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ABSTRACT 
Graphical, well focused and intuitive domain specific languages 
(DSLs) are more and more used to design parts of embedded sys-
tems. These languages are highly specialized and often tailored to 
one domain; one single language therefore cannot describe all 
relevant aspects of systems and system components. This raises 
the need for heterogeneous modeling approaches that are capable 
of combining multiple DSLs into holistic system models. Our 
CompoSE modeling approach focuses on this problem; it does not 
only cover system modeling with DSLs, but provides also inter-
facing of language specific generators and harmonization of gen-
erated code. In this paper, we describe the principles of Com-
poSE, together with the integration of an existing modeling lan-
guage with industrial strength tool support into CompoSE. Sup-
porting the integration of existing languages is of particular im-
portance in the domain of embedded systems, because modern 
modeling approaches will only be accepted in industry if they 
support existing and proven technologies. 

Categories and Subject Descriptors 
C.0 [Computer Systems Organization]: General – System speci-
fication methodology 

General Terms 
Design, Languages 

Keywords 
System modeling, Domain specific languages, Multi formalism 
development 

1. INTRODUCTION 
Development of embedded systems in research and industry is 
more and more shifting from code based development to model 
driven development (MDD) approaches, which are founded on 
high-level modeling languages. Modeling languages are not as 
generic as general purpose programming languages, they provide 
more specialized language constructs, e.g. for the creation of data 
flow based systems (cf. Simulink) or for the creation of system 
models (cf. SysML). These MDD approaches are supported by 
industrial strength tool chains; prominent examples of MDD tools 
that are applied in both research and industry are Simulink, AS-
CET, SCADE, Rhapsody, Artisan, and MagicDraw. MDD tools 
implement modeling languages, provide infrastructure support, 
e.g. tailored editors and code generators, and include runtime 
libraries and frameworks that support execution of generated 
code. Domain specific languages (DSLs) are more specialized 

than generic MDD approaches; being tailored to a specific appli-
cation domain, they enable domain experts to express themselves 
with native constructs of their respective domains. One example 
for DSLs is a graphical language for creating wiring diagrams. 
These modeling languages are either implemented as language 
profiles, e.g. as UML profiles, or they are built on top of existing 
language frameworks (cf.  Eclipse GMF or MetaEdit+). In both 
cases, DSLs provide their own tool chains and model to code 
transformations. 

This is a major challenge for the development of embedded 
systems: generic and domain specific modeling languages are 
limited and support some aspects of embedded system develop-
ment only. Simulink for example supports definition of data flow 
based behavior only, UML based languages support the definition 
of software architecture and control flow, and SysML supports 
the definition of system architectures. Graphical editors, code 
generators, and language frameworks only support one or a lim-
ited set of modeling languages. Detailed modeling of all aspects 
of complex embedded systems therefore requires the combination 
of models defined in multiple modeling languages and tool chains 
to provide one holistic system model. Code generation needs to be 
done with multiple independent generators in this case. This 
yields the situation that developers need to combine multiple gen-
erated artifacts and runtime libraries, and need to connect required 
inputs and provided outputs of models, which may even imple-
ment different semantics. One common execution model is re-
quired that supports all relevant modeling languages. This non-
trivial task currently limits the applicability of DSL approaches in 
development of complex software systems, since the effort re-
quired for integrating modeling languages may outweigh the addi-
tional benefits of modeling languages. 

CompoSE is our multi formalism modeling approach that 
supports the integration of modeling languages on language, in-
frastructure and runtime levels. Being independent of concrete 
modeling languages, it defines a common host component model, 
which supports multi-formalism development of embedded sys-
tems. Guest modeling languages are integrated as language com-
ponents; these languages are applied for modeling functional and 
non-functional details of system components. Support is provided 
for the integration of general purpose, and domain specific model-
ing languages. Language components address all of the three 
aforementioned layers: they provide integration of modeling lan-
guages at language, infrastructure, and runtime levels.  

The remainder of this paper explains CompoSE principles 
and is structured as following: Section 2 describes the basic prin-
ciples of our multi-formalism development approach. Section 3 
describes the CompoSE host language in greater detail. Section 4 



provides an application example that illustrates briefly the inte-
gration of Simulink into CompoSE. Section 5 surveys and dis-
cusses related approaches. Section 6 draws conclusions and lays 
out future work. 

