
Multi-Language Development of Embedded Systems
Thomas Kuhn
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2177
thomas.kuhn@

iese.fraunhofer.de

Soeren Kemmann
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2218

soeren.kemmann@
iese.fraunhofer.de

Mario Trapp
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2272

mario.trapp@
iese.fraunhofer.de

Christian Schäfer
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern
+49 631 6800 2121

christian.schaefer@
iese.fraunhofer.de

ABSTRACT
Graphical, well focused and intuitive domain specific languages
(DSLs) are more and more used to design parts of embedded sys-
tems. These languages are highly specialized and often tailored to
one domain; one single language therefore cannot describe all
relevant aspects of systems and system components. This raises
the need for heterogeneous modeling approaches that are capable
of combining multiple DSLs into holistic system models. Our
CompoSE modeling approach focuses on this problem; it does not
only cover system modeling with DSLs, but provides also inter-
facing of language specific generators and harmonization of gen-
erated code. In this paper, we describe the principles of Com-
poSE, together with the integration of an existing modeling lan-
guage with industrial strength tool support into CompoSE. Sup-
porting the integration of existing languages is of particular im-
portance in the domain of embedded systems, because modern
modeling approaches will only be accepted in industry if they
support existing and proven technologies.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General – System speci-
fication methodology

General Terms
Design, Languages

Keywords
System modeling, Domain specific languages, Multi formalism
development

1. INTRODUCTION
Development of embedded systems in research and industry is
more and more shifting from code based development to model
driven development (MDD) approaches, which are founded on
high-level modeling languages. Modeling languages are not as
generic as general purpose programming languages, they provide
more specialized language constructs, e.g. for the creation of data
flow based systems (cf. Simulink) or for the creation of system
models (cf. SysML). These MDD approaches are supported by
industrial strength tool chains; prominent examples of MDD tools
that are applied in both research and industry are Simulink, AS-
CET, SCADE, Rhapsody, Artisan, and MagicDraw. MDD tools
implement modeling languages, provide infrastructure support,
e.g. tailored editors and code generators, and include runtime
libraries and frameworks that support execution of generated
code. Domain specific languages (DSLs) are more specialized

than generic MDD approaches; being tailored to a specific appli-
cation domain, they enable domain experts to express themselves
with native constructs of their respective domains. One example
for DSLs is a graphical language for creating wiring diagrams.
These modeling languages are either implemented as language
profiles, e.g. as UML profiles, or they are built on top of existing
language frameworks (cf. Eclipse GMF or MetaEdit+). In both
cases, DSLs provide their own tool chains and model to code
transformations.

This is a major challenge for the development of embedded
systems: generic and domain specific modeling languages are
limited and support some aspects of embedded system develop-
ment only. Simulink for example supports definition of data flow
based behavior only, UML based languages support the definition
of software architecture and control flow, and SysML supports
the definition of system architectures. Graphical editors, code
generators, and language frameworks only support one or a lim-
ited set of modeling languages. Detailed modeling of all aspects
of complex embedded systems therefore requires the combination
of models defined in multiple modeling languages and tool chains
to provide one holistic system model. Code generation needs to be
done with multiple independent generators in this case. This
yields the situation that developers need to combine multiple gen-
erated artifacts and runtime libraries, and need to connect required
inputs and provided outputs of models, which may even imple-
ment different semantics. One common execution model is re-
quired that supports all relevant modeling languages. This non-
trivial task currently limits the applicability of DSL approaches in
development of complex software systems, since the effort re-
quired for integrating modeling languages may outweigh the addi-
tional benefits of modeling languages.

CompoSE is our multi formalism modeling approach that
supports the integration of modeling languages on language, in-
frastructure and runtime levels. Being independent of concrete
modeling languages, it defines a common host component model,
which supports multi-formalism development of embedded sys-
tems. Guest modeling languages are integrated as language com-
ponents; these languages are applied for modeling functional and
non-functional details of system components. Support is provided
for the integration of general purpose, and domain specific model-
ing languages. Language components address all of the three
aforementioned layers: they provide integration of modeling lan-
guages at language, infrastructure, and runtime levels.

