

Experiences with Automotive Service Modeling
Akihito Iwai

DENSO CORPORATION
1-1, Showa-cho, Kariya-shi,
Aichi-ken, 448-8661, Japan

+81 566 61 5312
akihito_iwai@denso.co.jp

Norio Oohashi
NEC Corporation

7-1, Shiba 5-chome, Minato-ku,
Tokyo 108-8001, Japan

+81 3 3454 1111
noh@ab.jp.nec.com

Steven Kelly
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000
stevek@metacase.com

ABSTRACT
Existing component-based development in the automotive world is
showing the strain, as systems grow ever larger and start to interact with
systems in the world outside the vehicle. A service-oriented approach
offers benefits of modularity and runtime configurability, but raises
challenges of a suitable language and platform. We examine the
applicability of BPEL to automotive services. From our preliminary
results we suggest the need for Domain-Specific Modeling to better
address the particular requirements of the automotive service domain.

Categories and Subject Descriptors
D.2.2 [Software Engineering] Design Tools and Techniques - user
interfaces, state diagrams D.2.6 [Software Engineering]
Programming Environments - programmer workbench, graphical
environments D.3.2 [Programming Languages] Language
Classifications - Specialized application languages, very high-level
languages

General Terms
Languages, Experimentation.

Keywords
Domain-specific modeling, language design, service orientation

1. INTRODUCTION
This paper describes research in progress by DENSO, NEC and
MetaCase on modeling languages to improve the development of
automotive software. In particular, we are focusing on the creation and
integration of services that communicate with vehicles, yet exist at least
in part outside them.

This kind of communication becomes more important year by year,
with the rise of large-scale automotive systems such as Telematics,
Vehicle-to-Vehicle, Vehicle-to-Infrastructure and similar systems with
outside cooperation. Such systems are not deterministic: they have
dynamic behavior, as each component is expected to adapt to its envi-
ronment, leading to the whole system being in a constant state of flux.

The specific modeling and verification needs for these systems are not
met well by existing standards and development approaches within the
automotive industry. We thus looked outside our industry, and our re-
search suggested a service-oriented approach to design and verification.

In particular, we decided to try specifying services with Business
Process Execution Language (BPEL) [7], a standard from the IT
industry for modeling the interaction of services. Another factor moti-
vating the use of a standard from the IT industry is that it may enable us
to follow the rapid evolution of service integration as soon as possible.

This paper describes the results to date of an ongoing research project
called 'DARWIN' which is based on a SOA (Service-oriented
Architecture) approach [1][3][4][6]. In the project we have tested some

of the capabilities of BPEL and attempted to validate its applicability to
our domain based on some automotive use cases.

2. DOMAIN
In this section we explain why services are becoming important in
automotive development and what are the particular challenges relating
to their adoption.

2.1 Need for a Service Integration Platform
The current approach, component-based development, has served
automotive developers well, allowing reuse, the division of labor, and
insulation from the internal details of implementations. However, as the
amount of functionality in and around vehicles has grown, component-
based development has begun to be strained. Every time a new service
or technology is developed, a software module to connect each service
must be added, and gradually the system becomes increasingly
complex, making it difficult to develop and integrate new services.

In particular, component-based development assumes that at design
time there is already complete knowledge of all the components that the
system will contain at runtime. It is thus not well able to cope with the
introduction of new functionality over the lifetime of a vehicle, or of
functionality provided by third parties.

To ameliorate these problems, automotive engineers are looking at a
service-oriented approach. A layer is introduced on which workflows
(called service processes) integrate services and technologies. The layer
makes service processes easy to add or change, and consequently it can
be expected to make possible the emergent evolution of new services.

2.2 Challenges for Service Integration
One of the key challenges for Service Integrated Systems is the
modeling of the services and their interaction. In the automotive
domain, they must also balance the strong yet conflicting requirements
of security and dynamic, autonomous configuration. These challenges
are listed in Table 1.