2. MULTI-FORMALISM DEVELOPMENT 
CompoSE supports multi-formalism development through the 
integration of independent modeling languages and tools into one 
multi formalism framework (MFF). Despite the independency of 
the different languages and tools, the MFF ensures their seamless 
combination for the creation of integrated system models. This is 
achieved through the application of component based develop-
ment basic principles to the domain of language engineering.  

CompoSE is based on the principle of one host language and 
several guest languages. The host language defines system com-
ponents and a basic set of views for modeling system architec-
tures; it also defines language constructs for the integration of 
language components. Language components integrate guest lan-
guages into CompoSE. As shown in Figure 1, language compo-
nents address the three main elements of modeling languages to 
ensure their seamless integration: view types provide integration 
on language level, infrastructure interfaces integrate tool chains, 
and runtime interfaces ensure interfacing of generated code with a 
common runtime model. 

 
Language components provide one or multiple view types that 
integrate modeling languages. Compose additionally provides 
several predefined view types that support definition of interfaces 
(InterfaceView), aggregations (AggregationView), and coupling 
(CouplingView). Native models of integrated existing modeling 
languages are stored in guest models, which are containers that 
conform to some unknown, guest specific format, and are there-
fore not directly accessible. Meta models support the (bidirec-
tional) projection of guest model parts into the host model through 
transformations – this way, information stored in guest models is 
made accessible, and is shared and synchronized between guest 
models and language components. Additionally, views represent 
their modeling languages to developers and therefore support the 
manipulation of their underlying models – for this reason, infra-
structure parts (IFParts) are used to expose language infrastruc-
ture, e.g. graphical editors. 

Infrastructure parts (IFParts) enable the integration of exist-
ing language tool chains. These parts implement proxies that pro-
vide common interfaces to the CompoSE MFF and hide native 
interfaces of language specific tools. Runtime parts of language 
components define the runtime interfaces of generated code; when 
existing tool chains are integrated into CompoSE, they model the 
interface between generated code and existing, language specific 
runtime frameworks. A CompoSE runtime framework then pro-
vides glue code that interfaces generated code for each language 

component with each other and that conforms to a common run-
time specification. Note that CompoSE does not include a specific 
runtime environment, but it defines common requirements that 
conforming runtime environments need to fulfill. These require-
ments define syntactic and semantic constraints that runtime 
framework implementations need to conform to. Adapter code 
that is generated by generator proxies serves as interface between 
the generated code from language specific tools (whose interface 
is defined through language components) and the runtime frame-
work. Figure 2 provides an example – two host components are 
defined: the component Control that realizes a data low based 
controlling algorithm, and a Filter component that preprocesses 
data for the Control component. The Control component is real-
ized with Simulink, the Filter component is realized with a do-
main specific language. Therefore, two language components 
provide necessary views, infrastructure, and runtime support. 

The Simulink language component provides the Simulink re-
alization view, integrates the native Simulink tool chain, which 
consists of a code generator (Simulink Generator) and of the 
Simulink runtime framework. It also includes the Simulink Proxy 
that generated adapter code (Simulink Adapter), which interfaces 
generated code by Simulink with the common runtime frame-
work. The DSL language component provides a view that sup-
ports editing models based on its domain specific language to-
gether with a code generator. No proxies and adapters are re-
quired, since the code generator outputs conforming code directly. 

 

3. THE COMPOSE HOST LANGUAGE 
The CompoSE host language implements a component modeling 
approach that is based on components, properties, ports and links. 
Components represent parts of the developed system, which are 
either black or white boxes. Ports belong to components and de-
fine points of interaction that links are connected to. Properties 
store component information – three types of properties are de-
fined by CompoSE: Guest model properties store complete guest 
models in their native format. Meta model properties are based on 
a CompoSE conforming meta model definition, and represent 
containers that store models conforming to those meta models. 
Primitive properties store one type, e.g. an integer or a structured 
type. Properties are subdivided into two property types: Specifica-
tion properties define whole or partial component specifications. 
Component specifications define what a component does, and 
how a component is to be used. Specification properties are asso-
ciated with specification views. Realization properties define how 
a component is realized – they are associated to realization views. 
Component realizations always need to conform to the specifica-
tion of their component. 

Figure 2: Compose Multi Formalism Framework 

Figure 1: Language component meta model 



3.1 CompoSE language components 
Language components integrate new modeling or domain specific 
languages into CompoSE that are used for defining component 
details. On language level, language components consist of views, 
transformations, and models.  

