
A Tooling Environment for Quality-Driven Domain-Specific
Modelling

Janne Merilinna
VTT Technical Research Centre of Finland

P.O. Box 1000
02044 Espoo, Finland

janne.merilinna@vtt.fi

Tomi Räty
VTT Technical Research Centre of Finland

P.O. Box 1100
90571 Oulu, Finland

tomi.raty@vtt.fi

ABSTRACT
There is an increasing need for reducing costs and improving
quality in software development. One of the means to reduce costs
is to increase productivity by utilizing Domain-Specific
Modelling (DSM). Industry cases consistently show a 5-10 fold
increase in productivity when DSM is applied, in addition to a
decrease of errors in generated code. In order to improve quality
and especially desired quality attributes, e.g., performance and
reliability, quality requirements must be considered in every
development phase. Also a trace link from quality requirements
definitions to implementation and tests has to be maintained to
assure that the resulting application truly satisfies the
requirements. As Model-Driven Development is heavily
dependent on provided tool support, a tooling environment that
enables quality-driven DSM would be useful. Thus in this paper,
we study if MetaCase MetaEdit+ language workbench can be
utilized as such by developing a code generator and a domain-
specific modelling language for a laboratory case of stream-
oriented computing systems. We found that the chosen
environment is appropriate for an industrial application of quality-
driven DSM.

Keywords
Model-Driven Development, quality attributes, traceability

1. INTRODUCTION
Whereas development costs must be abated in software
development, at the same time customers demand products of ever
higher quality. Today, it is not enough for software applications to
satisfy demanding functional requirements. Rather, quality
attributes such as the performance and reliability of an application
also have to be planned, predicted, implemented and upon
delivery it must attain its satisfactory and planned level of quality.
Productivity must also be improved in software development to
decrease development costs while achieving the desired quality.

One of the means to increase productivity is to apply
modelling in software development. Model-Driven Development
(MDD) treats models as first class design entities in which
modelling is argued to provide a view to a complex problem and
its solutions, an approach which is less risky, cheaper to develop,
and easier to understand than the implementation of the actual
target system [1]. In particular, the application of Domain-
Specific Modelling (DSM) often results in a 5- to 10-fold increase
in productivity in industrial cases in comparison to traditional
practices [2].

To achieve products of desired quality, quality requirements
have to be taken into account in software design and ultimately in
an implementation. Much effort has been placed in developing
methods and techniques that take quality requirements into

account in software architecture development [3][4][5] and
respectively to evaluate software quality from architectural
models [6][7][8]. Whichever method is applied in architecture
development where quality is of the importance, the following
pieces must be employed for quality-driven development: 1)
precise definitions of quality requirements, 2) a list of alternative
design solutions to achieve such requirements, 3) linkage of the
requirements and the design fragments that promote certain
qualities, and 4) a method for utilizing such fragments in software
design [9]. The preceding pieces must be accompanied with
tracing of quality requirements. This is an activity of identifying
requirements in the following work products through the entire
development process [10]. The tracing improves all kinds of
impact analysis from the measurable acceptance criteria of each
quality requirement to the release of a software application [10].

To maintain a trace link all the way from quality
requirements through architecture models to implementation, a
link should not be broken at the model level. The models should
also be automatically transformed into implementation to avoid an
unnecessary phase of manually transforming models into source
code. Considering the preceding statement, the subsequent
requirements can be formulated for quality-driven DSM (QDSM):
1) quality requirements have to be explicitly expressed in models,
2) there must be a means to affect the quality attributes and their
impact on quality should be observable in models, 3) there should
be methods and techniques available to evaluate and test the
models and the result of the evaluation and measurements should
be presented in models to facilitate traceability of quality
requirements. Finally, 4) full code generation from models has to
be possible to enable testing of the models and to produce the
release version of a modelled application.