Table 1. Challenges for Service Integration

� Service Modeling
� Service model definition and implementation
� Abstract model of vehicle service
� Capturing requirements from multiple stakeholders
� Developed by multiple vendors

� Secure Platform
� Protection mechanism against invalid external access
� Highly dependable OS
� Firewall

� Pervasive Computing
� Adapting to dynamic change of system configuration
� Installing ad-hoc communication system
� Dynamic configuration

2.3 Intelligent parking service as use case
In the rest of this article we will take an Intelligent Parking Service as
our case study. In this service and its related environment, the car,
service provider and mobile phone work collaboratively to provide
parking navigation, remote security and road pricing. The use case can
be walked through by following the car from right to left in Figure 1.

When the car approaches the parking lot, the Parking Navigation
Service guides it to a free space. While parked, the Remote Security
Service is running and can be accessed via a Smart key and monitor.
When exiting, the user accesses the Road Pricing Service. At each
stage, the car autonomously detects, provides, and integrates with
appropriate services according to the requirements of the situation.

Figure 1. Intelligent Parking Service and related environment

3. EXPERIENCES WITH BPEL
BPEL, or more properly WS-BPEL, is a standard for describing
business process orchestration. The standard itself uses an XML
representation, but tools exist allowing a graphical representation. The
similar BPMN has a graphical notation, and at least for simple cases
can be used interchangeably with BPEL; with more complex graphs,
some structures become difficult or impossible to represent in human-
readable BPEL.

3.1 Problems with BPEL
Our experiences with BPEL indicate that it is insufficient for the
requirements of automotive services. Below we list and explain some of
the key areas in which we have found that BPEL falls short of our
needs. These are not intended as criticisms of BPEL when applied to
the domains it was intended for, only of problems when applying it to
our domain.

• BPEL has no facilities for describing the dependability of a service,
such as real-time guarantee, safety, reliability, and security.
Automotive modeling strongly requires this capability.

• BPEL has no model of resources. Many of the choices we want to
make in the models are based on whether resources are available,
and their properties: e.g. network bandwidth and latency, 3D
graphical display in the car, or text-to-speech function in the car.

• BPEL has no native facilities for autonomous choice among
multiple possible services. Start and end conditions had to be
expressed outside of BPEL.

• BPEL has no facilities for hot swapping from one implementation
of a service to another, copying the current state into the new
service implementation.

• BPEL has poor facilities for fault tolerance, e.g. modeling the
behavior of a system with failures. Higher-level facilities than try-
catch would be needed.

• BPEL has poor facilities for splitting a model into multiple parts,
with each part only ultimately being decided at runtime. The
underlying assumption in BPEL is more that the whole model of a
service is available in one place at design time.

Of course, we are not saying that modeling our systems in BPEL would
be impossible. Systems can be built with far fewer and less domain-
specific concepts, right down to binary ones and zeros. The challenge is
more to find a language that is at the highest possible level of
abstraction that still allows sufficient precision and freedom.

Our attempts to use BPEL to model our applications left us with the
impression that this is not the best place to apply BPEL, nor is BPEL
the best language to apply to this problem. Neither result is particularly
surprising, but it seemed wise to try a "standard" first, rather than risk
reinventing the wheel.

3.2 Attempt to minimally extend BPEL
Our first attempt to resolve the issues we found was to make the
minimum possible extensions to BPEL to add DARWIN service
concepts. Figure 2 shows an example diagram; the corresponding
BPEL XML translation is shown in Listing 1.

(1)

(2)

(3)

Darwin Service Space

Invoke
"Abstract
Service"

Car Web Server

Parking
Lot Search
Service

Parking Lot
Notification
Service

[Parking not decided]

[no Parking Lot]

[Parking Lot available]

[Parking decided]

Parking
Lot Search
Service

Car Space
Search
Service

[Car space available]

[Car space full]

When?:Anytime
Where?:Osaka
How?: Search Parking

Invoke "Car Space
Search Service"

Invoke
"Parking lot
Notification
Service"

Figure 2. Flowchart diagram of parking navigation service

To keep close to the standard, we tried to make the minimum possible
changes to the modeling language itself, e.g. by using (abusing!)
comment objects to contain extra information that was needed for our
domain. An example can be seen at the top, to the right of the Start
symbol: the context information for the service is provided in a
particular text syntax in the comment (the box containing the translation
into English was added later for this article). The corresponding
additions to the BPEL XML schema can be seen as attributes in the
first <invoke> tag in Listing 1. The numbers in parentheses in the
listing indicate the corresponding grouped sections from the diagram.

