Experiences with Automotive Service Modeling

Akihito Iwai
DENSO CORPORATION
1-1, Showa-cho, Kariya-shi,
Aichi-ken, 448-8661, Japan
+81 566 61 5312
akihito_iwai@denso.co.jp

ABSTRACT

Existing component-based development in the auteenetorld is

showing the strain, as systems grow ever largestantio interact with
systems in the world outside the vehicle. A sergitented approach
offers benefits of modularity and runtime confichility, but raises
challenges of a suitable language and platform. &x&mine the
applicability of BPEL to automotive services. Framr preliminary
results we suggest the need for Domain-Specific éliiogl to better
address the particular requirements of the autemeéirvice domain.

Categoriesand Subject Descriptors

D.2.2 [Software Engineering] Design Tools and Techniquesuser
interfaces, state diagramsD.2.6 [Software Engineering]
Programming Environments programmer workbenchgraphical
environments D.3.2 [Programming Languages] Language
Classifications -Specialized application languagegery high-level
languages

General Terms
Languages, Experimentation.

Keywords

Domain-specific modeling, language design, semvintation

1. INTRODUCTION

This paper describes research in progress by DENMET, and
MetaCase on modeling languages to improve the aawvent of
automotive software. In particular, we are focusinghe creation and
integration of services that communicate with Velicyet exist at least
in part outside them.

This kind of communication becomes more importaedryby year,
with the rise of large-scale automotive systems sae Telematics,
Vehicle-to-Vehicle, Vehicle-to-Infrastructure anichar systems with
outside cooperation. Such systems ot deterministic: they have
dynamic behavior, as each component is expectaddpt to its envi-
ronment, leading to the whole system being in ateon state of flux.

The specific modeling and verification needs fasth systems are not
met well by existing standards and developmentagmbies within the
automotive industry. We thus looked outside outgty, and our re-
search suggested a service-oriented approachigm desl verification.

In particular, we decided to try specifying sersiogith Business
Process Execution Language (BPEL) [7], a standeooh fthe IT
industry for modeling the interaction of servicAsother factor moti-
vating the use of a standard from the IT industipat it may enable us
to follow the rapid evolution of service integratias soon as possible.

This paper describes the results to date of aniggesearch project
called 'DARWIN' which is based on a SOA (Servicemed
Architecture) approach [1][3][4][6]. In the projeet have tested some

Norio Oohashi
NEC Corporation
7-1, Shiba 5-chome, Minato-ku,
Tokyo 108-8001, Japan
+81 3 3454 1111

noh@ab.jp.nec.com

Steven Kelly
MetaCase
Ylistbonmaentie 31
FI-40500 Jyvaskyla, Finland
+358 14 641 000

stevek@metacase.com

of the capabilities of BPEL and attempted to vadides applicability to
our domain based on some automotive use cases.

2. DOMAIN

In this section we explain why services are becgniinportant in
automotive development and what are the partichiallenges relating
to their adoption.

2.1 Need for a Servicelntegration Platform

The current approach, component-based developrhast, served
automotive developers well, allowing reuse, thasiim of labor, and
insulation from the internal details of implemeiatas. However, as the
amount of functionality in and around vehicles gasvn, component-
based development has begun to be strained. Evenatnew service
or technology is developed, a software module tmect each service
must be added, and gradually the system becomesasimgly
complex, making it difficult to develop and integraew services.

In particular, component-based development assuinasat design

time there is already complete knowledge of alidtraponents that the
system will contain at runtime. It is thus not wadlle to cope with the
introduction of new functionality over the lifetine a vehicle, or of

functionality provided by third parties.

To ameliorate these problems, automotive engireerdooking at a
service-oriented approach. A layer is introducednbith workflows
(called service processes) integrate servicessahdadlogies. The layer
makes service processes easy to add or changepmsetjuently it can
be expected to make possible the emergent evolitioew services.

2.2 Challengesfor Servicelntegration

One of the key challenges for Service IntegratedteBys is the
modeling of the services and their interaction.tte automotive
domain, they must also balance the strong yeticting requirements
of security and dynamic, autonomous configuratiimese challenges
are listed in Table 1.