The remainder of this paper explains CompoSE principles
and is structured as following: Section 2 describes the basic prin-
ciples of our multi-formalism development approach. Section 3
describes the CompoSE host language in greater detail. Section 4

provides an application example that illustrates briefly the inte-
gration of Simulink into CompoSE. Section 5 surveys and dis-
cusses related approaches. Section 6 draws conclusions and lays
out future work.

2. MULTI-FORMALISM DEVELOPMENT
CompoSE supports multi-formalism development through the
integration of independent modeling languages and tools into one
multi formalism framework (MFF). Despite the independency of
the different languages and tools, the MFF ensures their seamless
combination for the creation of integrated system models. This is
achieved through the application of component based develop-
ment basic principles to the domain of language engineering.

CompoSE is based on the principle of one host language and
several guest languages. The host language defines system com-
ponents and a basic set of views for modeling system architec-
tures; it also defines language constructs for the integration of
language components. Language components integrate guest lan-
guages into CompoSE. As shown in Figure 1, language compo-
nents address the three main elements of modeling languages to
ensure their seamless integration: view types provide integration
on language level, infrastructure interfaces integrate tool chains,
and runtime interfaces ensure interfacing of generated code with a
common runtime model.

Language components provide one or multiple view types that
integrate modeling languages. Compose additionally provides
several predefined view types that support definition of interfaces
(InterfaceView), aggregations (AggregationView), and coupling
(CouplingView). Native models of integrated existing modeling
languages are stored in guest models, which are containers that
conform to some unknown, guest specific format, and are there-
fore not directly accessible. Meta models support the (bidirec-
tional) projection of guest model parts into the host model through
transformations – this way, information stored in guest models is
made accessible, and is shared and synchronized between guest
models and language components. Additionally, views represent
their modeling languages to developers and therefore support the
manipulation of their underlying models – for this reason, infra-
structure parts (IFParts) are used to expose language infrastruc-
ture, e.g. graphical editors.

Infrastructure parts (IFParts) enable the integration of exist-
ing language tool chains. These parts implement proxies that pro-
vide common interfaces to the CompoSE MFF and hide native
interfaces of language specific tools. Runtime parts of language
components define the runtime interfaces of generated code; when
existing tool chains are integrated into CompoSE, they model the
interface between generated code and existing, language specific
runtime frameworks. A CompoSE runtime framework then pro-
vides glue code that interfaces generated code for each language

component with each other and that conforms to a common run-
time specification. Note that CompoSE does not include a specific
runtime environment, but it defines common requirements that
conforming runtime environments need to fulfill. These require-
ments define syntactic and semantic constraints that runtime
framework implementations need to conform to. Adapter code
that is generated by generator proxies serves as interface between
the generated code from language specific tools (whose interface
is defined through language components) and the runtime frame-
work. Figure 2 provides an example – two host components are
defined: the component Control that realizes a data low based
controlling algorithm, and a Filter component that preprocesses
data for the Control component. The Control component is real-
ized with Simulink, the Filter component is realized with a do-
main specific language. Therefore, two language components
provide necessary views, infrastructure, and runtime support.

The Simulink language component provides the Simulink re-
alization view, integrates the native Simulink tool chain, which
consists of a code generator (Simulink Generator) and of the
Simulink runtime framework. It also includes the Simulink Proxy
that generated adapter code (Simulink Adapter), which interfaces
generated code by Simulink with the common runtime frame-
work. The DSL language component provides a view that sup-
ports editing models based on its domain specific language to-
gether with a code generator. No proxies and adapters are re-
quired, since the code generator outputs conforming code directly.

