
Using Model-Based Testing for Testing Application
Models in the Context of Domain-Specific Modelling

Janne Merilinna
VTT Technical Research Centre of Finland

P.O. Box 1000,
02044 Espoo, Finland
+358 442 788 501

janne.merilinna@vtt.fi

Olli-Pekka Puolitaival
VTT Technical Research Centre of Finland

P.O. Box 1100,
90571 Oulu, Finland
+358 400 606 293

olli-pekka.puolitaival@vtt.fi

ABSTRACT
Domain-Specific Modelling (DSM) has evidently increased
productivity and quality in software development. Although
productivity and quality gains are remarkable, the modelled
applications still need to be tested prior to release. Although
traditional testing approaches can be applied also in the context of
DSM for testing generated applications, maintaining a
comprehensive test suite for all developed applications is tedious.
In this paper, the feasibility of utilizing Model-Based Testing
(MBT) to generate a test suite for application models is studied.
The MBT is seen as a prominent approach for automatically
generating comprehensive test cases from models describing
externally visible behaviour of a system under testing (SUT). We
study the feasibility by developing a domain-specific modelling
language and a code generator for a coffee machine laboratorial
case and apply MBT to generate a test suite for the application
models. The gathered experiences indicate that there are no
technical obstacles but the feasibility of the testing approach in
large-scale models and languages is still questionable.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Experimentation and Verification

Keywords
Model-driven development; Verification; Test generation

1. INTRODUCTION
Quite often Domain-Specific Languages (DSL) and Domain-
Specific Modelling Languages (DSML) are mentioned to attain 5-
10 fold productivity gains compared to traditional software
development practices [1]. The productivity increase is primarily
caused by the Domain-Specific Modelling (DSM) basic
architecture, i.e. DSML, a code generator and a domain-specific
software framework. It is also often argued that utilization of
DSM increases software quality by decreasing programs errors
among other things [1].

While well-defined DSML promotes modelling of correctly
defined applications and in this way decreases program errors, the
ultimate reason for productivity gains and the decrease of program
errors is achieved via automation. Code generators are responsible
for systematically transforming application models to source code
on the target platform. While code generators systematically
transform application models to source code, they also
systematically produce program errors. The difference between

code generation and manually transforming software specification
to implementation is when program errors produced in code
generation look the same and there are many of the same kinds of
errors, manually transforming software specifications to
implementation results in various kinds of errors.

From a testing point of view, the difference is that it is
always easier to pinpoint an error which emerges frequently and
systematically compared to errors emerging in various parts and
in various shapes in the source code. This has a direct impact on
source code quality. While applications produced without code
generation need to be corrected one at a time, all errors found and
corrected in code generators contributes to the overall quality of
the whole product family.

Although it should be easier to find errors produced by code
generators, locating all errors in code generators is not a trivial
process. It is highly unlikely that all paths in code generators are
traversed every time the source code is generated therefore errors
do not reveal themselves easily. Similar to traditional application
testing, improving the level of quality of code generators requires
extensive test suite. In the case of code generators the test suite is
a set of application models similar to compilers in traditional
software development where source code is an input to the
compiler. Thus, to improve the quality of code generators requires
an extensive set of application models. In [1], iterative and
incremental DSM, the development approach is argued to produce
DSMLs with code generators of good enough quality. In our
earlier work [2] it was argued that a more systematic approach is
required as the iterative and incremental development approach
may not produce an extensive enough test suite for code
generators. Therefore an approach to produce an extensive set of
application models as a test suite is required.

In [2], we presented a concept for testing the whole DSM
basic architecture. The approach consists of two phases: 1)
generating application models from a metamodel with an
approach of Model-Based Testing (MBT) [3], and 2) generating a
test suite for generated application models with MBT. In this
paper, we further elaborate the second phase and demonstrate the
approach in a laboratorial case study. We gather the experiences
in testing application models with MBT in a laboratory case for a
coffee machine for which a DSML and Python source code
generator were developed.

