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ABSTRACT
The utilisation of Domain-Specific Modelling (DSM) in software
development has a significant positive impact on productivity.
The productivity increase is caused by the utilisation of
modelling languages and generators that are especially suitable
for a specific problem domain instead of those designed for
solution domains. The prerequisite for this significant
productivity increase is that the languages and the automation
function correctly. To ensure the suitability of the languages and
tools, we need to be able to use the verification and validation
(V&V) techniques in the context of DSM. In this position paper
we study what V&V actually stands for in this particular context
and what the current means are for performing V&V. We found
that although there are some means available for verification,
comprehensive methods still do not exist. For validation, we
believe that maintaining a bidirectional trace link between
requirements, models and the generated deliverables is a
promising approach to significantly facilitate the validation
process.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification -
Validation

General Terms
Design, Languages and Verification

Keywords
Model-Driven Development, Model-Based Testing and
Requirements Tracing

1. INTRODUCTION
Model-Driven Development (MDD) is about treating models as
first-class design entities. Modelling provides a view to a
complex problem and its solutions. Models are less risky,
cheaper to develop and easier to understand than the
implementation of a genuine target system. Thus, the intent of
MDD is to raise the abstraction level from code-centric
development to model-centric development and at the same time
to increase productivity by an extensive utilisation of automation,
e.g. code generation, in software development.

MDD, in general, can be divided into two paradigms based on
the utilised language in modelling: general-purpose modelling, in
which general-purpose languages such as Unified Modeling
Language (UML) are utilised, and Domain-Specific Modelling
(DSM), in which Domain-Specific Modelling Languages
(DSML) [1] are applied. When considering general-purpose
modelling languages, there is very little evidence of productivity
gains. Instead there is evidence of the opposite [2]. In the case of
DSM, there is documented evidence of an increase in
productivity by a factor of 5-10 [1][3][4][5][6].

Although the benefits of DSM appear to be excellent, the DSM
development approach is still not very widespread. In the past,
one of the great obstacles to the introduction of DSM was the
lack of tooling or the tedious effort required to develop such
tooling. This is not an issue with general-purpose modelling
languages such as UML as there is a single standard language
available, for which there is also a relatively large tool vendor
community. In the case of DSM, having a large tool vendor
community to support a particular DSML can be considered far-
fetched as there are few reasons for standardising a language that
is specific to some specialized domain. The languages and the
related generators have to be developed separately for each
domain, which makes it unlikely that a large tool vendor
community for a language will emerge. However, nowadays there
are language workbenches [7] available enabling a rapid
development of languages and generators, such as the
commercial MetaCase MetaEdit+ tool [8], the Microsoft DSL
tool  [9]  and the Jviews framework [10],  as  well  as   open source
tools such as Jet Brains MPS [11] running on Eclipse,  for
instance. An alternative approach is to develop DSMLs based on
UML profiles, enhanced by a layer facilitation of the DSM
definition, thus benefiting from the vast availability of these
tools. In conclusion, tooling should no longer be an issue as
regards language development and use. However, the quality of
the developed DSMLs and the accompanied automation facilities
can still be questioned.

In order to make sure that the developed DSMLs and generators
are of high quality, and in this way to raise confidence in DSM,
there has to be means with which to verify and validate (V&V)
the DSM basic architecture, i.e. metamodels, generators and
application models. A recent publication about DSM worst
practices [12] provides some guidelines on how-not-to develop
languages, which enable developers to avoid certain pitfalls. The
iterative and incremental language development approach
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suggested in [1] will also facilitate the development of languages.
However, if the developed language is to be deployed for more
than a few developers, it would be preferable to have systematic
V&V techniques in place in order to make sure that the
languages and the accompanied generators function as planned.
In addition, if the languages are to be utilised by many
developers, having V&V techniques for the application models in
place would also be favourable.

In this position paper, we take a look at what the meaning of
V&V is in the context of DSM. We approach the issue by
applying the IEEE Standard Computer Dictionary [13] definition
of V&V and scrutinise what it stands for in the context of DSM.
We identify the black spots that deserve V&V and investigate
what means are currently available for V&V in this particular
context. The work presented in this position paper can be seen as
a continuation of the group work on V&V in the context of DSM
held in the OOPSLA DSM ’09 Workshop [14].