3. THE COMPOSE HOST LANGUAGE
The CompoSE host language implements a component modeling
approach that is based on components, properties, ports and links.
Components represent parts of the developed system, which are
either black or white boxes. Ports belong to components and de-
fine points of interaction that links are connected to. Properties
store component information – three types of properties are de-
fined by CompoSE: Guest model properties store complete guest
models in their native format. Meta model properties are based on
a CompoSE conforming meta model definition, and represent
containers that store models conforming to those meta models.
Primitive properties store one type, e.g. an integer or a structured
type. Properties are subdivided into two property types: Specifica-
tion properties define whole or partial component specifications.
Component specifications define what a component does, and
how a component is to be used. Specification properties are asso-
ciated with specification views. Realization properties define how
a component is realized – they are associated to realization views.
Component realizations always need to conform to the specifica-
tion of their component.

Figure 2: Compose Multi Formalism Framework

Figure 1: Language component meta model

3.1 CompoSE language components
Language components integrate new modeling or domain specific
languages into CompoSE that are used for defining component
details. On language level, language components consist of views,
transformations, and models.

Views present data, which is represented by models. For this
reason, two model types are distinguished: guest models and meta
models. Existing modeling languages that ship with their own tool
chains usually store data in their own container format, e.g. a
language specific binary representation. Models stored in such a
container are referred to as guest models. Other language compo-
nents cannot access this data, since file format and structure is not
known – guest model properties are therefore black boxes for
other language components. New, CompoSE conforming DSLs
store all of their data in containers that conform to defined meta
models instead, therefore, this data may be accessed by other
language components – this is a white box representation.

3.1.1 Guest model synchronization
If a language component uses a guest model representation for
storing models, these models are not accessible for other language
components, which may be cumbersome. For example, a Simu-
link view defines component realizations as data flow between
input and output flow ports of components. The InterfaceView
(see below), which is a predefined and therefore language inde-
pendent view of CompoSE, defines component ports as part of the
component interface as well. Both views therefore store the same
information in different properties: the Simulink view stores com-
ponent ports as part of its Simulink guest model, the interface
view stores component ports in a meta model property.

This situation is not satisfactory for developers using Com-
poSE – they need to manually ensure consistency between views.
Existing tools for UML for example provide this synchronization
between diagrams that operate on the same model automatically –
changes in the model through one diagram are immediately re-
flected in all other diagrams. CompoSE provides a similar func-
tionality through transformations in a manner that supports multi-
ple modeling languages. Transformation components implement
model to model transformations; they are part of language com-
ponent views and therefore implement a bridge between host and
guest models. Transformations may be applied to transform mod-
els conforming to one meta model into a model that conforms to
another meta model of the same component, to modify models,
and to transform models into guest models and back. Guest mod-
els may only be accessed by the language component that defines
them, and each guest model type may be defined by one language
component only. Through transformations, complete guest models
or parts of it are projected into models that conform to defined
meta models, and are therefore accessible by other language com-
ponents (see Figure 3).

In the example defined by Figure 3, two views are attached
to the system component type Control. This component type has
three properties – the first property Interface.interface defines the
component interface and contains data conforming to the interface
meta model defined by the common InterfaceView. It is manipu-
lated through the interface specification view. The Simu-
link.simulink property holds the guest model of the Simulink re-
alization, and is manipulated through the Simulink realization

view. Model transformations synchronize the Simulink guest
model and the interface meta model with the Simulink flow meta
model, which is a common white box representation. This model
is not manipulated directly through a view, and stored in the
Simulink.flow property.

As shown in the example, component data is stored in properties.
Therefore, complex components possibly require a large number
of properties to store the data of all views. Additional data that is
shared between views, for example ports, attributes, and opera-
tions are stored in properties as well. Therefore, to prevent name-
space pollution, the name of a property is composed out of a lan-
guage component that its type belongs to, together with its identi-
fier (see Figure 3).