Listing 1. BPEL XML of parking navigation service

(1)

<invokeAbstractService when="always" where="area:Osaka"
what="Search parking" execute="all" timing="start">

 <params>
 <param type="int">latitude</param>
 <param type="int">longitude</param>
 </params>
 <return type="string">ParkingServiceName</return>
</invokeAbstractService>

(2)

<invoke name="InvokeNotifyEmptySpaceNumber"
partnerLink="ParkingServer"
operation="GetEmptySpaceNumber"
portType="GetEmptySpaceNumberPT"
inputVariable="ParkingServiceName"
outputVariable="ParkingNumber">

</invoke>

(3)

<invoke name="InvokeCheckParkingCar" partnerLink="CAR"
operation="CheckParkingCar"
portType="CheckParkingCarPT"
inputVariable="ParkingNumber"
outputVariable="bParkCar">

 <toParts>
 <toPart part="partnerLinkName"

toVariable="ParkingServiceName" />
 <toPart part="partnerLinkName" toVariable="ParkingNumber" />
 </toParts>
</invoke>

When?: anytime
Where?: Osaka
What?: Search parking

We found the results to be unsatisfactory: even this sample is known to
be incorrect in parts. To be executable, the BPEL needs exact values,
but in a freeform comment field it is all too easy to enter something that
is close but not correct. For instance, the “when” attribute should have
the value “always”, as in the XML; in the model, this has mistakenly
been entered as “anytime”. Trying to make a generator cope with all
possible Japanese translations of “always” would be a losing battle.

It became clear to us that it is not possible to change a standard
modeling language to be more appropriate to a given domain, whilst
still keeping it as the standard: you can’t have your cake and eat it!

4. PROPOSED SOLUTIONS
Although we have initially used BPEL because of its existing position
as a standard, we find that it is not sufficiently well-suited to our needs.
This is no particular criticism of BPEL: although in theory it was
designed to be applicable to all kinds of service and workflow
modeling, in practice its creators had in mind the IT domain. It is only
natural that outside that domain it will not perform as well.

In some aspects BPEL is thus too generic, lacking concepts that we
need; in other aspects it contains concepts that are specific to the IT
domain. Those concepts are either unnecessary for us, or (worse) twist
the meaning of a concept common to both domains in a way that is
unsatisfactory in our domain.

We believe that Domain-Specific Modeling [9] will be needed for
satisfactory modeling of automotive services. The details of a
satisfactory language are still to be finalized, but there seem to be two
main approaches to its construction. We can either fundamentally
extend BPEL – adding new concepts, removing unnecessary ones, and
customizing existing ones – or we can make a new DSM language from
scratch. While there will of course be some similarities with BPEL in
certain areas, since we are still in the service and process modeling

domain, having our own DSM language would give us freedom to
express things in the way that best fits our needs.

Our previous experience with DSM using MetaEdit+ [10] indicates that
creating such a language and tool support is no slower, probably even
faster, than our attempt to twist the existing BPEL language and tool to
fit our purposes.

4.1 Modeling language idea
BPEL is just one of many languages, and for us language is just a way
to solve the requirements. In other words, the requirements are the most
important thing. The definition of all the required information about the
service in a model is thus the starting point for our language. To support
the runtime discovery and orchestration of autonomous services, the
language should offer good concepts for modularity.

We will not be copying an existing language, but we will certainly use
our knowledge of BPEL and other languages such as SRML [2] to
inform our design process. We feel this is the logical extension of the
advice in [8] to reuse or extend existing languages where possible:
where that is not possible, create a new language, but do not throw
away lessons learned from earlier languages.