Success of QDSM extensively lies in the provided tool
support. Although there are tools to support quality requirements
descriptions in architecture models [11], support for quality-
driven development of architectures [12] and even support for
architecture evaluation [11], we have not found a mature industry-
ready integrated DSM tooling environment that demonstrates
QDSM. Thus in this paper, we study if MetaCase MetaEdit+,
which is a language workbench for developing code generators
and domain-specific modelling languages (DSMLs) with a
metamodelling approach, can be utilized as such an environment
by developing a demonstration.

With MetaEdit+, we have developed a DSML and Python
code generator which enables full code generation for simulating
stream-oriented computing systems. The tool environment and the
developed language provides: 1) a means to define quality
requirements and to connect the requirements to corresponding
model entities, 2) automated pattern recognition to provide a
design rationale from the quality perspective, 3) measurement
mechanisms for testing execution-time quality attributes [13] such

mailto:janne.merilinna@vtt.fi
mailto:tomi.raty@vtt.fi

as performance and reliability, 4) linkage between the
measurement mechanisms and quality requirements to explicitly
express if the quality requirements are satisfied, and 5) an
optimization assistant that guides the modeller in achieving the
desired qualities. We demonstrate the tool environment for
modelling a system that initially does not satisfy its quality
requirements, but with the help of the provided facilities of
QDSM, is refined to fulfil the requirements.

This paper is structured as follows. First, requirements for
QDSM including a state-of-the-art means for supporting quality-
driven software development are discussed in Section 2. Second, a
laboratory case including its modelling language and a code
generator are introduced in Section 3. After that, in Section 4 the
tool environment is demonstrated by transforming a model that
does not satisfy its quality requirements into a system that
completely satisfies the requirements. Discussion and conclusions
close the paper.

2. Requirements for Quality-Driven Domain-
Specific Modelling
The goal of QDSM is to entail in a single model the 1) quality
requirements, 2) what has been done to satisfy the requirements,
and 3) an evaluation and test results. By enabling this, tracing of
quality requirements to implementation including test results is
facilitated. Next, requirements and a state-of-the-art means for
QDSM are more precisely discussed.

2.1 Expressing Quality Requirements
Quality requirements must explicitly be identified, divided and
formalized to enable the designation of what parts of the
application models are responsible for them and what are the
means to validate the satisfaction of requirements. Considering
MDD, quality requirements have to be declared not only in
standalone requirements engineering tools but also in the
modelling environment. Quality requirements have to be
connectable to the modelling entities to maintain the explicit link
between the requirements and the corresponding model entities.

There are several languages for the modelling of functional
and quality requirements. These are evaluated in [14] and [15].
Also there are ontologies [16] and experimental visualization
techniques [17] as well as existing tool support for requirements
description, such as with IBM Rational RequisitePro and IBM
Rational DOORS. Despite the format, it is of importance that the
quality requirements should be defined in such way that their
achievement can be verified, i.e. requirements should be
measurable and they should include qualification requirements
and acceptance criteria [10]. Such a template for describing
quality requirements has been introduced by Ebert [10] for
documenting quality goals.

2.2 Means to Affect the Quality Attributes
The utilized modelling language should have mechanisms to
affect the quality attributes and there should be an enumeration of
design approaches which enable to have an impact on quality
attributes. It is also important that the impact of these mechanisms
on the quality attributes should be made explicit to bridge the
discrepancy between the quality requirements and the promoted
quality attributes [18].

Patterns are considered as one of the means to express and
affect the qualities of a software system. This argument is based
on the definition of patterns. Alexander [19] defines patterns as
“…a rule which establishes a relationship between context, a

system of forces which arises in that context, and a configuration
which allows these forces to resolve themselves in that context.”
Thus, patterns can also be seen as a solution for balancing forces
related to qualities in a certain context. Currently, there is no
extensive list of qualities that patterns promote. Nevertheless,
some preliminary categorizations can be found from [3]. There are
techniques, such as the goal-driven model transformation
technique, that strives to provide a bridge between user
requirements and design models [20] in which utilized patterns
are based on scrutinizing the intent of patterns and dividing their
intents into functional and quality parts. Then the most
appropriate pattern is chosen for the situation at hand [21].

