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ABSTRACT
Application developers utilizing event-based middleware have
sought to leverage domain-specific modeling for the advan-
tages of intuitive specification, code synthesis, and support
for design evolution, among other benefits. For cyber-physical
systems, the use of event-based middleware may result, for
some applications, in a need for additional time-based blocks
that were not initially considered during system design. An
advantage of domain-specific modeling is the ability to refac-
tor an application to include time-triggered, event-based
schedulers. In this paper we present an application in need
of such modification, and discuss how these additional blocks
must be synthesized in order to conform to the input/output
constraints of the existing diagram.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Prog. Environments—In-
tegrated environments
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Metamodeling, software synthesis, graph rewriting

1. INTRODUCTION
Cyber-physical systems involve algorithms and design tech-
niques from the disciplines of control, real-time systems,
robotics, software, communications, and many other appli-
cation domains. Experience spanning multiple disciplines is
required when developing these kinds of systems in order to
manage the various subtleties of each domain, in addition to
the subtleties of their integration.

In existing implementations of today’s cyber-physical sys-
tems, designers commonly employ one of many discrete event-
based computational models [25, 6, 11, 26]. In these mod-
els, components execute based on the exchange of tokens
with other discrete event components. On execution, com-
ponents acquire input tokens from their associated input
queues, perform computation and submit their results to any
consumers via output queues. A common event-based execu-
tion approach is realized through the application of event-
based middleware, where (potentially) distributed compo-
nents communicate through message passing in order to ex-
change data. The receipt of data typically triggers compo-
nent execution.

∗This work supported by the Air Force Research Labs, un-
der award #FA8750-08-1-0024, titled “MultiCore Hardware
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Generally, components for such systems are developed by
algorithm experts who understand well their computational
behavior. Occasionally when a system is composed from
components whose execution triggering rules are determined
in an ad hoc manner by each developer, the behavior of
the system is emergent in nature, as opposed to being en-
gineered by design. A more principled system design could
consider the semantics of the composition of the components
(as discussed in [7]). However, such integration is difficult
to enforce in a programming styleguide since the semantics
are at a higher level.

In this paper, we discuss how to enforce a time-triggered,
as opposed to purely event driven, behavior through the in-
sertion of data buffers whose contents are read and released
on the receipt of time-triggered tokens. We provide some
examples of how existing domain-specific models of event-
based middleware can be rewritten in order to produce new
component graphs that now implement this kind of scalable
behavior.

2. BACKGROUND
2.1 Middleware
The growth in the number of middleware technologies, and
their widespread adoption in large scale system design is
a testament to their utility in mitigating low-level program-
ming complexity in distributed system development. CORBA
offers a middleware platform for supporting distributed com-
puting. Real-Time Object Request Brokers (ORBS) [19]
have been developed, e.g. TAO [22], which integrate op-
erating system services and network protocols to offer pre-
dictable quality of service, including real-time or near real
time response. TAO allows distributed applications to be
specified as a set of interacting components. The middleware
services manage data communication between components,
including marshalling and demarshalling, allowing compo-
nents to be written location-unaware. A variety of compet-
ing middleware technologies and platforms have been devel-
oped for supporting component-based distributed comput-
ing, including Ice [8], Enterprise Java Beans (EJB) [15], the
Microsoft Component Object Model (COM) [3] and .NET
framework [17], and Java RMI [24].

A key goal with middleware is the development of Quality of
Service guarantees (QoS) for supporting application execu-
tion. Certain metrics are critical to distributed application
development, e.g. bandwidth, latency and jitter. Different
studies have been conducted to evaluate and improve the
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Figure 1: Alternative execution of a component with timeout on a blocking read. (a) A token is received before, or at, the
timeout of the blocking read. (b) No token is received by time t1, so a timeout event occurs, and the output token is based
on the previous input to the component. Receipt of later events occurs as in (a).

ability of middleware to offer predictable quality of service
[21, 20]

2.2 Publish/Subscribe Methods
Publish/Subscribe is a common model of communication
used for data interchange between components. A compo-
nent c1 will subscribe to another component’s production of
a particular data value, using services offered by the middle-
ware. Then, the middleware will ensure that all subscribers
receive the value once it is produced. This can be considered
to be closely related to the producer/consumer model, how-
ever the producer/consumer model typically only involves a
single consumer for a given producer. The publish/subscribe
model offers explicit support for a controlled broadcast com-
munication.