4.2 Example of service description
Figure 3 shows how an example parking navigation service integrates
with the wider platform. The Service Process Manager (SPM) is
composed of the Darwin Service Space (DSS) and Situation Inference
Engine (SIE). Within the DSS there are many possible autonomous
services, discovered at runtime and assessed for suitability by the SIE.

At the highest level of abstraction, the model of a service can be similar
to BPEL – or indeed any other process modeling language. Even here,
however, there are elements that do not sit well with BPEL, such as the
Start Condition used by the SIE; we will discuss this next.

Figure 3. Easy Integration of services using Service Interface

4.2.1 Resource Contract Function
One of the key areas for us is to be able to see whether a service is
appropriate, and to choose between multiple implementations of a
service, depending on the context. For instance, some car navigation
displays support 3D while others are only 2D. Even for the same car,
the context may change, for example the available network bandwidth
depends on location, service plan etc. A given service can thus offer
multiple implementations, each tuned for a different context.

Trying to use the existing BPEL conditional statements to specify these
choices would force us to model these decisions laboriously on a low
level. It would also fix the method of choosing and the places where the
choice can be made into the low-level models. Further, it would
duplicate essentially similar decision mechanisms into many places.

Having tried unsuccessfully to store the necessary information in
comments, we want to raise it to be a first class concept in our
language. We call this concept the Resource Contract Function (RCF).
It specifies the context in which this service implementation is valid.

Figure 4 shows the detailed process level specification of the Parking
Area Search. Solid lines on arrows mean that the relationships are
explicitly coded in scripts and/or conditions; dashed lines mean that the
relationships are implicitly handled in the Service Process Manager
(SPM). Numbered steps are:

1) During a navigation process the SPM tests the RCF start
condition of a parking service process, to see if it is appropriate in
the current context.

2) The start condition is satisfied, so the Parking Reservation
Process is started.

3) This activity generates a new navigation script.

4) This activity suspends the current navigation script and starts the
new generated parking script. Some data of the current script is
handed off to the new script.

5) When the parking script finishes, the navigation script is
resumed. Some data is handed off to the navigation script.

The Script Selection Condition RCFs allow the system to choose
between two implementations of the service, picking the most
appropriate one for the current hardware and network.

The actual running of the RCFs and the resulting choice is performed
by the platform, freeing the individual models from having to specify
this mechanism. This also makes the system more flexible for future
evolution, and leaves more control in the hands of the car and its driver,
rather than external services.

Currently we focus on the initial choice of the service and its
implementation. Later we want to allow hot swapping to another
implementation if a runtime resource becomes unavailable during
process execution, invalidating the chosen RCF. In addition to the
condition this would require moving the existing state of the current
service to the new service: if we are part-way through parking, we do
not want to have to start from scratch. One approach to this could be the
explicit declaration of the core variables used in a service. The various
alternative implementations of a given service would all use the same
variables, making passing the state to the next service automatic (at
least from the point of view of the modeler).

Navigation Process

Set of Navi. Proc. Desc. to the reserved parking space

Parking Reservation Process

Parking Reservation Process Description

Process Start Condition
� When(SearchingParkingLotMode ∈modeOf(Navi.Process)),

Who(userOf(Navi.Process) ∈ customersOf(“A1ParkingCompany”))

• Look up
parking lot

• Select parking lot
• Reserve a space

• Generate a navi.
proc. to guide to
parking space

• Switch to navi. script
that guides to
parking space

Navi. Proc. Desc. for a
Sightseeing Tour

for parking lots with only voice guidance

Human Interface Device

Hand off

(suspend)

for parking lots with 3D animation

Script Selection Condition
� Has3DGraphics(Navi.HID),

Bandwidth(user.HID) ≧3DAnimationLoad

Script Selection Condition
� HasTextToSpeech(Navi.HID),

resource
contract

with platform

Select a description
according to the
contract result

Hand off

(resume)

(1)

(2)

(3) (4)

(5)

Figure 4. Process suspension and Resource Contract Function

4.2.2 Fault Tolerant Network
We have not yet created examples which model dependability issues
such as reliability and security etc. Both of these are key concepts in our
domain. For reliability we have a prototype design we call the Fault
Tolerant Network. This area focuses on possible errors in execution, not
just a resource becoming unavailable. It will require a separate process
to monitor running service and spot and handle failures and degradation
of service. The language will need concepts for specifying kinds of
failure, counting failures, and how to resume, restart, hand off to a
different implementation, or raise an error to the user.