In addition to explicitly expressing the design rationale from
the quality perspective, support for the modeller for the QDSM is
recommended. Such support should include a model evaluation
assistant that generates hints to optimize the system according to
the quality requirements. Such hints can be based on e.g.,
architectural tactics [9] and patterns that promote the required
quality requirements [3][12].

2.3 Evaluation and Testing
Models ultimately need to be evaluated and tested. There are a
few software architecture evaluation methods that focus on certain
quality attributes. The AEM method [7] concentrates on
adaptability evaluation, whereas the IEE method [8] focuses on
integrability and extensibility. There are also methods such as
ATAM [6] that consider a set of quality attributes in the
evaluation. While most of the evaluation methods are scenario-
based or prediction methods, it is argued that quality can also be
evaluated by inspecting what patterns are applied in models [12].

After evaluation, the models have to be tested by executing
them to verify if the evaluation is tenable. Testing can only be
performed for execution-time qualities [13] based on sheer
definition. The generated implementation has to be monitored and
measured from those parts in which quality requirements are
connected to find out whether the execution-time quality
requirements are satisfied. To support QDSM, the results of the
tests need to be reported back to models. This enables the
modeller to see measured values of quality attributes, and whether
the quality requirements have been satisfied.

3. Domain-Specific Modelling Language for
M-Net Laboratory Case
To demonstrate QDSM in MetaCase MetaEdit+, a laboratory case
is utilized. The laboratory case is a stream-oriented computing
system. For the laboratory case M-Net modelling language
including a complete Python code generator was developed which
enables complete code generation from domain-specific models. It
must be noticed that the utilized laboratory case is only a
laboratorial example of real stream-oriented computing system
and is utilized only to simulate such a system.

3.1 The Domain
Stream-oriented computing systems are characterized by parallel
computing components that process potentially infinite sequences
of data [22]. The purpose of such a system is to read data from a
data source, manipulate the data and store or forward the
computed data. Briefly, the system forms a pipes- and filters-
based system which enables parallel processing of data. Similar
systems are common, e.g., in video and image processing.

The domain of the laboratory case includes the following
concepts (concepts in italic). Filters manipulate the input data and

forward the filtered data to the next entity. The manipulation
consumes time which is adjustable by the modeller. Computation
can fail with a probability that the modeller can adjust to simulate
e.g., insufficient resources during computation, program errors, or
corrupted data units (DUs). If the computation fails, the modeller-
definable penalty delay is endured. Database represents input and
output pipes for the filter chain. Switch enables forwarding the
data according to predefined principles. Comparator enables
comparing the input data and based on predefined judgement
policies, forward the input data to the next entities. Pipes connect
various entities together.

The most relevant quality attributes are performance and
reliability. Performance is the average throughput of DUs per
second. Reliability is the average probability of computing and
forwarding the data correctly. Reliability does have a direct
impact on performance as when a filter fails to compute a DU, it
suffers a penalty delay which has an impact on its performance.

Figure 1 represents an example of a stream-oriented
computing system which consists of two databases and filters.
The purpose of the application is to read a stream of colour
bitmaps (from ImageStream) and transform the input into black
and white (by B&W_converter) JPG images (by JPG_converter)
and store the stream to a hard disc (to OutputStream).

Figure 1. Initial application model.

3.2 Modelling Language and Code Generators
for M-Net
For the laboratory case, an M-Net modelling language was
developed with MetaEdit+. In addition to the basic metamodel
and model manipulation mechanisms, MetaEdit+ also provides
the possibility to alter the notation of the model entities during
runtime, i.e. the notation of model entities may alter depending
on, e.g., properties of the entities and/or relationships between the
entities. This feature becomes useful when one wants to
implement runtime model validation engines. Rules for altering
the notation are defined with the same language as code
generators and therefore the rules can be complex as necessary.

