize the transformation tasks without 

knowing model transformation languages or metamodel 

definitions. While it simplifies the implementation of model 

transformations, it also offers a potential to improve the layout 

transformation as well. In this section, we first give an 

introduction to MTBD by explaining how to use MTBD to 

realize the model scalability transformation example presented 

in Section 2. We also show how to extend this approach to 

support layout specification in the next section. 

Figure 2 provides an overview of MTBD. The core idea is that 

instead of manually using transformation languages to specify 

transformation rules, users are asked to demonstrate how the 

model transformation should be done by directly editing the 

source model to simulate the transformation process step-by-

step. During the demonstration process, a recording and 

inference engine captures all the user operations (e.g., add an 

element, update a property, remove a connection, etc.) and infers 

the user’s intention in a model transformation task, generating a 

transformation pattern that summarizes the precondition of a 

transformation (i.e., where a transformation should be done) and 

the actions needed in a transformation (i.e., how a 

transformation should be done). This generated pattern can be 

executed by the engine in any model instance to carry out the 

same transformation process.  

To use MTBD to scale a functional model, a demonstration 

could be made containing the following operations as listed in 

Table 1. These operations add another set of function 

combinations in the model editor, changing the model instance 

from Figure 1a to Figure 3a. All the operations are recorded by 

the engine in the process of demonstration. Once it is done, the 

engine analyzes the information recorded, and infers a generic 

transformation pattern that could execute the same task in any 

other model instance when the precondition can be satisfied. 

Users can also provide more specific constraints on the 

precondition (e.g., adding the function combination only when 

each existing function has exactly one input and one output 

port). However, we skip this step in our example to simplify the 

explanation and focus on the layout issue. 

 

 
Figure 2. Overview of MTBD 

 

Table 1. The operations needed for model transformation 

Step No. Description 

1 Add a new Function1  

2 Add a new InputPort1 in Function1 

3 Add a new OutputPort1 in  Function1 

4 Add a new Function2  

5 Add a new InputPort2 in Function2 

6 Add a new OutputPort2 in  Function2 

7 Add a new Function3  

8 Add a new InputPort3 in Function3 

9 Add a new OutputPort3 in  Function3 

10 Connect OutputPort1 to InputPort2 

11 Connect OutputPort2 to InputPort3 

12 Connect OutputPort3 to InputPort1 
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Figure 3. Model instances in demonstration and execution 

After the transformation pattern is generated, it can be executed 

any time to implement the transformation task. The MTBD 

engine first traverses the model selected and tries to match the 

precondition of the transformation pattern through a back-



tracking algorithm. If the precondition is satisfied, the 

transformation actions are carried out to transform the model. 

The number of execution times can also be controlled. For 

example, we can execute the generated transformation pattern 4 

times to obtain the scaled model as shown in Figure 1c. The 

execution engine accesses and creates the model elements by 

applying corresponding APIs provided by the modeling editor. 

Without manual arrangement, the newly created Functions are 

placed in the upper-left corner of the editor randomly.  

4. EXTENDING MTBD TO LAYOUT 
MTBD enables users to demonstrate the model transformation 

on a concrete example in the editor. We further extended it to 

allow users to demonstrate how to place each element in the 

editor, so that the layout information could be summarized and 

integrated in the generated transformation pattern. In most 

modeling tools, the location of a model element is stored in a 

coordinates property. Whenever model elements are placed or 

moved in the editor, this property will be changed 

correspondingly. Therefore, we modified and improved the 

recording engine in MTBD to be capable of recording those 

operations concerned with placing or moving model elements in 

a WYSIWYG manner, so that users can focus on demonstrating 

the layout without being aware of the low-level information. 

4.1 Configuring Absolute Layout 
As the first experiment on this approach, the most direct and 

simplest layout configuration is implemented using absolute 

coordinates. After users demonstrate their desired model 

transformation, the user can continue to demonstrate where to 

place each element in their desired location. Two new operations 

are added to the editor to support locating and choosing the 

coordinates of a certain element: 1) Set X as Current: Set X in 

the current coordinates as the desired X; 2) Set Y as Current: Set 

Y in the current coordinates as the desired Y. 