Several middleware technologies support variants of the pub-
lish/subscribe communication model, including Ice [8] and
DDS [16]. Further, different approaches for implementing
the model exist, including having the consumer task poll
the producer for data availability, or having the producer
perform a remote invocation on the consumer when data is
available.

2.3 Time-Triggered Methods
Different techniques and infrastructures have been devel-
oped to support distributed/embedded computing which ex-
ecutes cognizant of time. Giotto [9, 10] offers a framework
for capturing and executing time triggered software. Ap-
plications are captured as a set of interacting tasks, each
of which is assigned to a mode with an associated execu-
tion period. Scheduling and inter-task communications are
managed by Giotto’s runtime infrastructure, called the E-
machine.

Farcas et al. [5] have developed a component model to sup-
port the development of distributed real time systems. Com-
ponents are decoupled from the platform and from each
other, both temporally and functionally. The component
model is based on the logical execution time (LET) model
introduced with Giotto. Auerbach et al. [1] describe a Java-
based approach for scheduling real-time control tasks on a
quad-rotor model helicopter by making use of exotasks and
the LET model to guarantee deterministic execution.

The Time Triggered Architecture (TTA) [12] and Time Trig-
gered Protocol (TTP) [13] have been developed to support
the time-based execution of components in hard real-time
systems. Components are allowed to access shared commu-
nication hardware based only on the clock, rather than need.
Design time scheduling determines a priori the allocation of
access windows to shared busses. The goal of time triggered
execution is to isolate the impact of component or subsystem
failures on the system as a whole.

3. DOMAIN SEMANTICS
The domain of event-driven component-based systems pro-
vides significant freedom in the implementation of execution
semantics. This freedom, in part, motivates the need to con-
strain execution across implementation platforms.

Our purpose in this section is to underscore the seman-
tic reasons for which components specified in our language
could execute differently on machines with different network
latencies, or processing power. This understanding moti-
vates why we undertake this transformation process, and
additionally provides the semantics necessary for the com-
ponents which we synthesize using the model transforma-
tions in the next section. We provide here several examples



that demonstrate the subtle behavior anomalies that are a
result of a purely event-driven model of computation. We
continue with a concise description of the execution seman-
tics of a time trigger component, which will be integrated
into the system to eliminate these anomalies.

3.1 Single Input/Single Output
Consider a component, c1, with a single input, x1, and sin-
gle output, y1. We use subscripts to denote the component,
input, and output index, respectively, in order to provide
consistent labeling for multi-component, multi-input/output
systems that we will describe in future sections. The value
y1 is obtained as the output of the functional behavior of the
component, which may also be written in difference equation
form as y1(k+1) = f(x1(k)), demonstrating the discrete no-
tion of the software component, and our ability to encode
y, x as signals in time (specifically, discrete time)1. The ex-
ecution time of c1 is not necessarily a constant, though we
represent it by the variable ωc1 for simplicity of specifica-
tion, and leave open the potential that ωc1 may be a ran-
dom variable. In hard real-time systems ωc1 (the execution
time of the function) can be determined through worst-case
execution time (WCET) analysis [18], and perhaps even be
validated at the hardware level [4]. This component also has
associated with it a time, τx1 , which is a timeout constant.

An example execution based on events received is shown in
Figure 1a. At t0, the logical beginning of this cycle, the
system has just produced an output on y1. At time t1 =
t0 + τe, an event occurs where a token is received on the
input port, x1. The component executes, and at time t =
t2 = t1 +ωc1 a token is produced on the output port, y1, i.e.,
y1(t2) = f(x1(t1)). This execution is valid for any system
execution where τe ≤ τx1 , or where the component does not
utilize a timeout.

In order to see how tokens flow in an execution where time-
out is a factor, examine Figure 1b. At t0, the system has
just produced some token. At some time, t1 = t0 + τx1 ,
a timeout event occurs, so the output port produces an-
other token, namely y1(t2) = y1(t0). That is to say, the
output at t0 + τx1 + ωc1 is equivalent to that produced at
t0. This equivalency ignores metadata such as send/receive
timestamps, packet size, etc. Another remark is that the
duplicative behavior of this component need not be the only
behavior in terms of timeout. Many components may opt to
produce a special timeout token, or no token at all, in the
case of timeout. This is also a valid option, though in our
case we aim to address systems that integrate tightly with
physical systems, and inaction may be inappropriate in this
domain.