MetaEdit+ provides a domain-specific language called
MERL for developing generators. Because generators have to be
developed by self, the generated code will always be as desired
which might not be the case with pre-made generators provided
by tool vendors. This enables complete generation in the sense
that the generated output is not required to be modified
afterwards. MetaEdit+ also provides an Application Programming
Interface (API) which is implemented as a Web Service interface
with Simple Object Access Protocol (SOAP).

3.2.1 M-Net Modelling Language
The developed metamodel for M-Net includes all concepts
existing in the domain. Filters, databases, switches and
comparators are the main building blocks which are connectable
with pipes. M-Net also includes additional concepts that promote
QDSM. The quality requirements are described structurally in a
requirements model entity which can be connected to the model to
cover parts that are responsible for satisfying the requirement. The
template for describing quality requirements is adapted from [10].
M-Net also includes measurement mechanisms that enable
monitoring throughput and reliability of the modelled application.
The measurement mechanisms are connected to pipes in the
model, i.e. similar to using probes in electrical engineering, to
measure parts of the model located between the probes. The
optimization assistant model entity masks parts of the model and
generates optimization hints for the modeller based on quality
requirements.
3.2.2 Support for Quality-Driven Domain-Specific
Modelling
The developed metamodel includes a pattern recognition
mechanism which evaluates the model at modelling time and
automatically recognizes if the modeller has successfully
modelled any known predefined pattern that promotes certain
quality attributes. To render the promoted quality attributes
explicitly, entities in the pattern are automatically tagged by the
pattern recognition feature with a text that informs what quality
attributes the pattern promotes (see text on top of filters in Figure
2). The modeller can instantly experience if she has managed to
model an application that manifests any patterns that promote
certain quality attributes.

Requirements in M-Net language utilize MetaEdit+’s
notation altering mechanisms to automatically inform the
modeller if the requirement is satisfied (see tags on the right hand
side of requirement entities located bottom left in Figure 1
indicating that the requirements are not satisfied and in Figure 2
where the requirements are satisfied thus there are no such tags).
The automation is enabled if requirement entities are connected to
corresponding measurement mechanisms that enable measuring
throughput and reliability. Values for measurement mechanisms
are reported to model during application runtime if an application
is generated in debug mode (see details in Section 3.2.3.1).

The developed language also includes a model optimization
assistant that can be utilized for guiding the optimization of the
model according to the quality requirements (see two boxes that
contain the filters in Figure 1). The optimization assistant
considers only entities that it contains. This enables optimizing
only the required parts of the model. The model optimization
assistant utilizes a generator that traverses the entities it contains
and generates optimization report on that basis.
3.2.3 The Generators
Two generators that transform the models to text were developed:
1) the Python source code generator and 2) the optimization report
generator. The Python code generator is utilized for transforming
the model into Python source code which is not required to be
modified after code generation. The optimization report generator
is utilized to generate textual hints for the modeller on how to
optimize parts of the system according to the desired quality
requirements.

3.2.3.1 Python Source Code Generator
Filters, comparators, switches and databases are generated as
threads thus enabling parallel processing of data. The developed
M-Net Python code generator also provides the option to produce
additional code for the generated application that accesses
MetaEdit+’s API to animate the entities in the models when the
application is executed. When this option is selected, the
preceding model entities are highlighted in models when they are
active during the execution. This enables the modeller to see how
the system functions in real-time and also at the model level.