Views present data, which is represented by models. For this 
reason, two model types are distinguished: guest models and meta 
models. Existing modeling languages that ship with their own tool 
chains usually store data in their own container format, e.g. a 
language specific binary representation. Models stored in such a 
container are referred to as guest models. Other language compo-
nents cannot access this data, since file format and structure is not 
known – guest model properties are therefore black boxes for 
other language components. New, CompoSE conforming DSLs 
store all of their data in containers that conform to defined meta 
models instead, therefore, this data may be accessed by other 
language components – this is a white box representation.  

3.1.1 Guest model synchronization 
If a language component uses a guest model representation for 
storing models, these models are not accessible for other language 
components, which may be cumbersome. For example, a Simu-
link view defines component realizations as data flow between 
input and output flow ports of components. The InterfaceView 
(see below), which is a predefined and therefore language inde-
pendent view of CompoSE, defines component ports as part of the 
component interface as well. Both views therefore store the same 
information in different properties: the Simulink view stores com-
ponent ports as part of its Simulink guest model, the interface 
view stores component ports in a meta model property. 

This situation is not satisfactory for developers using Com-
poSE – they need to manually ensure consistency between views. 
Existing tools for UML for example provide this synchronization 
between diagrams that operate on the same model automatically – 
changes in the model through one diagram are immediately re-
flected in all other diagrams. CompoSE provides a similar func-
tionality through transformations in a manner that supports multi-
ple modeling languages. Transformation components implement 
model to model transformations; they are part of language com-
ponent views and therefore implement a bridge between host and 
guest models. Transformations may be applied to transform mod-
els conforming to one meta model into a model that conforms to 
another meta model of the same component, to modify models, 
and to transform models into guest models and back. Guest mod-
els may only be accessed by the language component that defines 
them, and each guest model type may be defined by one language 
component only. Through transformations, complete guest models 
or parts of it are projected into models that conform to defined 
meta models, and are therefore accessible by other language com-
ponents (see Figure 3). 

In the example defined by Figure 3, two views are attached 
to the system component type Control. This component type has 
three properties – the first property Interface.interface defines the 
component interface and contains data conforming to the interface 
meta model defined by the common InterfaceView. It is manipu-
lated through the interface specification view. The Simu-
link.simulink property holds the guest model of the Simulink re-
alization, and is manipulated through the Simulink realization 

view. Model transformations synchronize the Simulink guest 
model and the interface meta model with the Simulink flow meta 
model, which is a common white box representation. This model 
is not manipulated directly through a view, and stored in the 
Simulink.flow property. 

 
As shown in the example, component data is stored in properties. 
Therefore, complex components possibly require a large number 
of properties to store the data of all views. Additional data that is 
shared between views, for example ports, attributes, and opera-
tions are stored in properties as well. Therefore, to prevent name-
space pollution, the name of a property is composed out of a lan-
guage component that its type belongs to, together with its identi-
fier (see Figure 3). 

3.1.2 Specialization 
Language component hierarchies support the concept of speciali-
zation, which is known from other languages, e.g. from the MOF 
or from the UML. However, specialization of language compo-
nents needs different semantics to ensure proper handling of 
views, infrastructure, and runtime. Specialized language compo-
nents inherit all elements of more generic components and may 
override them. Specialized components, for example, define new 
guest models, new transformations, and new meta models. Exist-
ing transformations and meta models are possibly extended by 
specialized language components. Infrastructure parts of parents 
may be inherited or overridden. In the latter case, the existing 
infrastructure (tools, editors, code generators…) of the parent may 
be used by the infrastructure of the specialized language compo-
nent. Runtime interfaces may be inherited or overridden, but over-
riding is only permitted with more specialized interfaces that at 
least provide the functionality of the base interface type. Figure 6 
illustrates an example for language component specialization. The 
base component GenericLanguageComponent defines a frame-
work for all subsequent language component definitions. The 
component DataflowLanguage redefines the language view and 
the runtime. The DataflowView view adds a data flow meta 
model, the DataflowRuntime component adds a data flow runtime 
interface. The Simulink language component extends all three 
views. Therefore, all existing elements are inherited first. The 
meta model SimulinkMM may only extend the more generic Data-
flowMM meta model, since it is its specialization. The guest 
model definition is a new language component element. Simulink 
infrastructure are new language component elements as well. The 
Simulink runtime interface SimulinkRuntimeIF replaces the old 
DataflowRuntimeIF with a derived and specialized interface.  