This paper is structured as follows. First, the principles of
DSM and MBT are discussed to set a background and baseline for
our work. Second, utilizing MBT as a means for testing
application models is presented. Third, the application testing
approach is demonstrated in a laboratory case involving a coffee
machine. Discussion and conclusions close the paper.

mailto:janne.merilinna@vtt.fi
mailto:olli-pekka.puolitaival@vtt.fi

2. BACKGROUND
To get an understanding of the DSM testing approach under
scrutiny, the background of DSM basic architecture and MBT
needs to be known. Next, in this section, the background of DSM
and MBT are discussed.

2.1 Domain-Specific Modelling
Increasing productivity in software development is largely
dependent on software reuse and automation. Often the work
required to increase productivity follows the same pattern as
Roberts et al. present in [4] when reusability is considered. First, a
couple of example applications are developed according to
traditional means. The applications of same product family share a
set of components that can be reused in the product family. When
the amount of reusable components increases, white-box and
black-box frameworks begin to emerge. While the frameworks
mature, the application development increasingly shifts from low-
level programming to utilization of the developed framework.
Ultimately, the development of applications may be about
choosing different alternative features from a pre-defined feature
tree. In the case where there is a considerable number of variation
and neither feature-trees nor wizards can be utilized, domain-
specific languages (DSL) and DSMLs start to emerge.

A DSM solution consists of three main parts, often described
as DSM basic architecture [1]:

A metamodel defines the syntax of a modelling
language. In the case of DSMLs, a metamodel mirrors
the problem-space by providing modelling elements
found directly from the problem domain. In practice, the
metamodel also includes elements and restrictions of the
target platform.

Code generators define the transformation rules on how
to transform application models that are based on a
metamodel to a source code representation.

The software framework abstracts low-level details of
the target platform and functions as a platform on which
a code generator generates source code. Sometimes no
framework is required and the generated code directly
accesses the services and functions of the target
platform.

Actual applications are modelled based on the model
elements and constraints of the developed metamodel. The models
can be transformed into source code or any given representation
with generators.

2.2 Model-Based Testing
The MBT is a black-box software testing method in which test
cases are automatically generated from a model describing the
behaviour of a system under testing (SUT) [3]. The MBT consists
of three phases, i.e. modelling, test generation and test execution.

In the modelling phase, behaviour of the SUT is modelled
according to specifications of the SUT where functional
requirements are the primary source for developing the MBT
models [3]. The MBT being a black-box testing method, the MBT
models are required to embody the externally visible behaviour of
the SUT, i.e. input and output data of the SUT. The input data is
used for executing the tests and output data for verifying the tests.
The notation of the models can be graphical, textual or mixed
where the notation varies from general purpose to domain-specific
[5].

Test generation is based on model traversal where several
test design algorithms are utilized for generating test cases from
the model. For offline testing [6], i.e. generating a test suite first
and then executing it, there are two categories of test design
algorithms i.e. requirement-based criteria and coverage criteria
[7]. Requirement-based criteria test design algorithms are based
on model traversal algorithms that traverse the MBT models until
all required parts of the model are visited. Coverage criteria test
design algorithms aim to traverse the MBT models until a
required coverage criteria is fulfilled. For online testing [6]
walking test design algorithms are utilized [7]. In the walking test
design algorithm approach, each subsequent test step is decided
after executing a preceding test step. It must be noticed, that the
coverage of the test suite can only be as extensive as the model
describes, i.e. parts of the program behaviour not described in
models are not tested.

In the test execution phase, the generated test suite is
executed against the SUT. As the software implementation is
developed from the same specification as the MBT models, two
opinions regarding the behaviour exist. The difference between
these opinions is seen as errors during test execution.