Table 1. Challengesfor ServiceIntegration

< Service Modeling
» Service model definition and implementation
» Abstract model of vehicle service
» Capturing requirements from multiple stakeholders
» Developed by multiple vendors
« Secure Platform
» Protection mechanism against invalid external acces
» Highly dependable OS
» Firewall
« Pervasive Computing
» Adapting to dynamic change of system configuration
» Installing ad-hoc communication system
» Dynamic configuration

2.3 Inteligent parking service as use case

In the rest of this article we will take an Intgdint Parking Service as
our case study. In this service and its relatedramwent, the car,
service provider and mobile phone work collaboedivto provide
parking navigation, remote security and road pgicifhe use case can
be walked through by following the car from rightléft in Figure 1.

When the car approaches the parking lot, the Rarkiavigation
Service guides it to a free space. While parkesl,Remote Security
Service is running and can be accessed via a 8madnd monitor.
When exiting, the user accesses the Road Pricingc&eAt each
stage, the car autonomously detects, provides, irdrates with
appropriate services according to the requirentdnite situation.

Surveillance Center

Remote
Security
Service

%JAF
/,‘

Parking Lot

Road Pricing
Service

Parking gate

Situation: Exit

Remaote
Security
Service

. zii"king Service provider

Parking
Navigation
Service

Smart keyth monitor

Figure 1. Intdligent Parking Serviceand reated environment

3. EXPERIENCESWITH BPEL

BPEL, or more properly WS-BPEL, is a standard fesatibing

business process orchestration. The standard iise§ an XML

representation, but tools exist allowing a graphigaresentation. The
similar BPMN has a graphical notation, and at léaissimple cases
can be used interchangeably with BPEL; with momapmex graphs,
some structures become difficult or impossiblegaresent in human-
readable BPEL.

3.1 Problemswith BPEL

Our experiences with BPEL indicate that it is ifisight for the

requirements of automotive services. Below wealigt explain some of
the key areas in which we have found that BPEIs fallort of our
needs. These are not intended as criticisms of BRiieln applied to
the domains it was intended for, only of problenhemapplying it to
our domain.

« BPEL has no facilities for describing the dependglaf a service,
such as real-time guarantee, safety, reliabilitgd asecurity.
Automotive modeling strongly requires this capapili

« BPEL has no model of resources. Many of the chaigew/ant to
make in the models are based on whether resoneewvailable,
and their properties: e.g. network bandwidth arténtzy, 3D
graphical display in the car, or text-to-speectection in the car.

« BPEL has no native facilities for autonomous chaéreong
multiple possible services. Start and end conditibad to be
expressed outside of BPEL.

« BPEL has no facilities for hot swapping from ongliementation
of a service to another, copying the current st the new
service implementation.

« BPEL has poor facilities for fault tolerance, emodeling the
behavior of a system with failures. Higher-levaililftes than try-
catch would be needed.

« BPEL has poor facilities for splitting a model intaltiple parts,
with each part only ultimately being decided attime. The
underlying assumption in BPEL is more that the whuobdel of a
service is available in one place at design time.

Of course, we are not saying that modeling ouesystin BPEL would
be impossible. Systems can be built with far feamd less domain-
specific concepts, right down to binary ones amdszé'he challenge is
more to find a language that is at the highest ilplessevel of
abstraction that still allows sufficient precisiamd freedom.

Our attempts to use BPEL to model our applicatlefisus with the
impression that this is not the best place to aBpif£L, nor is BPEL
the best language to apply to this problem. Neitbguilt is particularly
surprising, but it seemed wise to try a "standdirdt, rather than risk
reinventing the wheel.

3.2 Attempt to minimally extend BPEL

Our first attempt to resolve the issues we found tea make the
minimum possible extensions to BPEL to add DARWIgivise
concepts. Figure 2 shows an example diagram; thesponding
BPEL XML translation is shown in Listing 1.

Darwin Service Space

Car Web Server

(1)

Cane

Invoke

When?:Anytime o g
Where?:Osaka LR S

How?: Search Parking

<€4— Where?: Osaka
What?: Search parking

Parking

[no Parking Lot])

(2) 4 °

[Parking Lot available]

"Abstract Lot Search
ServkLJ\ Service

\ Parking

Lot Search
Service

Car Space

Invoke "Car Space
Search Service"

(3) [Car space full]

[Car space available]

Invoke

Search
Service

Parking Lot

"Parking lot
Notification

[Parking decided]

Service"
[Parking not decided]

Notification
Service

Figure 2. Flowchart diagram of parking navigation service

To keep close to the standard, we tried to makenthenum possible
changes to the modeling language itself, e.g. bgguébusing!)

comment objects to contain extra information thas weeded for our
domain. An example can be seen at the top, toighe of the Start

symbol: the context information for the servicepiovided in a

particular text syntax in the comment (the box aiminig the translation
into English was added later for this article). Tearresponding
additions to the BPEL XML schema can be seen dbutéis in the

first <invoke> tag in Listing 1. The numbers in gratheses in the
listing indicate the corresponding grouped sectimm the diagram.