Figure 3: Components, models, views, and properties 



 
This inheritance scheme supports language component hierar-
chies, e.g. the data flow hierarchy from the example. Specialized 
language components may introduce new guest models and tool 
chains but still re-use meta models of parent language compo-
nents. Guest and meta model properties that are qualified with the 
type of their defining language component retain their type speci-
fier; derived meta model types or replaced guest models therefore 
appear with their original qualifier. Therefore, meta models may 
only be extended through specialization and therefore are down-
ward compatible to meta models of base components. Guest 
model access restrictions ensure that only transformations and 
infrastructure of one language component type may access the 
same guest model, and therefore also ensure that specialization 
does not lead to type conflicts. 

3.1.3 Conflicting view types 
The special relation conflictingView may be defined for any pair 
of views that must never be used together on one component. 
Specialized view types inherit this property from their base views. 
This way, it is ensured that conflicting realization views are never 
used together to define one component. This is handy if two lan-
guage components are not sufficiently synchronized, but enable 
definition of similar things. For example, both Simulink and AS-
CET views define (different) data flow models. In order to oper-
ate properly on the same component, both views need to synchro-
nize their whole model into a common meta model. While this is 
possible with CompoSE through transformations, this is impracti-
cal in real world applications. For this reason, both view types 
could be marked as conflicting instead, preventing developers to 
use them together on the same component. 

3.1.4 Checks 
Automated checks are executed similar to transformations every 
time when a connected property was modified. In contrast to 
transformations that produce output models, checks validate pre-
defined properties or consistency rules. Typical application areas 
for automated checks in the CompoSE framework are DSL spe-
cific consistency checks across views. Similar to transformations, 
checks are currently developed in Java; for subsequent implemen-
tations, we plan the development of a DSL for specifying Open-
ArchitectureWare (OAW) based checks and model transforma-
tions using OAW’s extend language. 

3.2 CompoSE components 
CompoSE components represent all system components – in this 
paper, we focus on the definition of software components though. 
Components are defined through properties – property values are 
modified through views. CompoSE supports two basic relations 

between components that are known from the UML: Component 
aggregation and component specialization. Currently, no distinc-
tion between aggregation and composition is made in CompoSE. 
However, due to the view concept, the behavior of both principles 
needs to be adapted. 

Component aggregation is supported through the basic view 
type AggregationView. Aggregated components, i.e. components 
that consist of other components, are created through component 
aggregation only; no other non-aggregation realization views may 
be assigned to that component type. The two view types Aggrega-
tionView and NonAggregationView, from which all non-
aggregating view types derive are therefore marked as conflicting 
views. The realization of aggregated components is therefore only 
defined through the aggregation view – no other realization views 
may be applied to that component. Component specifications are 
not affected by aggregation views. Therefore, specifications of 
aggregated components are defined through specification views 
similar to any other view type. The aggregation view of Com-
poSE is similar to the composite structure diagram of UML that 
defines component substructures through instances, ports, and 
links. Figure 5 illustrates an example component aggregation. In 
the example, the component CruiseControlSystem is aggregated 
out of one instance of the component type Filter and one instance 
of the component type Control. 

 
Component specialization is more complicated than component 
aggregation, because it affects both component specification and 
realization views with unknown language semantics. Component 
specifications and realizations are defined through properties. 
Specialized components initially inherit all properties of their 
derived components. In addition, specialized components also 
may override properties of their base components, and therefore 
replace their value. This must be done through a compatible view 
that is able to modify the property in question. However, when 
replacing property values, the following additional restrictions 
apply, which are specific to guest languages and therefore are 
validated automatically by checks (cf. Section 3.1.4). 

• Properties defining component specifications may not be 
lowered by specialized components - everything that was de-
fined by the specification of the parent component must still 
be part of the specification provided by derived components. 

• Properties defining realizations may be overridden and 
changed by specialized components as long as the compo-
nent specification, and therefore inherited component speci-
fications are met. 

Depending on the guest language, language specific specialization 
constructs may be available. For example SDL and UML lan-
guages provide such concepts, while Simulink does not support 
type inheritance. If specialization constructs are available in a 
guest language, these constructs may be used for creating special-
ized guest models based on their parent guest models from parent 
components. Figure 6 illustrates this with an example.  