3.1.2 Specialization
Language component hierarchies support the concept of speciali-
zation, which is known from other languages, e.g. from the MOF
or from the UML. However, specialization of language compo-
nents needs different semantics to ensure proper handling of
views, infrastructure, and runtime. Specialized language compo-
nents inherit all elements of more generic components and may
override them. Specialized components, for example, define new
guest models, new transformations, and new meta models. Exist-
ing transformations and meta models are possibly extended by
specialized language components. Infrastructure parts of parents
may be inherited or overridden. In the latter case, the existing
infrastructure (tools, editors, code generators…) of the parent may
be used by the infrastructure of the specialized language compo-
nent. Runtime interfaces may be inherited or overridden, but over-
riding is only permitted with more specialized interfaces that at
least provide the functionality of the base interface type. Figure 6
illustrates an example for language component specialization. The
base component GenericLanguageComponent defines a frame-
work for all subsequent language component definitions. The
component DataflowLanguage redefines the language view and
the runtime. The DataflowView view adds a data flow meta
model, the DataflowRuntime component adds a data flow runtime
interface. The Simulink language component extends all three
views. Therefore, all existing elements are inherited first. The
meta model SimulinkMM may only extend the more generic Data-
flowMM meta model, since it is its specialization. The guest
model definition is a new language component element. Simulink
infrastructure are new language component elements as well. The
Simulink runtime interface SimulinkRuntimeIF replaces the old
DataflowRuntimeIF with a derived and specialized interface.

Figure 3: Components, models, views, and properties

This inheritance scheme supports language component hierar-
chies, e.g. the data flow hierarchy from the example. Specialized
language components may introduce new guest models and tool
chains but still re-use meta models of parent language compo-
nents. Guest and meta model properties that are qualified with the
type of their defining language component retain their type speci-
fier; derived meta model types or replaced guest models therefore
appear with their original qualifier. Therefore, meta models may
only be extended through specialization and therefore are down-
ward compatible to meta models of base components. Guest
model access restrictions ensure that only transformations and
infrastructure of one language component type may access the
same guest model, and therefore also ensure that specialization
does not lead to type conflicts.

3.1.3 Conflicting view types
The special relation conflictingView may be defined for any pair
of views that must never be used together on one component.
Specialized view types inherit this property from their base views.
This way, it is ensured that conflicting realization views are never
used together to define one component. This is handy if two lan-
guage components are not sufficiently synchronized, but enable
definition of similar things. For example, both Simulink and AS-
CET views define (different) data flow models. In order to oper-
ate properly on the same component, both views need to synchro-
nize their whole model into a common meta model. While this is
possible with CompoSE through transformations, this is impracti-
cal in real world applications. For this reason, both view types
could be marked as conflicting instead, preventing developers to
use them together on the same component.

3.1.4 Checks
Automated checks are executed similar to transformations every
time when a connected property was modified. In contrast to
transformations that produce output models, checks validate pre-
defined properties or consistency rules. Typical application areas
for automated checks in the CompoSE framework are DSL spe-
cific consistency checks across views. Similar to transformations,
checks are currently developed in Java; for subsequent implemen-
tations, we plan the development of a DSL for specifying Open-
ArchitectureWare (OAW) based checks and model transforma-
tions using OAW’s extend language.

3.2 CompoSE components
CompoSE components represent all system components – in this
paper, we focus on the definition of software components though.
Components are defined through properties – property values are
modified through views. CompoSE supports two basic relations

between components that are known from the UML: Component
aggregation and component specialization. Currently, no distinc-
tion between aggregation and composition is made in CompoSE.
However, due to the view concept, the behavior of both principles
needs to be adapted.