An activity diagram that considers each of the cases pre-
sented in Figure 1a and Figure 1b is shown in Figure 2. In
this diagram, the mutually exclusive case of receiving data,
or timing out, is clearly shown. However, designs such as
this (if already fielded) will satisfy these observations: (1)
algorithms to discard “stale” data must already exist; and
(2) timeouts, τxi , will be appropriate for the execution time
ωci of this component, as well as the frequency of execution

1Of course, the internal state of an object can affect this
outcome, but externally the interface is as presented.

after(τx1)
e(x1)

last1 = x1 x1 = last1

y1 = f (x1)

block(x1)

bc(x1,τx1)

Figure 2: Activity Diagram that incorporates behaviors seen
in Figure 1a and Figure 1b. The notation e(x1) indicates
that an event was received indicating new data on input x1;
these events are cached if not being blocked upon, but the
number of data values cached is application dependent.

for all providing components.

For brevity, we mention that the approach, and issues, for
SISO systems can be generalized for MIMO systems. Due to
the scope of the workshop, we leave this discussion to future
papers in the domain, rather than the language elements of
our work.

3.2 Trigger Generator
We provide the semantics for a particular component called
a trigger generator. This component produces, at specific
times or rates, a special token whose data is the time at
which the token was generated. The default internal struc-
ture of the trigger generator component is a single output
port. Tokens are produced on the port according to some
internal parameters specified for the component, which in-
clude wait time, w, start modulus, m, and period, T . Usu-
ally, either w or m is specified, and once that time arrives a
token is produced, and another token is produced every T
seconds.

As a matter of implementation, empirical results from our
work shows that using a pthreads [14] enabled operating
system2 (but not a real-time OS) results in a variance in
expected time generation of approximately 2-3 milliseconds.
On a real-time OS3, the variance is less than 1 ms.

3.3 Buffer Semantics
A buffer component, Cb provides an integer number of out-
puts, j, with inputs k = j+ 1. The j output ports match to
the j inputs of some existing component being buffered, Ca.
Values, when received by an input, are queued by Cb. One
particular input, the time trigger input, subscribes to the
single output port of a trigger generator component. When

2Linux flavors Kubuntu and Gentoo were used.
3QNX was used for the RTOS.



a token is received on the time trigger port, the queued data
values are sent to the output ports such that they can be
received by Ca.

In future work, we may provide a special semantics for buffers
where the most recent value received (only) on each input
port is passed to the output port. Our current semantics
requires that if more than one value (or no value at all) is
received by the buffer between triggers, then Ca is respon-
sible for determining whether to use all, or only the most
recent, values.

4. TRANSFORMATION AND EXAMPLE
Given the advantages of a system whose timing character-
istics are explicitly expressed, we describe now a transfor-
mation from a purely event-driven model to one with time-
triggered execution. This transformation modifies an exist-
ing graph, and permits existing components to execute with
no behavioral changes: the only change to the system is the
topological rewrite, and the insertion of new buffered com-
ponents along with their time-based triggers. Our method-
ology is as follows: (1) examine an existing component inter-
connection graph; (2) insert, before each component of the
graph, a time-triggered buffer; (3) insert, after each com-
ponent of the graph, a time-triggered buffer; and (4) in-
sert, somewhere in the graph, a timed event-generator for
each buffer, which sends events at the appropriate time The
rewriting rules for this methodology are trivial, when speci-
fied using the GReAT rewriting language [2]. In this section,
we provide a subset of the transformations required.

4.1 Domain-specific Modeling Language
Our systems are defined using a domain-specific language,
capable of synthesizing experiments based on component in-
terconnections. This work is explained thoroughly in [23].
The metamodel is shown in Figure 3.

Figure 3: Relevant subset of the metamodel of our DSML
(a screen capture from the GME tool).

Our system is built mainly of Component objects, connected
to one another through provided and required Interface

objects. The language provides several constraints (outside
the scope of this paper) to prevent ill-formed models. We use

this metamodel as the source and destination metamodel in
the GReAT transformations.

4.2 Transformation Rules
The first task of the rewriting algorithm is to create new
buffer components, whose job it is to implement the seman-
tics described in Section 3. The precise semantics are gen-
erally decided for the entire graph, not piecemeal, and can
be a value selected when the graph transformation is exe-
cuted. For brevity, we have provided an abbreviated algo-
rithm, that only inserts buffers for the input of each graph
component. The algorithm to insert for component outputs
is similar. An overall description of the rewrite is summa-
rized by the rules shown in Figure 4.