Measurement mechanisms are generated with the application
code only when the modeller chooses to generate a debug version
of the application. The value for average throughput, i.e.
performance, is disclosed in the execution of the application by
counting DUs passing through parts of the application that the
measurements mechanism monitor and by dividing the count by
the time that elapsed to pass the DUs forward. The value for
average reliability is calculated by counting the ratio between
correctly computed DUs and corrupted DUs. Counted values are
reported at real-time to the corresponding measurement
mechanisms of the model by utilizing MetaEdit+’s API.
3.2.3.2 Optimization Report Generator
The optimization report generator finds all optimization assistants
in the currently active diagram and generates optimization hints
textually according to the desired quality requirements by
considering the model entities it contains. The rules for such
optimizations can be very complex in real-life domains but in this
simple system the rules remain straightforward and simplified. An
example of a trigger for performance optimization can be
formulated in natural language as follows: “Calculate average
throughput of this entity. Find all entities forwarding data to this
entity and compute the sum of the throughput. If the throughput
sum is more than the throughput of this entity, performance
optimization for this entity should be applied.” If a trigger for
optimization is fired, a textual hint is generated that guides the
modeller in refining the application design. An example hint for
performance optimization can be as follows: “B&W_converter
can be optimized for "Performance" by: duplicating this element
and adding switches before and after these entities. See pattern:
performance optimization by duplication.” As presented, a hint
always contains a link to a domain-specific pattern that promotes
the desired quality attributes. The pattern catalogue is included
with the modelling language as pre-made example models. This
enables the modeller to discover what solutions are behind the
optimization and provides additional information to the modeller
for him/her to make the ultimate decision whether to apply the
suggested optimization. The architectural knowledge is manually
coded in the optimization hint generator.

4. Model Optimization According to Desired
Qualities
QDSM is demonstrated by modelling an application that satisfies
its functional requirements but not quality requirements. The first
attempt to model an application is then transformed into a model
that satisfies both the functional and quality requirements with the
aid of the provided techniques for QDSM. The purpose of the
example application is to convert a stream of bitmap images to
black and white JPG images. The average performance
requirement is >0.5 DUs per second. The average reliability
requirement, i.e. correctness of the output, is >90%. In Figure 1,
the first attempt to model such an application is presented.

4.1 First Iteration
ImageStream in Figure 1 contains DUs, i.e. colour bitmaps, which
are required to be computed. The time to read data from
ImageStream is 0.1s which is defined by the modeller to mimic
real-life filters. The B&W_converter reads DUs into its buffer and
immediately after receiving the first DU it starts computing the
data. Time to compute the data of the B&W_converter is defined
by the modeller to be 2s with 100% reliability. After computing
each DU one at a time it forwards the DUs to a JPG_converter
which stores the DUs into its buffer. The JPG_converter
consumes 1s for each DU with an average of 50% reliability. If
the JPG_converter fails to compute the DU correctly, it is defined
by the modeller to suffer a penalty of 1s. It should be noted here
that the values are artificial and are only for simulation purposes.

Performance characteristics of the initial version of the
application are as follows. The throughput of the system can be
calculated by considering the slowest part of the system. The
throughput of the B&W_converter is 0.5DU/s as it takes 2s to
compute each DU. Throughput of the JPG_converter can be
calculated as follows. P(JPG_converter) = 1/(T(JPG_converter) +
T(JPG_converter_penalty)*R(JPG_converter)) where P is
throughput, T is time and R is reliability. Thus P(JPG_converter)
is 1/(1s+0.5*1s) = 2/3DU/s ~= 0.66DU/s. Therefore the average
throughput of the system is 0.5DU/s after the first DU is
computed. Reliability of the system can be calculated as follows.
R(system)=R(B&W_converter)*R(JPG_converter), where R is
reliability. If R(B&W_converter) is 1 and R(JPG_converter) is 0.5
then R(system) is 0.5, i.e. 50% thus the system fails to meet its
reliability requirement.

The performance characteristics can also be measured by
connecting the requirements and measurement mechanisms to the
model and by generating a debug version of the modelled
application. The requirements and measurement mechanisms are
connected to the application model to cover the whole
computation part of the system such as Figure 1 illustrates. By
doing so the modeller can see which requirements are meant to be
satisfied and which entities are responsible for the requirements.