The main benefits of the MBT are the facilitation of test suite
maintenance and the coverage of the test suites. The facilitation of
the test suite is based on the supposition that only MBT models
are required to be kept up-to-date when the SUT evolves and the
test suite can always be updated via test generation. The increased
coverage is based on sophisticated test design algorithms that are
the result of long time research. [3]

3. TERMS OF UTILIZING MBT FOR
TESTING APPLICATIONS

Testing of applications in the context of DSM can mean the
following aspects when the utilized metamodel restricts modelling
of incorrect application models:

Does the modelled application satisfy its functional and
quality requirements, i.e. is the application modelled
correctly and according to specifications?

Does the correctly modelled application model
transform to a source code representation correctly?

Does the correctly-modelled generated application
function as modelled when executed?

In this paper, we concentrate on the two latter aspects. Thus
we assume that the application models are always correctly
defined and the reason for failure is always caused by either:

1. failure in code generation alone,

2. platform failure alone, or

3. a combination of the preceding.

Considering 1), we do not strive for white-box testing and we
do not consider source code inspection but rather strive for black-
box testing. Thus in this paper we solely concentrate on testing
how the generated code integrated with the software platform
function as a combination, i.e. black-box testing.

Such as presented in Section 2.2 the failure of a test is caused
by an incorrectly implemented application or MBT model.
Considering DSM, the application model is always correct
(according to our terms) therefore the failure can be caused by F1)

failure in code generation, F2) platform, F3) a combination of the
preceding or F4) incorrectly defined MBT models.

If we apply MBT out of its initial purpose and generate the
test suite directly from a formal specification (see illustration in
Figure 1, see also [2]), i.e. an application model from which
source code is also generated, we no longer compare during test
execution whether the modelled application is performing
according to the specifications as we take the application model as
a fact. This in no way contradicts our initial terms.

Figure 1. Using MBT for testing application models.
Now, as the same model is used as an input for code

generation and test generation, we can rule out failure in F4 thus
only F1-3 remain. F2 is also ruled out from discussion in this
paper as it can be done using traditional testing approaches.
Therefore a failure in code generation is the only thing remaining
when the following terms are true:

The application model is defined according to software
specifications,

The application model is correctly defined considering
the utilized metamodel, and

The test suite generated from application models is
always correct.

4. A COFFEE MACHINE AS A
LABORATORY CASE

To gather experiences and the technical limitations of utilizing the
MBT in testing code generators in the context of DSM, a
laboratory case example involving a coffee machine is utilized.
The purpose of such machines is to take coffee orders as an input
and deliver coffee as an output. There are also different kinds of
machines where some are equipped with displays of various types
and some machines require a different amount of money as an
input whereas some make coffee for free. Nowadays there are also
various blends of coffees available in addition to the basic
combination of coffee and cream. Some of the most special
coffees even have a very delicate preparation procedure thus
producing a cup of coffee might be more than just the simplest
procedure.

4.1 Tools for the Laboratory Case
As a language workbench for developing DSMLs, code
generators and application models, MetaCase MetaEdit+1 was

1 www.metacase.com

chosen. MetaEdit+ includes tools to define DSMLs with
GOPPRR (Graph-Object-Property-Port-Role-Relationship)
metamodelling language and generators with MetaEdit+
Reporting Language (MERL) in addition to providing basic
modelling facilities.

For the MBT of application models, there are two different
approaches:

develop test design algorithms within MetaEdit+
environment and generate a test suite by applying the
developed generator, or

take advantage of existing MBT tools.

The first approach requires implementing test design
algorithms with MERL. The second approach requires exporting
application models developed with MetaEdit+ to an external MBT
tool. Exporting an application model requires implementing a
model transformation specific to a metamodel with MERL. We
chose the latter approach as developing a set of test design
algorithms was anticipated as non-trivial and troublesome and we
have had good experiences with MBT tools such as Conformiq
Qtronic2 (CQ), which was also chosen based on our evaluation
presented in [7].