NewBlock
Paradigm: UMLModelTransformer     Project: Root Folder     Model: Block     Aspect: Transform     Time: Fri Aug 07 05:53:11  PM

In Out

FindScenarioComponents

Sce
Com
In

CreateBufferPorts

In
Sce
Com
Buf

CreateInputBuffers
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Figure 4: The order of rule execution for rewriting.

Buffers are added as Component objects, and the executable
for this object can be generically synthesized based on the
number of input/output ports, and the semantics chosen.
We leave this detailed discussion to future papers, and con-
centrate instead on their insertion based on context. In Fig-
ure 5 the rule details are shown.

The rule can be read as follows: for each Component that
contains a RequiredInterface object, create a new Input-

Buffer:Component, with a RequiredInterface to accept
time triggers, that will become its input buffer. Create also
a new Trigger:Component with a ProvidedInterface that
will provide time triggered events, and connect that pro-
vided port to the required trigger in the new buffer. Various
objects are renamed for clarity in the final model.

We must also replace existing connections between two Com-

ponent objects by routing those connections between the
new InputBuffer:Compoment that we created above. A sim-
ilar rule (not shown for brevity) removes the existing Con-

nection and creates two new ones, such that the Input-

Buffer:Component maps the data through to the Component.

Other rules not shown insert the necessary configuration
items for each trigger component, as discussed in Section 3.
These include the frequency of execution (based on the WCET
of the component), and the time modulus at which to start
running.

Executing all of the rules gives the transformation result
shown in Figure 6.

5. ANALYSIS AND DISCUSSION
What role does Domain-Specific Modeling play in this appli-
cation of transformations? In fact, why is modeling useful as
a design concept here, rather than just using “old-fashioned”
programming to solve the problem? What is the particular
advantage that model transformations give to enable this
migration from event-based to time-based behaviors?
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Figure 5: GReAT rule to create buffer components for triggered input reading based on time-triggered events. Note that the
trigger scheduler is generated at the same step.
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Figure 6: (a) An original model, with only event-based triggering. (b) The result of transforming (a) with the rules discussed
in Section 4.2.

With response to the relation to DSM, the application re-
quires a domain-specific encoding of existing solution. The
language we designed places particular emphasis on event-
based behaviors, and the simple interfaces defined between
components of production and consumption enable the di-
rection of data to be well understood. Thus, such a lan-
guage is able to capture existing systems, and run them [23].
This is an important distinction: a design that concentrated
mainly on how the new system, with its new semantics,
should be represented would be unable to validate that an
existing model accurately represents the system as is.

So, why not use just clever programming techniques to mi-
grate systems to the new semantics? Certainly this approach
could be taken, but at the usual risk of requiring experts in
the system design to become experts in new semantics, and
new techniques for execution. Our approach permits exist-
ing system components to continue to work using their old
semantics. Thus, not one line of code needs to be changed in
the existing software to conform to the new time-triggered
behaviors.

Additionally, system experts know how their systems are
currently organized, and implemented. These experts can
take our language and represent the models both as they
are, and (perhaps) as they should be in the future. The
model transformation approach to creating the new buffers

is advantageous in that it reuses the investment in the en-
coding of the system into our DSML.

The model transformation approach (through GReAT) reuses
the metamodel-based specification of the DSM in a way that
language designers can discuss how types are used, and new
components are generated, with the system experts. We
again point out that this permits reuse of existing code-
bases. Approaches that do not use the strong typing and
constraint-based organization that DSMLs provide to the
end user run the risk that some corner cases may not be
covered, or that assumptions made by the migration soft-
ware are invalid according to the metamodel.

6. CONCLUSION AND FUTURE WORK
We have described how event-driven component-based sys-
tems can experience differences of execution based on subtle
timing changes. We presented the notion of inserting time-
triggered buffers as a way to reuse existing component code,
while increasing the timing accuracy of component execu-
tion. We showed how, with an existing DSML to model
such component-based systems, we can use model transfor-
mation techniques to enforce our time-triggered semantics
on an existing model. We provided a semantics for these
buffers, as well as the time triggers that control how long
buffers hold their data tokens.



Our future work includes various autogeneration of the buffer
code for various component-based middleware frameworks.
We can also become more sophisticated in the synthesis of
time trigger components, to attempt to consolidate the nec-
essary scheduling into a single component, rather than a dis-
tributed set of components, thus increasing the scalability of
the system without increasing the number of components in
the system linearly.
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