This paper is structured as follows. First, the background for
discussions about V&V in the context of DSM is introduced by
presenting the DSM basic architecture that needs to be verified
and validated. Second, the IEEE Standard Computer Dictionary
definitions of V&V are adapted into the context of DSM.
Following this, state-of-the-art means for the verification and
validation of various layers of DSM basic architecture are
introduced. The conclusion and final remarks close this position
paper.

2. DOMAIN-SPECIFIC MODELLING
In DSM, models are constructed using concepts that represent
things within the application domain and not the concepts of a
given programming language. The modelling language follows
the domain abstractions and semantics, allowing developers to
perceive themselves as working directly with domain concepts.
The models simultaneously represent the design, implementation
and documentation of the system, which can be generated
directly from them. In many cases the final products can be
generated automatically from these high-level specifications by
means of domain-specific code generators.

The DSM solution can be seen to be constructed of a set of basic
items, as depicted in Figure 1. The platform, or software
framework, provides services common to all applications of the
product family. Thus, in the sense of product families, the
platform embeds all commonalities. The generated application
then utilises the services provided by the platform. The generated
applications follow the architectural and domain rules set by the
product family architecture and the domain in question. The
generated application is based upon input from the actual DSM
solution, i.e. an application model, a metamodel and a code
generator. The metamodel, i.e. the modelling language, reflects
the problem domain, incorporating domain concepts and domain
rules. In addition, in practice, the metamodel also includes rules
from the target platform that need to be taken into account while
modelling. The application model can then be modelled by
applying the domain concepts and by following the rules defined
in the metamodel. In an optimal case the rules are enforced by
the utilised language workbench. The generator is responsible for
taking the application model as the input and generating the

target  format  from  this  input.  The  generator  enforces  the  rules
defined in the metamodel, implicitly or explicitly, and takes the
rules of the target platform into account when generating the
output. Thus the generated output is affected both by the rules
defined in the metamodel and those in the generator.

Figure 1. The DSM basic architecture.

3. VERIFICATION AND VALIDATION
The IEEE Standard Computer Dictionary [13] defines validation
as:

‘the process of evaluating a system or component during or
at the end of the development process to determine whether
it satisfies specified requirements.’

Model validation [13] is defined as:

‘the process of determining the degree to which the
requirements, design or implementation of a model are a
realization of selected aspects of the system being
modelled.’

Verification [13] is defined as:

‘(1) the process of evaluating a system or component to
determine whether the products of a given development
phase satisfy the conditions imposed at the start of that
phase. (2) Formal proof of program correctness.’

Model verification [13] is defined as

‘the process of determining the degree of similarity between
the realization steps of a model; for example, between the
requirements and the design or between the design and its
implementation.’

In this paper, we consider the development process as a process
of transforming end-user requirements to a system fulfilling such
requirements with a DSM approach. The development process
includes phases for developing the modelling infrastructure, i.e.
metamodels, generators and also application models, which are
transformed into the target format running on a software
platform.
Considering the IEEE Standard Computer Dictionary definitions,
the  following figures  (see  Figure  2  and Figure  3)  can be drafted
to depict what V&V means in the context of DSM. Requirements
(R) means the requirements for the whole product family
including the requirements for specific products and the target
platform.



Figure 2. Verification in the context of DSM.
Here, the verification of metamodels (MM) means determining if
a metamodel encapsulates 1) the problem domain (e.g. the
variability space in the context of product families) including
domain rules and 2) the rules of the target platform that are
necessary to take into account in the metamodel. Thus, a
metamodel should only allow the modelling of applications that
are syntactically and semantically correct. The verification of
models (M) means determining whether a model encapsulates a
product under development based on the requirements set for it
(e.g. a variant within the context of the product family). The
verification of generators (G) means determining whether the
generators produce the correct output (generated textual
representation: GTR) from the input models. This involves
verifying that the generators interpret the models correctly and
generate syntactically- and semantically-correct GTR for those
that will utilise the GTR. Verifying the GTR is about evaluating
whether or not the intention of a model is realised in the
outcome, i.e. in the GTR produced by a generator.
Validation is the process of evaluating the GTR, including the
target platform (Platform + GTR in Figure 3), to determine
whether it satisfies the specified requirements. Thus, validation
can be seen as the ultimate test for the modelling infrastructure,
the application models and the platform on which the application
is generated. It must be noted that one application model can
only be seen as one validation case for the whole modelling
infrastructure.