Component aggregation is supported through the basic view
type AggregationView. Aggregated components, i.e. components
that consist of other components, are created through component
aggregation only; no other non-aggregation realization views may
be assigned to that component type. The two view types Aggrega-
tionView and NonAggregationView, from which all non-
aggregating view types derive are therefore marked as conflicting
views. The realization of aggregated components is therefore only
defined through the aggregation view – no other realization views
may be applied to that component. Component specifications are
not affected by aggregation views. Therefore, specifications of
aggregated components are defined through specification views
similar to any other view type. The aggregation view of Com-
poSE is similar to the composite structure diagram of UML that
defines component substructures through instances, ports, and
links. Figure 5 illustrates an example component aggregation. In
the example, the component CruiseControlSystem is aggregated
out of one instance of the component type Filter and one instance
of the component type Control.

Component specialization is more complicated than component
aggregation, because it affects both component specification and
realization views with unknown language semantics. Component
specifications and realizations are defined through properties.
Specialized components initially inherit all properties of their
derived components. In addition, specialized components also
may override properties of their base components, and therefore
replace their value. This must be done through a compatible view
that is able to modify the property in question. However, when
replacing property values, the following additional restrictions
apply, which are specific to guest languages and therefore are
validated automatically by checks (cf. Section 3.1.4).

• Properties defining component specifications may not be
lowered by specialized components - everything that was de-
fined by the specification of the parent component must still
be part of the specification provided by derived components.

• Properties defining realizations may be overridden and
changed by specialized components as long as the compo-
nent specification, and therefore inherited component speci-
fications are met.

Depending on the guest language, language specific specialization
constructs may be available. For example SDL and UML lan-
guages provide such concepts, while Simulink does not support
type inheritance. If specialization constructs are available in a
guest language, these constructs may be used for creating special-
ized guest models based on their parent guest models from parent
components. Figure 6 illustrates this with an example.

Figure 4: Language component specialization

Figure 5: Aggregation view

The example from Figure 6 illustrates CompoSE component spe-
cialization. The SpeedFilter component specializes the more ge-
neric filter component type. It also replaces the DSL based com-
ponent realization. DSL dependent specialization constructs sup-
port specialization of the original realization of the base compo-
nent. CompoSE aggregation and specialization are intentionally
not strict and enforcing, because this would limit the applicability
of CompoSE to a smaller number of guest modeling languages.
CompoSE defines a necessary and sufficient set of constraints for
aggregation and specialization that enable creation components
and views with defined semantics.

4. MULFI-FORMALISM COUPLING
Up to now, we defined the integration of language components
and therefore new modeling languages into Compose. View types
define properties, meta models, and therefore containers for stor-
ing information. Transformations map models from one meta
model into another, and bridge between guest models. Views also
provide means to modify model elements by integrating infra-
structure parts that represent existing language infrastructure, e.g.
editors. Runtime adapters provide an interface between code gen-
erated by different language infrastructures, i.e. code generators,
and bridge generated code. This works well as long as languages
with conforming runtime semantics are coupled – for example
Simulink and ASCET provide similar semantics, and therefore
coupling is simple. However, multi formalism development re-
quires the combination of modeling languages that implement
different semantics. Bridging these languages is a challenging
task, and the approach used for providing this coupling is an im-
portant design decision.

CompoSE supports this bridging through the InterfaceView
and the CouplingView view types. The InterfaceView predefines
port types that represent different semantics. The CouplingView
supports connections between ports that represent similar seman-
tics, or between port types for which a semantic mapping is de-
fined. Basic port types that are defined by the InterfaceView are
the following:

• Data flow ports (FlowPort) represent data flow semantics.

• Event ports (EventPort) represent asynchronously transmit-
ted and received events.

• Control flow ports (ControlFlowPort) represent control flow
semantics, e.g. the definition of operations with entry points
and control flow transfer upon invocation.