Listing 1. BPEL XML of parking navigation service
@
<invokeAbstractService when="always" where="areal@5
what="Search parking" execute="all" timing="start">
<params>
<param type="int">latitude</param>
<param type="int">longitude</param>
</params>

<return type="string">ParkingServiceName</return>
<finvokeAbstractService>

@

<invoke name="InvokeNotifyEmptySpaceNumber"
partnerLink="ParkingServer"
operation="GetEmptySpaceNumber"
portType="GetEmptySpaceNumberPT"
inputVariable="ParkingServiceName"
outputVariable="ParkingNumber">

<finvoke>

(©)
<invoke name="InvokeCheckParkingCar" partnerLink&FrC
operation="CheckParkingCar"
portType="CheckParkingCarPT"
inputVariable="ParkingNumber"
outputVariable="bParkCar">
<toParts>
<toPart part="partnerLinkName"
toVariable="ParkingServiceName" />
<toPart part="partnerLinkName" toVariable="Pagtitumber" />
</toParts>
<finvoke>

We found the results to be unsatisfactory: evensimple is known to
be incorrect in parts. To be executable, the BP&ds exact values,
but in a freeform comment field it is all too eésyenter something that
is close but not correct. For instance, the “whetivibute should have
the value “always”, as in the XML, in the modelisthas mistakenly
been entered as “anytime”. Trying to make a gemerpe with all
possible Japanese translations of “always” would losing battle.

It became clear to us that it is not possible tange a standard
modeling language to be more appropriate to a gienain, whilst
still keeping it as the standard: you can’t haver ymke and eat it!

4. PROPOSED SOLUTIONS

Although we have initially used BPEL because ogitsting position
as a standard, we find that it is not sufficiemiil-suited to our needs.
This is no particular criticism of BPEL: although theory it was
designed to be applicable to all kinds of servicel avorkflow
modeling, in practice its creators had in mindlthelomain. It is only
natural that outside that domain it will not penfioss well.

In some aspects BPEL is thus too generic, lackongepts that we
need; in other aspects it contains concepts tieasecific to the IT
domain. Those concepts are either unnecessarg,far gworse) twist
the meaning of a concept common to both domaires way that is
unsatisfactory in our domain.

We believe that Domain-Specific Modeling [9] wile meeded for
satisfactory modeling of automotive services. Thetaits of a
satisfactory language are still to be finalized, there seem to be two
main approaches to its construction. We can eitlnedamentally
extend BPEL — adding new concepts, removing unsagesnes, and
customizing existing ones — or we can make a neM RBguage from
scratch. While there will of course be some siritiger with BPEL in
certain areas, since we are still in the serviak @ocess modeling

domain, having our own DSM language would give needom to
express things in the way that best fits our needs.

Our previous experience with DSM using MetaEdit3] [ihdicates that
creating such a language and tool support is meesl@robably even
faster, than our attempt to twist the existing BR&tiguage and tool to
fit our purposes.

4.1 Modedinglanguageidea

BPEL is just one of many languages, and for usuianeg is just a way
to solve the requirements. In other words, theireauents are the most
important thing. The definition of all the requiredormation about the

service in a model is thus the starting point farlanguage. To support
the runtime discovery and orchestration of auton@reervices, the

language should offer good concepts for modularity.

We will not be copying an existing language, butwilecertainly use
our knowledge of BPEL and other languages suchRLS[2] to
inform our design process. We feel this is thedalgéxtension of the
advice in [8] to reuse or extend existing languagbsre possible:
where that is not possible, create a new languagedo not throw
away lessons learned from earlier languages.

4.2 Exampleof servicedescription

Figure 3 shows how an example parking navigatiovicgeintegrates
with the wider platform. The Service Process Mang@PM) is
composed of the Darwin Service Space (DSS) andtBitulnference
Engine (SIE). Within the DSS there are many passihitonomous
services, discovered at runtime and assesseditfatibity by the SIE.