After code generation, the generated system can be executed.
During run-time the system reports measurements back to the
model and the requirements satisfaction indicators explicitly
express if the requirements are satisfied. In this case, the system
fails to meet both quality requirements (see tags on the right side
of both requirement entities) as the average throughput is
~0.49DU/s and reliability 47%. The test was run by computing
100 DUs.
4.2 Second Iteration
The first attempt fails to satisfy the quality requirements resulting
in the refinement of the application. The B&W_converter is the
slowest part of the system and it has to be optimized for
performance to increase the throughput of the application.
Optimization assistants guide the optimization.

The optimization assistant enables the generation of
optimization hints for the filters (see Section 3.2.3.2). Applying
the hinted performance optimization pattern for the
B&W_converter doubles the throughput of the optimized filter in
an optimal case by enabling parallel processing of the data. The
idea of this pattern is to forward the first input DU to the first
filter which immediately starts processing the DU. The second
DU is then forwarded to the second filter which starts computing
the DU parallel to the first filter. In this way the filters receive
every other DU and therefore halve the amount of DUs to be

handled per filter. Thus, when the un-optimized B&W_converter
produces 0.5DU/s, the throughput of the optimized filter
combination is 1DU/s with 100% reliability. Now, the average
throughput of the application is 0.66DU/s where the
JPG_converter is the slowest part. The throughput requirement
should be now satisfied.

Reliability of the application is still unsatisfactory therefore
the JPG_converter has to be optimized for reliability. The
optimization assistant produces the following hint for the
JPG_converter: “The JPG_converter can be optimized for
"Reliability" by: duplicating this element and inputting the same
data to both, and adding a comparator with the option "Error
filter" after these elements. See pattern: reliability optimization by
duplication.” The idea of this pattern is to compute the same data
twice and forward the result to a comparator that forwards the
corrupted DU only if both filters produce erroneous data.
Otherwise the comparator forwards the first successfully
computed DU. By applying this pattern the average reliability of
the optimized filter increases, i.e. in this case reliability is
increased to 75%. Applying this pattern twice results in an
average of ~94% reliability. Figure 2 represents the optimized
application model.

Figure 2. Application model that satisfies the requirements.
In Figure 2, the application model that satisfies the both

quality requirements is modelled. As can be seen, the developed
pattern recognition engine automatically identifies the utilized
patterns by tagging the corresponding filters with the promoted
quality attributes. On top of the B&W_converters there is a
<<Performance>> tag which ensures that these two filters
participate in a pattern that promotes performance whereas in the
JPG_converters there is <<Reliability>> tag. The tags should help
the modeller to establish a design rationale for the application.

The calculated performance characteristics can be verified by
generating an implementation from the model in debug mode and
by executing the application. As requirements entities in Figure 2
does not have the tags on the right side, the application now
satisfies the requirements. The average throughput measured by
computing 100DUs is 0.58DU/s where reliability is 94%.

5. Discussion
We demonstrated QDSM with a laboratory-based case study of a
stream-oriented computing system. For the system, an M-Net
DSML and a code generator that enables full Python code
generation from models was developed with MetaCase
MetaEdit+. The most important means to support QDSM are
based on 1) a quality requirements definition in models, 2) an

automated model evaluation with pattern recognition, and 3)
testing and reporting mechanisms.

Whereas a quality requirements definition technique is
independent of the domain, model evaluation and testing can be
considered domain-specific. In different domains, testing of
execution-time quality requirements are largely dependent on
what is measured and how. In this manner reusing the presented
mechanisms between different domains is not possible. However,
the concept remains. It is surprisingly useful to see the test results
of an executed application also at the model-level. It is also useful
to explicitly discover what quality requirements are satisfied. This
enables to easily find out what requirements are satisfied and what
parts of the model do not satisfy their quality requirements.

Design-time model evaluation for execution-time qualities
was implemented in the laboratory case by identifying what
patterns are utilized in the application model. As shown via the
laboratory case, tentative design rationale can be obtained by
utilizing pattern recognition. The evaluation could, however, also
have included prediction of the performance characteristics as was
done manually in the examples to provide more explicit values for
quality attributes. Although evolution-time qualities such as
modifiability and extensibility were not discussed in this paper,
pattern recognition could also be utilized to provide some
knowledge about the promoted evolution-time qualities. However,
automation for quality evaluation except in the case of pattern
recognition, which can provide tentative design rationale about
the promoted qualities, might be a challenge for evolution-time
qualities since scenario-based evaluation methods still need neural
processing.