5. SUMMARY AND FUTURE WORK
Due to service cooperation with information infrastructure, automotive
electric systems are becoming increasingly large-scale and complex.
Architecture approaches such as SOA, which cope better with
integrating multiple elements from many partners, are becoming ever
more important. Existing architectures in automotive only allow partial
optimization in development, within a single company; we need to be
able to move to total optimization, across all the companies in an
emergent system.

We tried applying BPEL, the recommended technology for SOA in IT.
At least in our case, we found that software technologies from IT
industries cannot be applied unaltered. They must be improved and
extended to better satisfy the particular requirements of the automotive
domain. Attempts to extend them by “creative” repurposing of existing
elements proved ineffective. A better solution, and one that would seem
to actually require less work, is to create a Domain-Specific Modeling
language of our own.

This experience is useful when applied to the broader questions of
whether to use a standard language as-is, to improve its applicability but
move it away from the standard by modifications specific to the current
context, or to create a new language specifically for that context.

This is still research in progress for us: we do not yet have even a
finished first draft of the DSM language, but we do have the
requirements and know the basic elements. How best to structure those
into a language, and how best to implement that language in a particular
tool, remain to be seen. Our current thinking about such a domain
specific language includes the following elements:

• Virtual models of service elements in the real world: the
language should provide models of service existing in the real
world, such as cars and parking areas. The language runtime
environment corrects the gap between the status of the real world
and virtual world, so that it keeps mirroring real instances in the
virtual world. If it cannot maintain the consistency, it will notify
errors to service processes.

• Models of implicit synchronization of service processes: the
language should provide constraints specifying models that keep

service processes running consistently. Although several service
processes are developed independently by different vendors, such
processes may support driving of the same car. In order for those
processes to support driving consistently, those processes must run
under some roles. The language should allow the models to
describe such roles as constraints of process statuses.

• Situation description models: the language should provide
situation description models which specify how to start or terminate
service processes. We are currently investigating temporal logic as
a suitable mechanism to track real world contexts and driving
situations.

6. REFERENCES
[1] Aoyama, M., et al. 2008. Service-Oriented Architecture for

Automotive Software Platforms, In Proc. of 2008 Annual
Congress (Fall), Society of Automotive Engineers Japan, No. 97-
08, Oct. 2008, pp. 21-26 (In Japanese).

[2] Bocchi, L., Fiadeiro, J. L., and Lopes, A. 2008. Service-Oriented
Modelling of Automotive Systems. In Proceedings of the 2008
32nd Annual IEEE international Computer Software and
Applications Conference, IEEE Computer Society, Washington,
DC, 1059-1064.

[3] Broy, M., Krüger, I. H., and Meisinger, M. 2006. Automotive
Software-Connected Services in Mobile Networks, LNCS Vol.
4147, Springer.

[4] Erl, T. 2005. Service-Oriented Architecture, Prentice Hall.

[5] Iwai, A. 2009. Trends of automotive software platform, IPSJ-
EMB, ICD2008-133, pp. 25-30 (In Japanese).

[6] Iwai, A. 2010. Designing and Evaluation of Automotive Service
Integration Platform, IPSJ SIG169, Vol. 2010-SE-169 No.5 (In
Japanese).

[7] Jordan, D., and Evdemon, J. (eds.) 2007. Web Services Business
Process Execution Language Version 2.0, OASIS.

[8] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler,
M., and Völkel, S. 2009. Design guidelines for domain specific
languages. In 9th OOPSLA Workshop on Domain-Specific
Modeling.
http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf

[9] Kelly, S., and Tolvanen, J-P., 2008. Domain-Specific Modeling:
Enabling Full Code Generation, Wiley.

[10] MetaCase 2008. MetaEdit+ Workbench 4.5 SR1 User’s Guide,
http://www.metacase.com/support/45/manuals/