At the highest level of abstraction, the model séevice can be similar
to BPEL — or indeed any other process modelinguage. Even here,
however, there are elements that do not sit wétl BPEL, such as the
Start Condition used by the SIE; we will discuss tiext.

SPM

—

R —

DSS

‘ Road Pricing Service

Remote Security Service

. N Remote Security Service
Situation - —— -
Inference Parking Navigation Service
Engine
Start Condition Draw by BPEL [Parking Full] | Parking Full
"| Indication
| | e
Apprpachlng [Parking Open
Parking Area Parking Area Auto-Parking
Search Start
——

Open Parking Space Search CI)

Auto-Parking

Graphic Output

: Service Interface: :

C
ECU | =
swc | B

Service Integration Platform

Figure 3. Easy Integration of servicesusing Service I nterface

4.2.1 Resource Contract Function

One of the key areas for us is to be able to sesheha service is
appropriate, and to choose between multiple impiatiens of a
service, depending on the context. For instanaegstar navigation
displays support 3D while others are only 2D. Efmrthe same car,
the context may change, for example the availagterark bandwidth
depends on location, service plan etc. A giveniceman thus offer
multiple implementations, each tuned for a diffecamtext.

Trying to use the existing BPEL conditional statete¢o specify these
choices would force us to model these decisionwitalsly on a low
level. It would also fix the method of choosing dnel places where the
choice can be made into the low-level models. Egrtit would
duplicate essentially similar decision mechanisitwsinany places.

Having tried unsuccessfully to store the necessafigrmation in
comments, we want to raise it to be a first classcept in our
language. We call this concept the Resource Cartarction (RCF).
It specifies the context in which this service ieméntation is valid.

Figure 4 shows the detailed process level spetiificaf the Parking
Area Search. Solid lines on arrows mean that tlaimeships are
explicitly coded in scripts and/or conditions; degsfines mean that the
relationships are implicitly handled in the Servieecess Manager
(SPM). Numbered steps are:

1) During a navigation process the SPM tests the R@R s
condition of a parking service process, to saagfappropriate in
the current context.

2) The start condition is satisfied, so the ParkingseReation
Process is started.

Process Start Condition
O When(SearchingParkingLotMode € modeOf(Navi.Process)),
Who(userOf(Navi.Process) € customersOf(“AlParkingCompany”))

3) This activity generates a new navigation script.

4) This activity suspends the current navigation seil starts the
new generated parking script. Some data of themuscript is
handed off to the new script.

5) When the parking script finishes, the navigatiomipscis
resumed. Some data is handed off to the navigstigpt.

The Script Selection Condition RCFs allow the syst® choose
between two implementations of the service, pickihg most
appropriate one for the current hardware and nktwor

The actual running of the RCFs and the resultirgicehis performed
by the platform, freeing the individual models fréraving to specify
this mechanism. This also makes the system moxbléefor future

evolution, and leaves more control in the handietar and its driver,
rather than external services.

Currently we focus on the initial choice of the vimr and its

implementation. Later we want to allow hot swappioganother

implementation if a runtime resource becomes ufzdblai during

process execution, invalidating the chosen RCFaddition to the

condition this would require moving the existingtstof the current
service to the new service: if we are part-wayugroparking, we do
not want to have to start from scratch. One apprtmthis could be the
explicit declaration of the core variables used service. The various
alternative implementations of a given service @all use the same
variables, making passing the state to the nextceeautomatic (at
least from the point of view of the modeler).

Parking Reservation Process

* Look up
parking lot

Parking Reservation Process Description

« Select parking lot
- Reserve a space

« Generate a navi.
proc. to guide to
parking space

« Switch to navi. script
that guides to
parking space

@)

(3)

) S
: (| script Selection Condition
;(1) O HasTextToSpeech(Navi.HID),
; i . . . i
Navi. Proc. Desc.fora | Hand off
Sightseeing Tour (suspend) @@
___________ >t resource -
o[M o st | [;
with platform Script Selection Condition i
O Has3DGraphics(Navi.HID), 1
Bandwidth(user.HID) Z3DAnimationLoad E
g)
E for parking lots with 3D animation |
! |
g)
1 Hand off @@ i
’ () - '

Select a description
according to the
contract result

Human Interface Device

Figure4. Process suspension and Resour ce Contract Function

4.2.2 Fault Tolerant Network

We have not yet created examples which model depéityl issues
such as reliability and security etc. Both of thexgekey concepts in our
domain. For reliability we have a prototype desigm call the Fault
Tolerant Network. This area focuses on possib@®in execution, not
just a resource becoming unavailable. It will rega separate process
to monitor running service and spot and handlerfssl and degradation
of service. The language will need concepts focipeg kinds of
failure, counting failures, and how to resume,artshand off to a
different implementation, or raise an error touker.