CQ expects the Qtronic Modelling Language (QML) as an
input. QML is a variant of the Unified Modeling Language
(UML) State Machine Diagram where as an action language a
variant of Java is utilized. The action language is utilized for
describing expected input and output values. From QML, CQ is
able to generate test cases by applying a few coverage algorithms.
CQ provides two pre-developed test scripters, which are used for
generating Testing and Test Control Notation version 3 (TTCN-3)
and Hypertext Markup Language (HTML). The TTCN-3 scripter
produces a test suite described in TTCN-3 which can be used in
test execution platforms. HTML scripter produces a UML
Sequence Diagram as an illustration of the test cases. In addition,
CQ provides a plug-in interface for the development of custom
scripters.

4.2 Coffee Machine Modelling Language
For the coffee machine in question, Coffee Machine Modelling
Language (CMML) was implemented with MetaEdit+. The
CMML consists of two sub-languages where the first (see left
hand side of Figure 2) is a User Interface Modelling Language
(UIML) and the second language is a Coffee Making Process
Modelling Language (CMPML) (see right hand side of Figure 2).
The UIML enables testers to model the users interface (UI) of the
coffee machine where the following aspects can be modelled:
available sorts of coffee, the cost of a cup of coffee of a chosen
sort, and textual information which is displayed to the user. The
CMPML includes concepts for modelling e.g., heating a certain
amount of water that is poured through a certain amount and
blend of coffee to a cup of various sizes. Milk, cream, sugar etc.
can be added when desired and foaming can be applied when
required.

2 www.conformiq.com

http://www.metacase.com
http://www.conformiq.com

Figure 2. Simple coffee machine modelled with Coffee
Machine Modelling Language.

For CMML, a Python source code generator was developed
which produces complete code from models in the sense that there
is no need to modify the generated code. The generated code
enables simulation of the coffee machine behaviour in a desktop
computer environment. The code generator is also able to produce
a debug version of the modelled application in addition a stand-
alone version. The debug version utilizes Simple Object Access
Protocol (SOAP) Application Programming Interface (API) of
MetaEdit+ to report a change of a state during the application
execution back to the model where the application was generated.
The change of a state is shown as a red rectangle highlighting the
currently active state in the application models. This feature
enables graphical debugging of the application.

4.3 Testing the Coffee Machine by Using
MBT

The generated code follows an architectural division of UI,
control logic (CL) and cooking machine interface (CMI). The UI
is responsible for taking coffee orders and money as an input, and
displaying information to the customer. The UI provides orders
for CL to start making the ordered coffee. The CL is responsible
for controlling the preparation process and it closely collaborates
with CMI which simulates the physical hardware responsible for
performing various preparation- related tasks. All components are
implemented as Python threads to simulate concurrent processing
and asynchronous events that are common to embedded devices.
The preceding components have clearly defined interfaces to
promote testability. No separate domain-specific framework exists
because of the simplicity of the application domain.

In this laboratory case study, testing the behaviour of the CL
is demonstrated. As discussed above, the CL has an interface to
the UI and CMI. The provided interface of CL towards the UI
consists of two kinds of signals i.e. pressing the coffee ordering
button with the value of an ordered blend of drink, and the value

of coin. The required interface towards the UI consists of text to
the display signal. The required interface of CL towards CMI
consists of the order signal with a value either to add water, add
coffee, add milk, add cocoa, add cream, add sugar, warm water,
and serve the coffee signal. The provided interface consists of a
response signal with an ok/fail value as a parameter.
From an implementation perspective, i.e. after code generation,
the signal exchange between the components in this example
application is as follows when a customer orders a hot water
product:

CL receives a selected blend of a drink from UI.

CL sends an add water order to CMI which immediately
starts pouring the water to a heater.
After CMI has finished pouring the water, it notifies the
CL about the finished task.

After receiving the pouring complete message from
CMI, the CL notifies CMI to heat the water to 95
degrees.

After CMI finishes heating the water, it notifies the CL.
After receiving the heating complete message from
CMI, the CL notifies CMI to serve the coffee.