Figure 3. Validation in the context of DSM.

3.1 The Verification of Generators
The main difference between the verification of generators and
the verification of traditional software components is to be found
in the nature of the input data. Whereas traditional software
components take integers and strings etc. as input, the generators
take potentially highly complex data structures as input, i.e.
models, and produce complex data structures as output. In [15],
Kuster defines four aspects that need to be checked as regards
model transformations: 1) The syntactic correctness of a model
transformation: in order to ensure that the outcome of the
transformation is syntactically correct. 2) The termination and
confluence of a model transformation: in order to ensure that a
model always produces the same outcome. 3) The safety and
liveness properties: in order to verify that e.g. specific structural
properties are preserved during the transformation. 4) The
semantic equivalence of a model transformation: in order to

ensure that the semantics are preserved during the model
transformation.
Considering deterministic, template-based code generation, the
aspects defined by Kuster can be combined into two categories –
the verification of the syntax and format in general, and the
semantics. The means of verifying these categories are discussed
in the following section.

3.1.1 The Verification of Syntax
Different generators produce different viewpoints of the same
model. For instance, one generator produces documents whereas
another produces source code. Both generators interpret the input
models differently as well as potentially taking into account
different parts of the model. Now, in order to verify the
generators, the minimum requirement is to verify that the
generators take into account the desired model entities. Thus, the
metamodel coverage of the generator should be checked.
In [16], an approach to verify the metamodel coverage of model
transformations is discussed. The approach is based on
systematically traversing the transformation rules and checking
whether the rules take the all the required metamodel entities
into account. The rules seem to be required to be transformation
units that can be applied in any order.
Considering the actual transformation development, a model-to-
model transformation development process is presented in [17].
The introduced method can be seen as a guide to capturing the
requirements for the transformations in a way that facilitates the
documentation and development of the transformations. Instead
of capturing the transformation requirements in a natural
language, the method rather makes an attempt at expressing the
requirements as test cases that can be automatically validated.
This approach can be seen as a test-driven development approach
for transformation development.
Considering the enforcing of syntactic correctness, the
metamodel should, as such, define what can be modelled, thus
the input models should be syntactically correct. As regards the
output, verifying the syntactic correctness is a matter of
consistency checking between the output model and its
metamodel [15]. In the case of code generation, the source code
has to conform to the rules of the utilised programming language
and the underlying software platform. When using deterministic,
template-based generators, which can be considered to be the
state of the practice in generator implementation, no problems
should, basically, arise from issues related to syntactic
correctness, termination, confluence, safety or liveness.

3.1.2 The Verification of Semantics
While the generator development process ensures that model
entities are transformed as required and syntactic correctness can
be verified, the semantic equivalence between the source model
and the output model still needs to be verified. Maintaining
semantic equivalence between the source and the target models
(text can also be considered to be a model) has been studied by
Kleppe and Warmer in [18]. They identify the situations in which
the semantics can be preserved and when not. The situations are
as follows. If neither the source nor the target model contains
semantics, the semantics cannot be preserved. If the source
model does contain semantics, but the target does not, then the
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semantics will be completely lost during the model
transformation. In a case where the source model does not
contain semantics, but the target does, then the semantics are not
so much preserved but rather introduced. This has an interesting
implication as now, via model transformation, semantics are also
introduced to the source model. It must be noted that if there are
multiple generators where the target model does contain
semantics, then the source model contains multiple semantics
depending upon the perspective from which the model is viewed,
i.e. which generator is applied. The second case where semantics
are preserved is when the source and the target models both
contain semantics. In this case, the presumption is that the source
and the target models describe the same systems.
If both the source and target models do contain semantics, some
preliminary work exists to verify the semantic equivalence. In
[19], an approach to comparing the semantics in the source and
the target models is introduced. Both models are based on
different metamodels. The approach is based on the development
of a third metamodel that strives to formulate the shared
semantics between the source and the target metamodels. The
semantic equivalence is then checked by computing specific
metrics across the models.