5. SUMMARY AND FUTURE WORK

Due to service cooperation with information infrasture, automotive
electric systems are becoming increasingly largkesand complex.
Architecture approaches such as SOA, which copéerbetith
integrating multiple elements from many partners, llecoming ever
more important. Existing architectures in autonetiwly allow partial
optimization in development, within a single compane need to be
able to move to total optimization, across all dwenpanies in an
emergent system.

We tried applying BPEL, the recommended technofog$gOA in IT.
At least in our case, we found that software teldgies from IT
industries cannot be applied unaltered. They masimproved and
extended to better satisfy the particular requirgsnef the automotive
domain. Attempts to extend them by “creative” rgagimg of existing
elements proved ineffective. A better solution, and that would seem
to actually require less work, is to create a DorSpecific Modeling
language of our own.

This experience is useful when applied to the haoaplestions of
whether to use a standard language as-is, to imjisapplicability but
move it away from the standard by modificationscijogto the current
context, or to create a new language specificatlyhat context.

This is still research in progress for us: we do y& have even a
finished first draft of the DSM language, but we Have the
requirements and know the basic elements. Howtdastucture those
into a language, and how best to implement thguiage in a particular
tool, remain to be seen. Our current thinking alsugh a domain
specific language includes the following elements:

e Virtual modeds of service dements in the real world: the
language should provide models of service exisimghe real
world, such as cars and parking areas. The languagéene
environment corrects the gap between the stattteeateal world
and virtual world, so that it keeps mirroring rgatances in the
virtual world. If it cannot maintain the consistgné will notify
errors to service processes.

* Modes of implicit synchronization of service processes. the
language should provide constraints specifying fsottet keep

service processes running consistently. Althougferaé service
processes are developed independently by diffeedors, such
processes may support driving of the same carrder dor those
processes to support driving consistently, thosegsses must run
under some roles. The language should allow theelso
describe such roles as constraints of processatatu

Situation description models the language should provide
situation description models which specify howttstor terminate
service processes. We are currently investigagingporal logic as
a suitable mechanism to track real world contexrid driving
situations.

6. REFERENCES

[1] Aoyama, M., et al. 2008. Service-Oriented Architeefor
Automotive Software Platforms, Proc. of 2008 Annual
Congress (Fall)Society of Automotive Engineers Japan, No. 97-
08, Oct. 2008, pp. 21-26 (In Japanese).

[2] Bocchi, L., Fiadeiro, J. L., and Lopes, A. 2008vige-Oriented
Modelling of Automotive Systems. Proceedings of the 2008
32nd Annual IEEE international Computer Softward an
Applications ConferencdEEE Computer Society, Washington,
DC, 1059-1064.

[3] Broy, M., Kriiger, 1. H., and Meisinger, M. 200%utomotive
Software-Connected Services in Mobile NetwarkES Vol.
4147, Springer.

[4] Erl, T. 2005 Service-Oriented ArchitecturBrentice Hall.

[5] Iwai, A. 2009. Trends of automotive software platfplPSJ-
EMB, ICD2008-133, pp. 25-30 (In Japanese).

[6] Iwai, A. 2010. Designing and Evaluation of AutoretBervice
Integration PlatformPSJ SIG169Vol. 2010-SE-169 No.5 (In
Japanese).

[7] Jordan, D., and Evdemon, J. (eds.) 200&b Services Business
Process Execution Language Version 2ASIS.

[8] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, Bchindler,
M., and Volkel, S. 2009. Design guidelines for donpecific
languages. 18th OOPSLA Workshop on Domain-Specific
Modeling
http://Amww.dsmforum.org/events/DSM09/Papers/KapsHi.

[9] Kelly, S., and Tolvanen, J-P., 20@main-Specific Modeling:
Enabling Full Code GeneratigiwViley.

[10] MetaCase 2008/etaEdit+ Workbench 4.5 SR1 User's Gyide
http:/Mww.metacase.com/support/45/manuals/