Figure 4: Language component specialization 

Figure 5: Aggregation view 



 
The example from Figure 6 illustrates CompoSE component spe-
cialization. The SpeedFilter component specializes the more ge-
neric filter component type. It also replaces the DSL based com-
ponent realization. DSL dependent specialization constructs sup-
port specialization of the original realization of the base compo-
nent. CompoSE aggregation and specialization are intentionally 
not strict and enforcing, because this would limit the applicability 
of CompoSE to a smaller number of guest modeling languages. 
CompoSE defines a necessary and sufficient set of constraints for 
aggregation and specialization that enable creation components 
and views with defined semantics.  

4. MULFI-FORMALISM COUPLING 
Up to now, we defined the integration of language components 
and therefore new modeling languages into Compose. View types 
define properties, meta models, and therefore containers for stor-
ing information. Transformations map models from one meta 
model into another, and bridge between guest models. Views also 
provide means to modify model elements by integrating infra-
structure parts that represent existing language infrastructure, e.g. 
editors. Runtime adapters provide an interface between code gen-
erated by different language infrastructures, i.e. code generators, 
and bridge generated code. This works well as long as languages 
with conforming runtime semantics are coupled – for example 
Simulink and ASCET provide similar semantics, and therefore 
coupling is simple. However, multi formalism development re-
quires the combination of modeling languages that implement 
different semantics. Bridging these languages is a challenging 
task, and the approach used for providing this coupling is an im-
portant design decision.  

CompoSE supports this bridging through the InterfaceView 
and the CouplingView view types. The InterfaceView predefines 
port types that represent different semantics. The CouplingView 
supports connections between ports that represent similar seman-
tics, or between port types for which a semantic mapping is de-
fined. Basic port types that are defined by the InterfaceView are 
the following: 

• Data flow ports (FlowPort) represent data flow semantics. 

• Event ports (EventPort) represent asynchronously transmit-
ted and received events. 

• Control flow ports (ControlFlowPort) represent control flow 
semantics, e.g. the definition of operations with entry points 
and control flow transfer upon invocation. 

The coupling of components that provide interfaces based on 
these port types, and therefore implement conforming semantics 
is defined through the coupling view. While coupling of compati-
ble interfaces is trivial, the coupling view also defines coupling 
semantics that map from one interface type to another. Runtime 
adapters need to support these predefined mappings in order to 

support semantic coupling of their supported modeling languages. 
The following automated mappings are currently supported by 
CompoSE: 

• Output data flow ports map to event ports by generating an 
event each time the output value changes. Event ports are 
mapped to input data flow ports by changing the respective 
data value each time an event is received.  

• Control flow ports map to output data flow ports, if they 
define one operation with one parameter only that is then in-
voked upon parameter change. Mapping of control flow ports 
to input flow ports is supported if one operation is provided 
that carries one parameter, which will be the new value of 
the flow port. 

• Mapping between event ports and control flow ports is sup-
ported as following: Whenever an event leaves an event port, 
which is connected to a control flow port, the corresponding 
operation will be invoked. If a response event is declared, the 
return value will be transmitted back upon the operation is 
completed. Operation execution is not synchronized with the 
execution of the component that transmitted the event. Map-
ping of control flow ports to realize required operation re-
quires the definition of request/response pairs of events. The 
execution of required operations is mapped to the transmis-
sion of the request event. The calling component is sus-
pended, until the corresponding response is required, in order 
to conform to control flow semantics. 

By generating explicit adapter components using any supported 
language, more sophisticated mapping may be explicitly defined 
in addition to these predefined mappings. This coupling approach 
documents the basic rationale of compose to support black box 
components with defined white-box interfaces and properties; 
definition of component semantics are supported in a similar 
manner. While CompoSE is not aware of the complete semantic 
model of its black box components, it is aware of their interface 
semantics, and therefore is able to connect them to each other. 
Runtime semantics of components are supported in a similar way. 

CompoSE predefines semantic models that are connected to 
views; not components. They are therefore stored in a property of 
the view type. These semantic models represent an abstraction of 
the runtime semantics of integrated modeling languages – since 
components may support multiple views (as long as restrictions 
regarding incompatible view types are not violated), they may as 
well implement different semantics. Predefined semantic models 
need to be supported by all runtime infrastructures. Additionally, 
new semantic models may be defined; the support of these models 
is then optional to runtime frameworks. The following semantic 
models are predefined: 

• Data flow semantics realize a continuous data flow that con-
tinuously recalculates output values. 