The coupling of components that provide interfaces based on
these port types, and therefore implement conforming semantics
is defined through the coupling view. While coupling of compati-
ble interfaces is trivial, the coupling view also defines coupling
semantics that map from one interface type to another. Runtime
adapters need to support these predefined mappings in order to

support semantic coupling of their supported modeling languages.
The following automated mappings are currently supported by
CompoSE:

• Output data flow ports map to event ports by generating an
event each time the output value changes. Event ports are
mapped to input data flow ports by changing the respective
data value each time an event is received.

• Control flow ports map to output data flow ports, if they
define one operation with one parameter only that is then in-
voked upon parameter change. Mapping of control flow ports
to input flow ports is supported if one operation is provided
that carries one parameter, which will be the new value of
the flow port.

• Mapping between event ports and control flow ports is sup-
ported as following: Whenever an event leaves an event port,
which is connected to a control flow port, the corresponding
operation will be invoked. If a response event is declared, the
return value will be transmitted back upon the operation is
completed. Operation execution is not synchronized with the
execution of the component that transmitted the event. Map-
ping of control flow ports to realize required operation re-
quires the definition of request/response pairs of events. The
execution of required operations is mapped to the transmis-
sion of the request event. The calling component is sus-
pended, until the corresponding response is required, in order
to conform to control flow semantics.

By generating explicit adapter components using any supported
language, more sophisticated mapping may be explicitly defined
in addition to these predefined mappings. This coupling approach
documents the basic rationale of compose to support black box
components with defined white-box interfaces and properties;
definition of component semantics are supported in a similar
manner. While CompoSE is not aware of the complete semantic
model of its black box components, it is aware of their interface
semantics, and therefore is able to connect them to each other.
Runtime semantics of components are supported in a similar way.

CompoSE predefines semantic models that are connected to
views; not components. They are therefore stored in a property of
the view type. These semantic models represent an abstraction of
the runtime semantics of integrated modeling languages – since
components may support multiple views (as long as restrictions
regarding incompatible view types are not violated), they may as
well implement different semantics. Predefined semantic models
need to be supported by all runtime infrastructures. Additionally,
new semantic models may be defined; the support of these models
is then optional to runtime frameworks. The following semantic
models are predefined:

• Data flow semantics realize a continuous data flow that con-
tinuously recalculates output values.

• Event based semantics provide semantics that realize views
defining asynchronously executed behavior, which is trig-
gered by events.

• Control flow semantics are passive – views using these se-
mantics define component behavior that is triggered only
through active transfer of control flow through control flow
ports.

Figure 6: CompoSE component specialization

• Active control flow semantics are used to realize views
which may receive control flow through control flow ports,
but still provide an behavior on its own that is independent
from explicit control flow transfer from other components.

Runtime frameworks, as already mentioned, need to implement at
least these four semantic models. They also need to support com-
ponents that apply different semantic models for different views.

5. COMPOSE APPLICATION EXAMPLE
In this section, we describe the integration of Simulink, an exist-
ing modeling language for data flow models. The Simulink lan-
guage component supports the definition of component specifica-
tions and realizations through two different views, which conse-
quently affect two different component properties. Simulink is
supported by an industrial strength tool chain; this tool chain is
integrated through the infrastructure interface into CompoSE.

Figure 7 describes the new language component SimulinkLan-
guage. New CompoSE language components extends directly or
indirectly the type GenericLanguageComponent. The Simulink
language component defines a white box meta model Simu-
linkMM, a guest model SLGuestModel that represents native .mdl
files, and a model to model transformation that transforms parts of
the native model into the white box model (not shown in Figure
7). Simulink views implement data flow semantics; their provided
infrastructure is defined through an editor and a generator proxy.
The definition of these infrastructure components is implementa-
tion specific. In our case, CompoSE was implemented into
MagicDraw, which is a generic UML modeling tool. Infrastruc-
ture components are magic draw plugins that integrate code gen-
eration capabilities by calling code generators of integrated tool
chains, or by invoking editors of generated tool chains. The editor
connects to the Simulink editor, which is also part of the commer-
cial tool chain. It is invoked in a similar manner as one if Magic-
Draws native UML diagram editors; however, changes in the
model are synchronized only after saving in our implementation.
Simulink diagrams are stored together with its native model rep-
resentation in the guest model; after saving a diagram, transforma-
tions are invoked that extract relevant data from the diagrams and
update component properties and white box meta models. The
runtime interface of generated code is defined by the Simulink-
RuntimeIF interface. Native Simulink code does not conform to
that interface. Therefore, adapter code is generated by the Simu-

linkGen infrastructure proxy to mediate between the CompoSE
runtime and generated Simulink code.