Considering the motivating example, after demonstrating the 12 

operations listed in Table 1, a user may begin to consider where 

to place each modeling element. A user may move the three new 

functions from the locations in Figure 3a to a new desired 

location, as shown in Figure 3b. Then, to confirm their decision, 

a user may perform the operations as listed in Table 2. 

Table 2. Operations needed to set up absolute coordinates 

Step No. Description 

13 Set X as Current on Function1  

14 Set Y as Current on Function1 

15 Set X as Current on Function2  

16 Set Y as Current on Function2 

17 Set X as Current on Function3  

18 Set Y as Current on Function3 

The recording engine reads the exact values of the coordinates 

when these operations are performed and stores them together 

with the operations. The generated transformation pattern will 

not only contain the generic operations to transform a model at 

the semantic level (inferred from operations 1 – 12), but also 

include the operations to set up the coordinates of the elements 

(inferred from operations 13 – 18). 

When this new transformation pattern is executed, new model 

elements are created and also placed at the desired location 

corresponding to the user’s mental map (i.e., the absolute 

coordinates given in the demonstration) as shown in Figure 3b. 

4.2 Configuring Relative Layout 
Obviously, using the two Set X / Y as Current operations to 

specify absolute coordinates is not flexible enough in practice. 

When applying the generated transformation pattern for multiple 

times, newly created elements will be placed in the same 

locations. For instance, executing the transformation pattern 

with the absolute coordinates 4 times will lead to creating 4 sets 

of function combinations, but being placed and overlapped at the 

same location as shown in Figure 3c. In some other cases, the 

absolute coordinates in the demonstration might not fit other 

model instances in different scenarios. An example is shown in 

Figure 3d - applying the transformation pattern to a model 

instance that already has some elements in the desired location. 

Thus, a more flexible and generic mechanism is needed. 

Relative coordinates offer a promising solution. 

To enable users to specify relative coordinates, four more 

operations are introduced: 1) Set Y Relative to Uppermost: set 

the desired Y to be the current Y relative to the uppermost 

boundary of the current model instance; 2) Set Y Relative to 

Lowermost: set the desired Y to be the current Y relative to the 

lowermost boundary of the current model instance; 3) Set X 

Relative to Leftmost: set the desired X to be the current X 

relative to the leftmost boundary of the current model instance; 

4) Set X Relative to Rightmost: set the desired X to be the 

current X relative to the rightmost boundary of the current 

model instance. The boundary of a model instance is specified 

by the minimum rectangle that includes all the current model 

elements as shown in Figure 4 (the single Function at the bottom 

is a newly added element, and the boundary is decided by the 

original model instance).  

 
Figure 4. The boundary of an existing model instance 

With these relative coordinate operations, we are able to 

implement the desired layout as Figure 1b. Instead of 

performing the operations listed in Table 2, the new operations 

that are recorded are listed in Table 3. Operations 13, 15 and 17 

guarantee that all sets of function combinations are placed in the 

same y-axis, by using the absolute X coordinate. Operations 14, 

16 and 18 set the desired Y coordinate to be relative to the 

lowermost boundary of the current model instance. The relative 

distance (i.e., the distance to the lowermost boundary) is the 

distance users make in the current editor.  



Table 3. Operations needed to set up relative coordinates 

Step No. Description 

13 Set X as Current on Function1  

14 Set Y Relative to Lowermost on Function1 

15 Set X as Current on Function2  

16 Set Y Relative to Lowermost on Function2 

17 Set X as Current on Function3  

18 Set Y Relative to Lowermost on Function3 

Similarly to processing the absolute coordinates, the recording 

engine calculates the distance from the current Function to the 

lowermost boundary of the model instance, and stores it in the 

generated transformation pattern.  

Finally, when the transformation pattern is executed, the 

execution engine will read the boundary of the specific model 

instance and calculate the new coordinates during 

transformation-time. Figure 1b shows the model after executing 

the transformation for 4 times. In this way, the new elements 

created from each execution will be placed separately by the 

relative distance from each other, so the overlapping problem 

when using absolute coordinates will be prevented. Moreover, 

even applying the transformation pattern to a totally different 

model instance, the new elements can still be added at the 

desired relative location, rather than altering the original model 

in Figure 3d. 