4.3.1 Model Transformation
CQ expects QML as an input. As the metamodel of the CMML
and the QML are different, a model transformation from CMML
to QML is required. The model transformation can be divided into
two main steps, i.e. transformation of the CMML objects and
relationships into the QML state machine, and transformations of
the information contained by CMML objects into QML input and
output signals.

In the case of transforming the coffee machine application
model to QML where CL is the SUT, the transformation is as
follows. First, the QML state machine is initiated by generating
QML Start, End and Idle states. The Start state has a transition to
the Idle state. The Coffee Pressing Button objects (see the topmost
entities in Figure 2) transform into QML transitions between the
Idle and the Coffee decomposition states (see below). Serving the
Coffee objects (see the lowest entity in Figure 2) transform into
QML states and transitions to the End state. The Coin Input object
transforms into a looping state which loops until the correct
amount of coins is received. Transformation of Coffee objects
depends on their decomposition. Transition to Coffee objects
transform to a transition to the first object in a decomposition
graph, and the transition from the Coffee object transforms to a
transition leaving from the last object in a decomposition graph.

Objects of CMPML transform to QML states. Transitions
entering to objects in CMPML transform to QML action
transitions i.e. transitions that trigger an action represented by the
connected object. Transitions leaving the CMPML objects
transform to QML triggering transitions. Input and output values
for QML action and triggering transitions are generated by
considering values and types of CMML objects.

After the model transformation, the model is in the required
format. The state machine part of QML is described in XML
Metadata Interchange (XMI) format and action language for input
and output transitions in QML. The result of the transformation
does not include graphical presentation, however, for illustration
purposes the transformed model can be manually visualized as
shown in Figure 3.

Figure 3. Qtronic model.
In Figure 3, the state machine part of the externally visible

behaviour of the CL is presented. Input and output QML code is
omitted in the figure for the sake of clarity. The left side of the
figure represents ordering the coffee product and the right side
represents ordering the hot water product.
4.3.2 Test Suite Generation
After the model transformation, a test engineer can choose which
test design algorithms are to be utilized from the algorithms
provided by the CQ. In this laboratorial example, transition and
state coverage test design algorithms were chosen. The transition
coverage test design algorithm generates a test suite in which each
state of the model is visited at least once. The state coverage test
design algorithm is similar to the transition coverage test design
algorithm but visits all states. As an output format, HTML was
chosen which is one the pre-made scripters provided by CQ. Now,
CQ generates three test cases where one of the test cases is
depicted in HTML format as in Figure 4.

Figure 4. An illustration of a generated test case.
In Figure 4 a message exchange between the CL and the

Tester is illustrated. As shown, CL receives Button pressing event
with “hot water” parameter as an input from Tester, to which the
CL reacts by sending Order with parameters “addWater” and
“190” to Tester. The Tester reacts by sending Response with “ok”.
After that, the CL sends Order with parameters “warmWater” and
“95” to Tester which again replies with “ok”. After the CL
receives the “ok” signal, it sends “serveDrink” with value “0”
Order to the Tester which closes the test case. Now, if an error
occurs when this test is executed, it is shown as a discrepancy of
the expected output values.

5. DISCUSSION
For the feasibility study in utilizing MBT for testing applications
developed with DSML for a coffee machine, MetaCase
MetaEdit+ was chosen as a DSM environment whereas
Conformiq Qtronic was chosen as an MBT tool. To enable the test
generation, application models export from MetaEdit+ to QC was
required. As the metamodels between MetaEdit+ and QC are
different, a model transformation was required to transform
CMML to QML, which is the format required by QC.