• Event based semantics provide semantics that realize views 
defining asynchronously executed behavior, which is trig-
gered by events. 

• Control flow semantics are passive – views using these se-
mantics define component behavior that is triggered only 
through active transfer of control flow through control flow 
ports. 

Figure 6: CompoSE component specialization 



• Active control flow semantics are used to realize views 
which may receive control flow through control flow ports, 
but still provide an behavior on its own that is independent 
from explicit control flow transfer from other components.  

Runtime frameworks, as already mentioned, need to implement at 
least these four semantic models. They also need to support com-
ponents that apply different semantic models for different views.  

5. COMPOSE APPLICATION EXAMPLE 
In this section, we describe the integration of Simulink, an exist-
ing modeling language for data flow models. The Simulink lan-
guage component supports the definition of component specifica-
tions and realizations through two different views, which conse-
quently affect two different component properties. Simulink is 
supported by an industrial strength tool chain; this tool chain is 
integrated through the infrastructure interface into CompoSE. 

 
Figure 7 describes the new language component SimulinkLan-
guage. New CompoSE language components extends directly or 
indirectly the type GenericLanguageComponent. The Simulink 
language component defines a white box meta model Simu-
linkMM, a guest model SLGuestModel that represents native .mdl 
files, and a model to model transformation that transforms parts of 
the native model into the white box model (not shown in Figure 
7). Simulink views implement data flow semantics; their provided 
infrastructure is defined through an editor and a generator proxy.  
The definition of these infrastructure components is implementa-
tion specific. In our case, CompoSE was implemented into 
MagicDraw, which is a generic UML modeling tool. Infrastruc-
ture components are magic draw plugins that integrate code gen-
eration capabilities by calling code generators of integrated tool 
chains, or by invoking editors of generated tool chains. The editor 
connects to the Simulink editor, which is also part of the commer-
cial tool chain. It is invoked in a similar manner as one if Magic-
Draws native UML diagram editors; however, changes in the 
model are synchronized only after saving in our implementation. 
Simulink diagrams are stored together with its native model rep-
resentation in the guest model; after saving a diagram, transforma-
tions are invoked that extract relevant data from the diagrams and 
update component properties and white box meta models. The 
runtime interface of generated code is defined by the Simulink-
RuntimeIF interface. Native Simulink code does not conform to 
that interface. Therefore, adapter code is generated by the Simu-

linkGen infrastructure proxy to mediate between the CompoSE 
runtime and generated Simulink code. 

6. RELATED WORK 
The author of [1] proposes a generic, component based frame-
work for the evaluation of quality attributes like timeliness and 
safety. Each component gets four artifact types assigned: an en-
capsulated evaluation model, an operational/usage profile, com-
position algorithms, and evaluation algorithms. Based on these 
artifacts, a process for the evaluation of quality attributes is de-
fined. This approach focuses clearly on evaluation of white box 
models; in contrast, CompoSE focuses currently on the efficient 
integration of new modeling languages as black box models, as 
well as providing an extensible framework for synchronizing 
information contained in different black box models. 

The work presented in [2] present BIP, a component based 
development approach that supports multi formalism development 
of behavior components. BIP defines three layers per component, 
focusing on component behavior, interaction, and execution. The 
authors focus on behavioral realizations, and provide a framework 
for modeling components, as well as for the generation of glue 
code to link these components together at runtime. This approach 
focuses on correctness by construction and the adherence to prop-
erties while composing components, e.g. ensuring deadlock free-
dom. This is done via one common modeling language that com-
ponent behavior is mapped to; in contrast, CompoSE provides the 
ability of integrating any language as language component. BIP 
could be used as a backend framework for performing formal 
analysis by defining the language of BIP as a white box meta 
model, and by providing transformations for guest models of lan-
guage components into the formal language of BIP. 

The authors of [3] present a framework for multi language 
development of embedded systems, which provides tool and 
model integration. Modeling languages are integrated into the 
proposed framework through adaption layers that provide a link 
between domain specific models and the common framework. 
Like CompoSE, connected models are divided into public parts 
that are exposed to other models, and private parts that are stored 
in a common repository, but will not be exposed. In contrast to 
this work, the basic framework described in [3] implements multi-
language development on the tool level, not on modeling level. 
Therefore, no modeling language for the combination of multiple 
modeling languages is defined.  