5. DISCUSSION AND FUTURE WORK 
In our initial implementation, although only simple layout 

operations are supported, we observed several advantages to aid 

model users in configuring the layout needed in model 

transformations. According to the criteria proposed in Section 2, 

the extended MTBD satisfies these very well. 

Foremost, the layout is specified by users rather than applying 

fixed automatic layout algorithms, so that it can truly reflect a 

user’s desire and preserve a user’s mental map. Furthermore, the 

separation of the layout concern from semantic model 

transformations can be realized by first demonstrating the model 

transformation process at the semantic level and then focusing 

on arranging the location of the models and configuring the 

desired coordinates. In addition, the configuration of the 

coordinates is simplified through the WYSIWYG approach. 

Users can set up the layout by dragging and moving model 

elements without having to do any calculation on the X or Y 

coordinates. Finally, because the approach is based on MTBD, it 

extends the advantages of MTBD to enable general model users 

(including domain experts and non-programmers) to specify the 

layout they need without using any model transformation 

languages or knowing metamodel definitions. 

However, some limitations also exist in the current 

implementation which we plan to address in the future. For 

instance, the relative coordinate configuration currently can only 

be based on the outside of the model instance boundary, rather 

than inside. Also, it is not yet possible to choose a certain model 

element as the relative center, or set up the new coordinates 

according to multiple relative elements. 

In future work, we will tackle these limitations by introducing 

further layout operations allowing new elements to be positioned 

relatively to existing elements, as well as to be placed inside 

container elements (e.g., internal states within a function block). 

Furthermore, we also plan to provide operations to configure 

layout properties other than coordinates (e.g., font styles, 

background colors, and styles for edges). 

It might also be beneficial to enable prioritized and conditional 

layout operations. This, for instance, facilitates the placement of 

a new element on the right side of an existing element, only if 

there is enough space; otherwise, the new element should be 

placed below the existing element. To enable such operations, 

we will first have to provide means to query the layout of 

existing diagrams. 

We will also explore recurrently used layout patterns such as 

vertical or horizontal trees and stacks. Having identified such 

patterns, we aim to derive configurable layout operations from 

these patterns enabling, for instance, to automatically position 

UML classes in a class hierarchy below their super classes. With 

this, we might be able to leverage the benefits of both 

approaches, configurable layout operations and automatic 

diagram layout algorithms. 

Finally, we plan to also implement the configuration of model 

layout also for exogenous model transformations so that the 

layout of a target model is set up based on the source model’s 

layout. 

6. RELATED WORK 
Handling and preserving model layout in model transformations 

according to a user’s mental map was first introduced by Pilgrim 

[3], who proposed to use a separate model transformation to 

transform the notation model that contains the layout 

information. Several algorithms were used to scale and adjust 

the layout afterwards. However, the transformation is explicitly 

specified and implemented by users, rather than being 

automatically integrated and generated, as in our approach. 

Johannes and Gaul performed similar work on layout 

composition for domain-specific models [2], which also focuses 

on endogenous model transformation. In their approach, the 

layout composition information is delivered through a model 

composition script, which specifies how the source models 

should be composed. They also applied some algorithms to 

adjust the final layout to remove overlaps. Compared with our 

approach, the relative layout is not supported in the composition 

script, which is not generic enough to support the addition of 

layout properties. 

Automatic model layout arrangement is already provided by a 

number of modeling tools such as MetaCase+ [9], GME [12], 

GMF [11], and GEMS [10]. They usually arrange the layout 

based on fixed algorithms. For example, such algorithms may 

always place children elements directly under their parent 

elements. However, as mentioned in Section 1, such fixed 

approaches do not take into consideration the domain concept or 

a user’s mental map. 

There are also some other similar approaches to simplify the 

implementation of model transformations [6][7][8], but these 

approaches do not explicitly consider model layout 

configuration. 

  



7. CONCLUSION 
In this paper, we presented an innovative approach to configure 

the layout of models in a model transformation process. By 

using MTBD, users are enabled to demonstrate the layout 

information in the model editor by dragging and moving 

elements, while the engine will record the detailed information 

and generate the transformation pattern. Our initial 

implementation and experiments show a great improvement 

over the current practice in terms of the simplicity and effort in 

specifying the layout in model transformations. The current 

limitations were identified as well, which will be our future 

work.  
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