As discussed, it seems that pattern recognition can only
provide tentative design rationale from quality perspective. Thus,
it is questionable whether pattern recognition is sufficient for
identifying the design rationale even in such a restricted area as
DSM. In addition, different patterns promote different qualities
and the utilized patterns might be overlapping in the application
models. Therefore, finding out the design rationale by applying
pattern recognition is not straightforward. In addition, sometimes
it is not patterns that promote different qualities but more like
functional blocks that are responsible for affecting a certain
quality attribute. For instance, decreasing image resolution in
image processing application certainly increases further image
manipulation performance compared to utilizing high-resolution
images. Decreasing image resolution might be a reason for
optimizing the performance but sometimes the only reason for this
is to satisfy a certain functional requirement.

As shown, by only identifying the utilized patterns it is not
possible to discover the performance characteristics. Only a
tentative design rationale can be obtained which, however, is still
useful. Therefore to overcome the limitations with pattern
recognition, next we will concentrate on manual approaches in
describing design rationale by connecting requirements
engineering side, where different techniques to affect the quality
and their interrelated dependencies and impact to qualities are
described, to the application development side. We already have
developed a technique with tool support to provide measured
performance characteristics from application models to
requirements engineering side in order to ease the quality analysis
in requirements engineering [23]. Next, we will connect the
different design alternatives identified in requirements
engineering to application development in a way that the impact
of the utilized design alternatives to quality is automatically
shown in application models. Thus, we rather strive for semi-

automated approach than automated as it seems that humans
cannot really be replaced by computers, yet.
6. Conclusion
There is a constant need for decreasing development costs in
software development while at the same time increasing the
quality of software applications. Increasing productivity can be
achieved by utilizing MDD and especially DSM in software
development. Nevertheless to increase the desired qualities of
applications requires that not only the quality requirements must
be considered at every development phase but that a continuous
link from quality requirements to application design, testing and
release must also be maintained. Maintaining such a link is crucial
to reveal whether all the requirements set for software
applications have been satisfied.

As the success of MDD extensively lies in the provided tool
support, in this paper we demonstrated that there currently are
mature integrated tooling environments, such as MetaCase
MetaEdit+, that can be utilized as a platform for quality-driven
DSM where the quality is traceable from quality requirements to
application release. We demonstrated the tooling environment
with a laboratory-conducted case study of a stream-oriented
computing system.

7. ACKNOWLEDGMENTS
The work presented here has been developed within the MoSiS
project ITEA 2 – ip06035. MoSiS is a project within the ITEA 2 –
Eureka framework.

8. REFERENCES
[1] Selic, B. The Pragmatics of Model-Driven Development.

IEEE Computer Society. IEEE Software, 2003, pp. 19-25.
[2] Kelly, S. and Tolvanen, J-P, Domain-Specific Modeling –

Enabling full code generation, John Wiley & Sons, New
Jersey, 2008, 427p., ISBN: 978-0-470-03666-2.

[3] Niemelä, E., Kalaoja, J. and Lago, P. 2005. Toward an
architectural knowledge base for wireless service
engineering, IEEE Transactions on Software Engineering,
Vol. 31, No. 5, pp. 361-379. ISSN 0098-5589.

[4] Chung, L., Gross, D. and Yu, E., Architectural design to
meet stakeholder requirements, The 1st Working IFIP
Conference on Software Architecture, Kluwer Academic
Publishers, San Antonio, TX, USA, 1999.

[5] Chung, L., Nixon, B.A., Yu, E. and Mylopoulus, J., Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishers, Boston, 2000.

[6] Kazman, R., Klein, M. and Clements, P., ATAM: Method for
architecture evaluation, Carnegie Mellon University,
Software Engineering Institute, Tech. Rep. CMU/SEI-2000-
TR-004 ESC-TR-2000-004, 2000, 83 p.