3.2 The Verification of Models
Verifying the correctness of the models means evaluating
whether or not the model reflects the requirements set for an
application to be developed. As models can be considered to be
static when no model interpretation has been performed, e.g. by
applying code generation, the verification of models means
scrutinising whether all the requirements set for an application
should be possible to be covered by a model simply by
considering the model itself.
Maintaining a traceability link between the requirements and the
model facilitates the evaluation of whether or not the model fits
the requirements set for it. Gotel and Finkelstein [20] define
traceability as “the ability to describe and follow the life of a
requirement, in forward and backward direction i.e. from its
origins its development and specification, to its subsequent
deployment and use”. This traceability link should cover both
functional requirements and non-functional requirements.

The OMG Systems Modeling Language (SysML) provides
modelling constructs for representing text-based requirements
and relating them to other modelling elements. The SysML
requirements diagram is able to depict the requirements in
graphical, tabular or tree-structure format. A requirement can
also appear on other diagrams to show its relationship to other
modelling elements [21]
In [22], an approach to maintain a bidirectional traceability link
between the requirements located in traditional requirement
management tools and domain-specific models is discussed. Such
an approach, when supported by tools, enables the importation of
requirements to domain-specific models and the ability to
connect such requirements to the corresponding design entities.
This facilitates pinpointing the elements that are intended to be
responsible for each requirement. Similarly, it facilitates the
discovery of the requirements that are actually intended to be
implemented. Considering non-functional requirements, this
approach also enables maintenance of the bidirectional

traceability of these kinds of requirements with measured or
evaluated values from test results back to the original
requirements. Considering execution time and non-functional
requirements [23], the implementation has to be generated from
the models and executed in order to acquire the status of the
requirements. Thus, this technique also partially tests the code
generator (one test case) and the underlying platform.
Models can also be analysed in situ without the need for
transforming and executing the application models.  The models
can also be transformed into a format understood by advanced
analysis tools. By analysing models, insights can be obtained
regarding the behaviour of software that might otherwise only be
detected the hard way. Analysis techniques can typically
determine whether there are deadlocks and check that data is
always delivered on time, alarm signals are always handled
properly and dangerous situations are always avoided. The use of
model analysis ensures that many such flaws can be avoided.
State space analysis, model checking, resolution and
visualisation are keywords in this area. In general, software
modelling and analysis also helps to obtain a better
understanding of the behaviour of the system, which often leads
to cleaner, more straightforward and more versatile designs, in
turn helping in mastering the enormous complexity that we see
far too often in the software business [24].

3.3 The Verification of Generated Textual
Representation
Verifying the GTR is about evaluating whether or not the
intention of a model is realised in the outcome, i.e. in the GTR
produced by a generator. The intention includes syntax and
semantics. It must be noted that the intention of the model should
be considered to be a fact, thus the model must be considered to
be correct from the modeller’s perspective in order to make any
sense in the GTR verification.
Considering the intention of the source model(s) and whether or
not the intention is a fit, the testing of the target model(s), e.g. an
executable, should not be overlooked, although testing cannot
formally state that the GTR always functions as planned. When
testing is accompanied with requirement traceability, verification
of the GTR should be facilitated as this method should make it
possible to verify if the requirements are a fit.
In [25], an approach to monitor the quantitative, non-functional
features (‘ilities’: aka quality attributes and extra-functional
properties, etc.) of an application under development is
presented. This approach is based on explicitly expressing the
modeller’s wish, i.e. the requirements, in application models and
attaching measurement mechanisms to the corresponding parts of
the models that need to be monitored. The measurement
mechanisms are generated alongside the executable. The
measurement mechanisms monitor the generated application
during runtime and report the measured values back to the source
models, therefore enabling the modeller to notice if the
application performs as intended. A similar approach could also
be applied when functional requirements are considered. That is,
visualising the application execution in the source models as
well.

To reduce the  effort  in  developing an extensive test  suite  for  an
application, Model-Based Testing (MBT) might be worth



considering, as discussed in [26][27]. MBT is a black-box testing
method in which the test scripts are automatically generated from
a model which describes the behaviour of the system under test
[28]. The test scripts are generated from a model by utilising a
set of test-design algorithms [29] that traverse the model and
generate test scripts from that basis.