The authors of [4] provide an approach for multi formalism 
development that is much more tightly integrated than CompoSE; 
the described approach aims at integrating the meta models of 
used modeling languages. This is one difference between Com-
poSE and the approach presented in [4]: while CompoSE uses a 
central system model to synchronize modeling elements, the au-
thors of [4] directly synchronize meta models with each other. 
While this approach is certainly appealing, the creation of the 
proposed consistency checking and mapping meta models costs 
considerable effort when defining a multi-language modeling 
approach for multiple already existing modeling languages. De-
pending on the amount of exported data and the complexity of the 
synchronization rules in views, CompoSE might provide such a 
tight synchronization as well. However CompoSE scales; in most 
cases full meta model synchronization is not required. Therefore, 
CompoSE will only synchronize a small subset of model data, 

Figure 7: Simulink language component 



resulting in a smaller and therefore less expensive synchroniza-
tion approach in these situation (regarding both money and re-
quired processing power). 

Ptolemy, which is presented in [5], is a famous approach for 
the application of execution semantics in Java environments, as 
well as for their evaluation, simulation, and composition. The 
focus of Ptolemy is on the semantic coupling, and simulation of 
components that implement different execution semantics. How-
ever, other aspects besides runtime semantics, e.g. the integration 
of modeling languages, tools, and (meta) model synchronization 
is not covered. Therefore, both approaches, Ptolemy and Com-
posE have a slight overlapping, which is the coupling of seman-
tics. This coupling is currently in Ptolemy much more developed 
than in CompoSE, which focuses on the integration of modeling 
languages and light-weight model synchronization.  

The authors of [6] describe Metropolis, which is a compo-
nent based modeling framework, which is based on the following 
core concept of separation between communication and computa-
tion, and separation of functionality and architecture. Metropolis 
provides a common meta model that most existing models of 
computation may be transformed into. The metropolis model of 
computation is based on concurrent execution of action se-
quences; actions are subdivided into communication and compu-
tation actions. The main difference between CompoSE and Me-
tropolis is its focus: CompoSE is an approach that aims at inte-
grating (domain specific) languages, infrastructure and runtime 
frameworks in a light-weight manner. Runtime frameworks are 
combined using common runtime interfaces – as long as a runtime 
adapter and semantic mappings are provided, a specific language 
may be integrated into CompoSE. Metropolis provides a common 
model of computation that languages are transformed into. This 
requires a much more tight integration with respect to runtime 
models, and therefore much more integration effort. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we have presented CompoSE, our multi-formalism 
modeling framework. CompoSE has been devised by applying 
principles from component based software engineering to the 
creation of a multi formalism modeling approach. It supports 
multi formalism development at three levels: the modeling level, 
the infrastructure level, and the runtime level. The principle for 
multi-formalism development with CompoSE is the application of 
guest models and guest languages that are plugged into one host 
model as language components. Views provide access to guest 
languages at modeling level and present data stored in models. 
Guest models are stored in their native file format and meta model 
of the guest language, meta models may be used to export whole 
guest models or part of it into the host model, so that other lan-
guage components may access this information. This transforma-
tion is performed though explicit transformations. The CompoSE 
approach is different from most other approaches, because it pro-
vides a light weight language integration; the degree of language 
integration depends on provided meta models and transforma-
tions, and may therefore be adapted. This is an important aspect 
for its practical applicability, where integration effort equals to 
money.  

Through the concept of guest models, existing languages, in-
frastructure, and runtime frameworks may be used with Com-
poSE. This is especially important in industry, because multi for-

malism approaches are only accepted if they support established 
and well proven tool chains. The separation between black box 
guest models and white box meta models enables a rapid integra-
tion of new modeling languages, because only relevant attributes 
of guest models need to be synchronized with the host model; full 
meta model synchronization is possible, but not necessary with 
CompoSE. We have proven the applicability of CompoSE 
through the integration of the existing Simulink language as lan-
guage component.  

Ongoing and future work with respect to CompoSE is the 
definition of a set of views for systems modeling in the automo-
tive industry. Additionally, the definition of formal semantics for 
CompoSE language constructs, relations, as well as for language 
and formalism coupling is currently ongoing work. Once this is 
finished, clear coupling semantics will be available, as well as an 
approach for the integration of new coupling semantics. 
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