[7] Tarvainen, P., Adaptability Evaluation at Software
Architecture Level. The Open Software Engineering Journal,
vol. 2, Bentham Science Publishers Ltd., 2008, pp. 1-30,
ISSN: 1874-107X,
http://www.bentham.org/open/tosej/openaccess2.htm

[8] Henttonen, K, Matinlassi, M., Niemelä, E., Kanstren, T.
Integrability and Extensibility Evaluation from Software
Architecture Models – A Case Study, 2007, Open Software
Engineering. Vol. 1 No. 1, pp.1-20.

[9] Bachmann, F., Bass, L., Klein, M., Moving from quality
attribute requirements to architectural decisions, In: Second
International Software Requirements to Architectures,
STRAW’03, 2003, Portland, USA.

[10] Ebert, C., Putting requirement management into praxis:
dealing with nonfunctional requirements, Information &
Software Technology 40(3): 175-185, 1998.

[11] Evesti, A. 2007 Quality-oriented software architecture
development, VTT Publications 636, VTT, Espoo, 2007,
79p., URL:
http://www.vtt.fi/inf/pdf/publications/2007/P636.pdf

[12] Merilinna, J., Niemelä, E., A stylebase as a tool for
modelling of quality-driven software architecture, In
Proceedings of the Estonian Academy of Sciences
Engineering. Special issue on Programming Languages and
Software Tools., vol. 11, No. 4, 2005, pp. 296–312.

[13] Matinlassi, M. and Niemelä, E., The Impact of
Maintainability on Component-based Software Systems. In:
29th Euromicro Conference (EUROMICRO’03), Turkey,
2003, pp. 25-32.

[14] Carimo, R. A., Evaluation of UML Profile for Quality of
Service from the User Perspective, Master’s Thesis, Software
Engineering, Thesis no: MSE-2007-03, August 2006.

[15] Etxeberria, L., Sagardui, G., Belategi, L., Modelling
Variation in Quality Attributes, First International Workshop
on Variability Modelling of Software-intensive Systems
Limerick, Ireland — January 16–18, 2007.

[16] Savolainen, P., Niemelä, E., Savola, R., A Taxonomy of
Information Security for Service-Centric Systems,
Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications, 2007.

[17] Ernst N., Yu Y., Mylopoulos J., Visualizing non-functional
requirements, In First International Workshop on
Requirements Engineering Visualization (REV'06),
Minneapolis, Minnesota, USA, 2006.

[18] Merilinna, J. and Räty, T., Bridging the Gap between the
Quality Requirements and Implementation, The Fourth
International Conference on Software Engineering Advances
(ICSEA 2009), September 20-25, 2009 - Porto, Portugal, 6p.

[19] Alexander, C., The Timeless Way of Building, Oxford
University Press, 1979.

[20] Lee, J. and Xue, N.L, Analyzing user requirements by use
cases: A goal-driven approach. IEEE Software, 16 (4):92-
101, July/August 1999.

[21] Fanjiang, Y-Y. and Kuo, J.Y., A Pattern-based Model
Transformation Approach to Enhance Design Quality, In
Proceedings of the 9th Joint Conference on Information
Sciences (JCIS), 2006.

[22] StreamIt, Research overview page, URL:
http://www.cag.lcs.mit.edu/streamit/shtml/research.shtml
[Visited at 3.6.2009].

[23] Yrjönen, A. and Merilinna, J., Extending the NFR
Framework with Measurable Non-Functional Requirements,
2nd International Workshop on Non-functional System
Properties in Domain Specific Modeling Languages, Denver,
Colorado, USA, Oct 4-9, 2009.

http://www.bentham.org/open/tosej/openaccess2.htm
http://www.vtt.fi/inf/pdf/publications/2007/P636.pdf
http://www.cag.lcs.mit.edu/streamit/shtml/research.shtml