3.4 The Verification of Metamodels
The verification of metamodels means determining how well a
metamodel encapsulates the problem domain and the rules of the
target platform that are necessary to take into account in the
metamodel. As a combination, a metamodel should only allow
the modelling of syntactically and semantically correct
applications.
To our knowledge, determining whether or not the problem
domain  is  covered  still  requires  neural  processing,  i.e.  the
problem domain must be carefully scrutinised and encapsulated
into a metamodel. The same applies for taking the rules of the
target platform into account, and there is not much we can do
about it. However, guidelines on how to develop languages
should facilitate the development of adequate and appropriate
languages [12].
There is also an opportunity to partially verify that the
metamodel only allows the modelling of correctly designed
applications. ‘Correctly designed’ denotes that the modelled
applications are syntactically correct and semantically sound in
the sense that they appear to be correct from the interpreter
perspective, i.e. the application models can be generated into
working executables running on a set platform. A general
concept for testing the entire DSM modelling infrastructure is
presented in [26]. The approach consists of two phases: 1)
generating a set of application models from a metamodel using
an MBT approach and 2) generating a test suite for generated
application models using MBT. In [27], the second phase is
further elaborated and demonstrated in a laboratory experiment.
This kind of approach can be considered (according to the
definitions above) to be a technique that partially verifies the
metamodels. It should be noted that the metamodel is not
compared to the requirements but is taken to be fact. The testing
thus focuses on evaluating whether or not the metamodel is
developed in such way that it prohibits the modelling of
incorrectly designed application models. Applications based on
the metamodel are then generated. Thus, the code generator is
also partially tested in the sense that the verification also focuses
on whether or not the generator produces the correct output from
the input models. This approach does not strive for extensive
code generator verification as all the possible paths cannot be
extensively walked through in this context. When the generated
applications are executed (or interpreted), the platform and the
generated application are tested together. The application is
tested against the use cases generated from the application
models that used the MBT approach. As a result, this approach
strives to test the whole DSM basic architecture.

3.5 The Validation
Validation is about evaluating if the generated deliverable
satisfies the requirements that have been set for it. We see
validation as the challenge of maintaining a bidirectional
traceability link between the end-user requirements and the

generated deliverable. In the case of DSM, such requirements
should be traceable from the end-user requirements to the
models, to the GTR and also back to the original requirements,
but not necessarily via the models. However, maintaining a
traceability  link  between  the  GTR  and  the  models  is  a
requirement for GTR verification. Thus, in a traceability link, the
models should also be included, though this is not absolutely
necessary. Some preliminary work [22] on this is already
available, although there are no extensive methods in existence.

4. CONCLUSIONS
DSM is one of the most prominent paradigms of MDD,
constantly showing a five- to ten-fold productivity increase in
industry cases. The reason for these productivity gains is that the
modelling language and the accompanied generators are specific
to a highly specialized problem domain. Because of this domain
specificity there are few reasons for tool vendors to emerge to
maintain such specific languages or generators. Thus, the
languages and generators have to be self-developed and
maintained. This raises a question about the quality of the
developed languages and the automation methods, which may
have a negative impact on DSM adoption by the industry.
Accordingly, as it is of great importance that the developed
languages and generators are of high quality, there is a strong
case for establishing systematic V&V techniques in order to
secure the quality and appropriateness of the used tools and
methods.

In this paper, V&V has been studied by adapting the definition of
V&V from the IEEE Standard Computer Dictionary into the
DSM context. Further, in this paper, the current means of
performing V&V in the MDD context have been reported.
Although the purpose was to study V&V in the DSM context,
most of the work has been done in the Model-Driven
Architecture (MDA) context. We found that although there are
several different means available for the verification of the
different layers of the DSM basic architecture, no complete
method exists yet. As regards validation, maintaining a
bidirectional traceability link from requirements to models to the
generated deliverable and back seems to be the most prominent
technique. At present there is, however, no comprehensive
traceability validation method in existence.

We believe that the development of V&V methods and tools
should be divided into two overlapping categories. For language
developers, there should be means available to obtain knowledge
about how well the metamodel reflects the problem domain. In
practice, there should be means to check what kinds of undesired
erroneous models can be modelled. Considering code generation,
means to check what parts of the metamodel the code generator
can reach would be helpful in the verification of code generators.
Whether the code generator preserves semantics can be evaluated
with adequate precision by utilizing an extensive set of
semantically correct application models as an input and
scrutinizing if the outcome preserves the semantics. For language
users, a method and tools to automatically preserve bi-directional
traceability link between all development artefacts should
facilitate verification but also validation. Tools for automated test
suite generation for applications would also be useful from
practitioner’s viewpoint.
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