
MobiDSL - a Domain Specific Language for Mobile Web Applications
: developing applications for mobile platform without web programming

Ankita Arvind Kejriwal
Birla Institute of Technology and Science, Pilani.

Goa Campus, India
kejriwal.aa@gmail.com

Mangesh Bedekar
Birla Institute of Technology and Science, Pilani,

Goa Campus, India
bedekar@bits-goa.ac.in

Abstract
The enormous potential of mobile web as an information
appliance presents all organizations an urgent need and a
compelling reason to not only create mobile specific versions of
certain parts of their current systems, but also develop new mobile
web applications to derive maximum benefit from this medium.
However, as mobile web applications are generally being built
using the same web engineering methodologies and tools which
are used for building desktop web applications, organizations
around the world require significant resources, making it difficult
for many to quickly build these applications. In this paper, we
describe our aim to mitigate this problem by using a Domain
Specific Modeling (DSM) based approach. We explain MobiDSL
- a Domain Specific Language (DSL) for modeling Mobile Web
Applications and show how it can enable system designers and
analysts to easily define an application's specification at a very
high level of abstraction without any web programming. We also
explain how a Virtual Machine (VM) is used to execute MobiDSL
models, which helps to radically simplify the testing, deployment
and life cycle management of such mobile web applications.

1. Introduction
Mobile Web refers to web content (static or dynamic) which is
specifically designed to be accessed on mobile devices via a
browser [2]. The mobile web is emerging as an information
medium whose reach is projected to surpass all other mass media
(including the print, cinema, radio, television and desktop
internet) as mobile devices have the advantage of being personal,
portable, always on and connected. It presents us with a massive
opportunity to provide information and e-services to entire human
population, not just in developed countries but also in developing
and under-developed regions of the world. It can be the best
enabling mechanism to empower billions of people with
information and to bridge the digital divide.

While it is possible to access standard web content on some
mobile devices, the user experience is often less than satisfactory
primarily due to smaller screen size and lower bandwidth
compared to a desktop or laptop. Therefore, Mobile Web Best
Practices (MWBP) [2] specifies practices for delivering web
content to mobile devices. These recommendations refer to the
‘content’ and not to the processes by which the content is created
or delivered. We find emergence of following trends in creation
and delivery of web content to mobile devices.

1. The static web content is either being re-developed or being
transformed at runtime by using server side software such
as Instant Mobilizer [4].

2. The dynamic web content is being provided by a new class
of re-engineered, light-weight mobile specific versions of
corresponding desktop web applications. Some of the
notable examples are dynamic content sites such as BBC
and ESPN; and dynamic applications such as Gmail,
Facebook, and Twitter.

For the purposes of this paper, we define Mobile Web
Application as “a web application specifically designed to deliver
dynamic information from the database and provide simple
transactional services to mobile devices via a browser”.

The rapidly growing popularity and success of many mobile
web applications has demonstrated the enormous potential of
mobile web as an information appliance. Organizations are faced
with an urgent need as well as a compelling reason to not only
create mobile specific versions of certain parts of their current
systems (legacy, client-server or web applications) but also to
develop new mobile web applications which derive maximum
benefit from this medium.

Though mobile web applications are simpler compared to
desktop web applications, they are generally being built using the
same web engineering methodologies and tools which are used for
building desktop web applications. Thus, organizations around the
world would require significant resources to design, develop, test
and deploy mobile specific versions of their current as well as
new applications. As a result, it might be difficult for many to
quickly develop these applications.

A light-weight development methodology for developing
mobile web applications which could supplement and co-exist
with whatever methodology an organization might be using for
their core systems could help address the aforesaid issue. This
methodology would also have to be simple enough so that it can
be used directly by system designers and analysts to develop such
applications.

We attempted to find a solution using the DSM based
approach. We analyzed the mobile web domain to identify various
constructs and designed a simple, compact and extensible DSL
called MobiDSL for defining mobile web applications. Though
DSM based approaches usually involve generation of code which
can be compiled and run, we chose to develop a Virtual Machine
(VM) to execute MobiDSL models due to various benefits which
are described later. Our approach aims to provide a reasonably
sound framework for rapid prototyping, development, testing,
deployment and life-cycle management of mobile web
applications without the need of any web programming or
provisioning of any special middleware.

The rest of the paper is structured as follows. Section 2
describes the background and related work. Section 3 describes

mailto:aa@gmail.com
mailto:bedekar@bits-goa.ac.in

our approach, objectives and the VM. It also explains MobiDSL
with a few succinct examples and finally provides a brief
overview of MobiDSL’s meta-model. In Section 4, we discuss
various issues and describe the benefits of interpretive approach
over generative approach. Section 5 presents a summary of
contributions and future work.