6. RELATED WORK
The author of [1] proposes a generic, component based frame-
work for the evaluation of quality attributes like timeliness and
safety. Each component gets four artifact types assigned: an en-
capsulated evaluation model, an operational/usage profile, com-
position algorithms, and evaluation algorithms. Based on these
artifacts, a process for the evaluation of quality attributes is de-
fined. This approach focuses clearly on evaluation of white box
models; in contrast, CompoSE focuses currently on the efficient
integration of new modeling languages as black box models, as
well as providing an extensible framework for synchronizing
information contained in different black box models.

The work presented in [2] present BIP, a component based
development approach that supports multi formalism development
of behavior components. BIP defines three layers per component,
focusing on component behavior, interaction, and execution. The
authors focus on behavioral realizations, and provide a framework
for modeling components, as well as for the generation of glue
code to link these components together at runtime. This approach
focuses on correctness by construction and the adherence to prop-
erties while composing components, e.g. ensuring deadlock free-
dom. This is done via one common modeling language that com-
ponent behavior is mapped to; in contrast, CompoSE provides the
ability of integrating any language as language component. BIP
could be used as a backend framework for performing formal
analysis by defining the language of BIP as a white box meta
model, and by providing transformations for guest models of lan-
guage components into the formal language of BIP.

The authors of [3] present a framework for multi language
development of embedded systems, which provides tool and
model integration. Modeling languages are integrated into the
proposed framework through adaption layers that provide a link
between domain specific models and the common framework.
Like CompoSE, connected models are divided into public parts
that are exposed to other models, and private parts that are stored
in a common repository, but will not be exposed. In contrast to
this work, the basic framework described in [3] implements multi-
language development on the tool level, not on modeling level.
Therefore, no modeling language for the combination of multiple
modeling languages is defined.

The authors of [4] provide an approach for multi formalism
development that is much more tightly integrated than CompoSE;
the described approach aims at integrating the meta models of
used modeling languages. This is one difference between Com-
poSE and the approach presented in [4]: while CompoSE uses a
central system model to synchronize modeling elements, the au-
thors of [4] directly synchronize meta models with each other.
While this approach is certainly appealing, the creation of the
proposed consistency checking and mapping meta models costs
considerable effort when defining a multi-language modeling
approach for multiple already existing modeling languages. De-
pending on the amount of exported data and the complexity of the
synchronization rules in views, CompoSE might provide such a
tight synchronization as well. However CompoSE scales; in most
cases full meta model synchronization is not required. Therefore,
CompoSE will only synchronize a small subset of model data,

Figure 7: Simulink language component

resulting in a smaller and therefore less expensive synchroniza-
tion approach in these situation (regarding both money and re-
quired processing power).

Ptolemy, which is presented in [5], is a famous approach for
the application of execution semantics in Java environments, as
well as for their evaluation, simulation, and composition. The
focus of Ptolemy is on the semantic coupling, and simulation of
components that implement different execution semantics. How-
ever, other aspects besides runtime semantics, e.g. the integration
of modeling languages, tools, and (meta) model synchronization
is not covered. Therefore, both approaches, Ptolemy and Com-
posE have a slight overlapping, which is the coupling of seman-
tics. This coupling is currently in Ptolemy much more developed
than in CompoSE, which focuses on the integration of modeling
languages and light-weight model synchronization.