In the coffee machine laboratory case, the model
transformation was trivial to implement as the mapping between
CMML and the QML is straightforward. However, this might not
be the case in real and perhaps more complex languages than the

CMML. As the MBT is completely dependent on the accuracy of
the source model, even the slightest variation between the
modelled behaviour of the application models and the MBT
models ruins the test accuracy. In the case of CMML, model
transformation was able to be validated by visualizing the MBT
model but this again might not be possible when more complex
languages are considered. It might be so that the chosen approach
to utilize an external MBT tool might not be the perfect choice as
the verification might just shift from testing the generated
applications to testing the model transformations from the DSM to
MBT environment. However, it must be noticed that such
transformation has to be developed only once per language.

Another approach to utilize MBT is to replace an external
MBT tool with test design algorithms developed directly in the
DSM environment. This removes the need for model
transformation but requires implementing the test design
algorithms. Whereas by utilizing existing MBT tools that provide
extensively-verified test design algorithms, now the test design
algorithms have to be implemented for every language and a
question about the quality of custom algorithm emerges.
Currently, a trade-off when to utilize an external MBT tool
compared to developing the test design algorithms by itself is a
matter of debate and should be scrutinized before attempting to
use MBT for testing a complete DSML, which is our ultimate
target.

6. CONCLUSION
Industry cases constantly attain 5-10 fold productivity gains
compared to traditional software development practices when
DSMLs with full code generation is applied in software
development. Not only are productivity gains witnessed but also
quality is increased in the sense of decreased program errors. The
increase of quality is partially explainable by well-developed
modelling languages which prohibit the design of incorrect
models but also because code generation has a remarkable impact
on quality.

Although the quality increase is evident, software products
cannot be released without proper testing without knowing that
the modelling infrastructure, i.e. metamodels and code generators,
is flawless. Iterative and incremental development of the
modelling infrastructure is a state of the practice approach means
to produce quality languages but still there is uncertainty about the
quality without systematic and extensive testing of the whole
infrastructure. Without such systematic and extensive testing
methodology the resulting applications still need to be tested.

The contribution of this paper is a feasibility study of
applying MBT to test the generated applications. While
traditionally MBT models are developed from software
specification parallel to implementation, we strive for applying
the MBT to generate a test suite directly from domain-specific
application models. In this way, the test suites are always up-to-
date with the application models. In this paper, we demonstrated
the utilization of MBT to generate test suites from application
models in a laboratorial case study of a coffee machine for which
DSML and Python code generator were developed. As a
conclusion, the test generation seems to be technically feasible but
it is still unknown if the approach is also feasible with more
complex modelling languages.

7. REFERENCES

[1] Kelly, S. and Tolvanen, J-P. 2008. Domain-Specific
Modeling: Enabling full code generation, John Wiley &
Sons, ISBN 978-0-0470-03666, 427p.

[2] Merilinna, J., Puolitaival, O.-P. and Pärssinen, J. 2008.
Towards Model-Based Testing of Domain-Specific
Modelling Languages, The 8th OOPSLA Workshop on
Domain-Specific Modeling, Nashville, TN, USA.

[3] Utting, M. and Legeard, B. 2006. Practical Model Based
Testing: A Tools Approach, Morgan Kaufmann 1st ed.,
ISBN: 978-0123725011, 456p.

[4] Roberts, D., Johnson, R. 1996. Evolving Frameworks: A
Pattern Language for Developing Object-Oriented
Frameworks, Proceedings of Pattern Languages of Programs
Vol. 3 (1996).

[5] Hartman, A., Katara, M. and Olvovsky, S. 2006. Choosing a
test modeling language: A survey, Haifa Verification
Conference, pp. 204-218.

[6] Utting, M., Pretschner, A. and Legeard, B. 2006. A
taxonomy of model-based testing, Working papers series.
University of Waikato, Department of Computer Science,
Hamilton, New Zealand, University of Waitako.

[7] Puolitaival, O.-P., Luo, M. and Kanstren, T. 2008. On the
Properties and Selection of Model-Based Testing tool and
Technique, 1st Workshop on Model-based Testing in
Practice (MoTiP 2008), Berlin, Germany.