2. Background and Related Work
Mobile internet access began with the Wireless Access Protocol
(WAP), wherein the pages were composed in Wireless Markup
Language (WML). The advent of WAP 2.0 permitted use of
XHTML markup with end-to-end HTTP. To assist development
community, W3C has launched Mobile Web Initiative [1] and
published standards such as Mobile Web Best Practices (MWBP),
XHTML for mobile (XHTML-MP), Cascading Style Sheet for
mobile (CSS-MP), and MobileOK Basic Tests.

Mobile Web applications are generally being built using the
same Web Engineering methodologies which are used for
building regular web applications. Most methodologies follow a
standard three tier architecture as described below:

a) A database tier – which stores the database and runs the
database server

b) An application tier – which runs the actual application
logic. The application server receives the user inputs from
the client device via HTTP (over TCP/IP) and can use
various API’s to interface with HTTP server. It can
interface with database server using various database API’s
to retrieve information or update transactions.

c) The client tier – which runs the application using a web
browser. The browser renders pages composed in HTML.
CSS is used to specify visual aspects rather than specifying
them in HTML for each hypertext element. The client tier
can also use technologies such as DHTML (to dynamically
construct HTML fragments), JavaScript (to handle events)
and Ajax (to asynchronously access the application tier).

There is a plethora of Web Engineering methodologies and
frameworks ranging from scripting technologies such as ASP, JSP
and PHP (to name a few) to enterprise class web technologies
such as J2EE. There are also sophisticated web modeling based
frameworks such as HDM, WAE, WSDM, UWE and WebML.
The scripting based systems provide API for interfacing with
HTTP server and Database Server and allow the developer to
hand code the programs. Many systems also provide tools and
templates to automate generation of boiler-plate code. The J2EE is
a sophisticated enterprise class technology which divides
application server into partitions, which can be run on different
machines to achieve high degree of scalability. The modeling
based frameworks provide facilities for various facets of modeling
such as Content Modeling, Hypertext Modeling, Presentation
Modeling and Customization Modeling. Some of them also
provide tool support to partially or fully generate application code.
There are also some XML based frameworks employing XML
transformation (XSLT) such as Apache Cocoon.

However, creating a robust and scalable mobile web
application using any of the above methodologies is not a trivial
task. Many researchers have advocated use of Domain Specific
Language based frameworks to develop robust, reliable and
secure programs in a cost effective manner by using high level
abstractions. We were inspired by the reported success of DSM
approach in many application areas [5, 6] and the use of DSL
paradigm in web engineering by some researchers such Nunes et
al. [7], Martin et al. [8], E. Visser [9] and Ceri et al. [10].

We were particularly influenced by Web Modeling Language
(WebML) proposed by Ceri et al. [10], which stands out for
enabling high level abstraction of various models such as
structural model, composition model, navigation model,
presentation model, and customization model. However, whereas
WebML’s meta-model is very elaborate, we have combined the
models into one simple model. Moreover, whereas WebML’s tool
generates the application code, we have implemented a VM to
execute the model. Such a concept of executable DSL models has
already been demonstrated in ModelTalk [11].

3. MobiDSL
3.1 Overview of Mobile Web Applications
The Mobile Web Applications aim at providing a compelling user
experience. We find evolution of new design philosophy for
mobile web, whose central theme is based on simple and
minimalistic design concept [3].

A mobile web application consists of various web pages,
which can be broadly classified as Home Page, Query Pages and
Transaction Pages. These pages are hyperlinked to each other to
enable navigation thorough the system. The links can be either
Contextual Links (which pass certain contextual information
while navigating to another page) or Non-Contextual Links.

The Home Page typically provides certain static choices (menu
options). It may contain an authentication section to allow only
authorized users to access the application. It can also contain
choices created dynamically based on certain information in the
database.

The Query Pages enable the users to access information from
database based on some selection criteria. The selection criteria
can be either based on search parameter inputs defined in the
same page or query string passed to the page by a contextual link.
The Query Pages can either display several records (List View) or
a single record (Record View).

The Transaction Pages enable the mobile users to update
simple transactions on the database. These transactions typically
allow Create, Update and Delete facility on records in a specified
table. They allow elementary validations to be performed on the
data entered by users.

Some mobile applications also require special features such as
Access Control for restricting access to some pages to a certain
group of users based on their user role. Some applications might
require personalization features, wherein user’s preferences such
as presentation skins, accessibility preferences and favorites are
stored in a database table, and web pages are created accordingly.

The mobile web pages typically have different sections as:
 Page Header - which may consist of Branding (Logo,

Name), Title and Navigation Tree
 Body - which can consist of menu options, search request

section, query view section or transaction entry section
 Page Footer - which may consist of Branding, certain links

or other relevant information
We find that Mobile Web Applications differ from regular

Web Applications in several ways which are summarized below:
1. Device limitations - screen/keypad size and bandwidth
2. Different Usage pattern
3. Minimalistic design with Simple Layouts (no frames or

nested tables or complex layouts)
4. No processing on client devices using DHTML, JavaScript

or Ajax, as this would render the application unusable on a
majority of mobile devices.