The authors of [6] describe Metropolis, which is a compo-
nent based modeling framework, which is based on the following
core concept of separation between communication and computa-
tion, and separation of functionality and architecture. Metropolis
provides a common meta model that most existing models of
computation may be transformed into. The metropolis model of
computation is based on concurrent execution of action se-
quences; actions are subdivided into communication and compu-
tation actions. The main difference between CompoSE and Me-
tropolis is its focus: CompoSE is an approach that aims at inte-
grating (domain specific) languages, infrastructure and runtime
frameworks in a light-weight manner. Runtime frameworks are
combined using common runtime interfaces – as long as a runtime
adapter and semantic mappings are provided, a specific language
may be integrated into CompoSE. Metropolis provides a common
model of computation that languages are transformed into. This
requires a much more tight integration with respect to runtime
models, and therefore much more integration effort.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented CompoSE, our multi-formalism
modeling framework. CompoSE has been devised by applying
principles from component based software engineering to the
creation of a multi formalism modeling approach. It supports
multi formalism development at three levels: the modeling level,
the infrastructure level, and the runtime level. The principle for
multi-formalism development with CompoSE is the application of
guest models and guest languages that are plugged into one host
model as language components. Views provide access to guest
languages at modeling level and present data stored in models.
Guest models are stored in their native file format and meta model
of the guest language, meta models may be used to export whole
guest models or part of it into the host model, so that other lan-
guage components may access this information. This transforma-
tion is performed though explicit transformations. The CompoSE
approach is different from most other approaches, because it pro-
vides a light weight language integration; the degree of language
integration depends on provided meta models and transforma-
tions, and may therefore be adapted. This is an important aspect
for its practical applicability, where integration effort equals to
money.

Through the concept of guest models, existing languages, in-
frastructure, and runtime frameworks may be used with Com-
poSE. This is especially important in industry, because multi for-

malism approaches are only accepted if they support established
and well proven tool chains. The separation between black box
guest models and white box meta models enables a rapid integra-
tion of new modeling languages, because only relevant attributes
of guest models need to be synchronized with the host model; full
meta model synchronization is possible, but not necessary with
CompoSE. We have proven the applicability of CompoSE
through the integration of the existing Simulink language as lan-
guage component.

Ongoing and future work with respect to CompoSE is the
definition of a set of views for systems modeling in the automo-
tive industry. Additionally, the definition of formal semantics for
CompoSE language constructs, relations, as well as for language
and formalism coupling is currently ongoing work. Once this is
finished, clear coupling semantics will be available, as well as an
approach for the integration of new coupling semantics.

8. REFERENCES
[1] L. Grunske, Early Quality Prediction of Component-Based

Systems - A Generic Framework, Journal of Systems and
Software, Elsevier, Volume 80, Issue 5, May 2007, pp. 678-
686

[2] G. Gössler, J. Sifakis, Composition for Component-Based
Modeling, Science of Computer Programming, Volume
55(1-3), 2005

[3] J. El-Khoury, O. Redell, M. Törngren, A Tool Integration
Platform for Multi-Disciplinary Development, Proceedings
of the 2005 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications (EUROMICRO-
SEAA’05), Porto, Portugal, 2005

[4] S. Burmester, H. Giese, J. Niere, M. Tichy, J. P. Wadsack, R.
Wagner, L. Wendehals, A. Zündorf, Tool Integration at the
Meta-Model Level within the FUJABA Tool Suite, Proceed-
ings of the Workshop on Tool-Integration in System Devel-
opment (TIS), 2003

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, Y. Xiong: Taming Heterogeneity
- the Ptolemy Approach. Proceedings of the IEEE, v.91, No.
2, January 2003.

[6] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, M. Sgroi, and Y. Watanabe. Modeling and De-
signing Heterogeneous Systems, volume 2549 of LNCS,
pages 228–273. Springer-Verlag, 2002.