5. Lesser functional expectations

3.2 Our Approach
The simple nature of mobile web application presents an
opportunity to create new lightweight frameworks suitable for this
emerging medium. Our approach to creating a new framework for
mobile web applications was based on the promise of DSM
approach and on the premise that the mobile web domain can be
analyzed to identify the core requirements and various design
elements, based on which a domain specific language (DSL) can
be designed. DSL is “a high-level software implementation
language that supports concepts and abstractions that are related
to a particular (application) domain” [9].

The driving factor for identification of language constructs was
primarily based on “Domain Expert’s and Developer’s Concepts”
approach [5]. Based on our earlier work in developing mobile web
applications using scripting methodologies, we identified distinct
features and recurring themes in these applications. We also
discussed with an industry expert to understand the domain
expert’s concepts on creating mobile versions of current systems
without any programming. We were also partly led by “look and
feel” approach [5] as far as the user interface (hypertext) was
concerned.

We have designed a simple and concise textual DSL suitable
for developing mobile web applications called MobiDSL, which
enables a developer to define the specifications for each page at a
very high level of abstraction without requiring any knowledge of
web programming. We have used XML as the Meta Language as
XML markup is simple, flexible and easily understood. MobiDSL
allows us to define:

1. Page structure
2. Hypertext (text, widgets and links) in each section
3. SQL for data retrieval
4. Query result presentation
5. Validations and other business logic for transactions

3.3 Objectives of our framework
Our framework aims to:

1. Simplify mobile web application development by allowing
designers, analysts and programmers to define application
at a high level of abstraction

2. Allow the application to be run on most mobile devices by
carrying out all processing and validations on server and
using only XHTML-MP (with CSS-MP) on client device

3. Simplify deployment by adopting a simple three tier
distributed RESTFUL architecture, which employs only
basic protocols (such as HTTP) and basic API’s (such as
CGI and Pass Through SQL)

4. Provide scalability by allowing multiple application servers
wherein a request could be serviced by any of them.

5. Optimize processing by caching to retrieve result sets of
recently executed queries

6. Avoid middleware complexity normally seen in many high
end web applications

3.4 The Virtual Machine
The Virtual Machine (VM) runs the mobile web application as
embodied in the MobiDSL Model. It is implemented as a
stateless, distributed and scalable Application Server. A schematic
view of the MobiDSL VM deployment is shown in figure 1. VM
uses the configuration information in sys.xml file to connect to
Database Server and Memcached. On one side, the VM interfaces
with HTTP server encapsulating the CGI API. On the other side,
it interfaces with database and encapsulates the database access

API. When the VM receives client input it identifies the page to
be delivered based on page identifier in query string. It parses the
corresponding MobiDSL model (<pageid.xml>), runs database
queries based on search request and constructs the response
XHTML page (with embedded mvm.css) as specified in model. In
a nutshell, it handles complete server side processing for the
mobile web application (encapsulating various web engineering
technologies) based merely on the application’s MobiDSL model.
The VM also manages Sessions, Pagination, and a Navigation
tree. The response pages created by VM are compliant with
mobileOK Basic Tests.

Figure 1. A Schematic View of MobiDSL VM Deployment
We have implemented this system on classic Linux-Apache-

MySQL-PHP platform. The implementation follows a distributed
three tier model, allowing any number of application servers to be
connected to database server. A server based session management
stores the session data in Memcached on server side, allowing that
information to be retrieved from any application server. This
makes each request-response cycle completely stateless, making it
possible for each user interaction to be serviced by a different
application server, making the system scalable and reliable. The
VM also caches the result set of recently executed queries to
optimize processing.

3.5 Sample Application
To understand MobiDSL, let us consider an example of a Mobile
Web Pharma Sales Force Application used by Medical Sales
Representatives (MSR). One of the tasks of the MSR is to visit
various physicians (in the towns assigned to her) periodically to
brief them about the company’s products. The application enables
an MSR to view the list of physicians and details of previous
visits. It also enables her to record details of a new visit on-line. A
simplified content model of relevant parts of the application is
shown in figure 2.

.
Figure 2. Content Model of Pharma Sales Force Application

3.6 The Physicians List Query
We first consider the physicians list query page/screen shown in
figure 3. This screen enables the MSR to view a list of all
physicians in the towns assigned to her. Moreover, it also allows
her to optionally search based on part of name, specialty code or
town.

Figure 3. The Physicians List Page

The specification for this page as defined in MobiDSL is shown in
figure 4. The root element page identifies the page and contains
other elements such as pageheader, searchrequest,
queryview and pagefooter corresponding to each section in
the page.

The MobiDSL code for Page Header specifies a static image
(stored on server in directory relative to location of VM), the page
header title, a link back to the home page and the current page’s
title. Most of these specifications are self-explanatory.

The code for Search Request section specifies a text line, input
widgets for search criterion and Submit and Reset buttons. The
SQL statements are used to specify the options for input widgets
such as Specialty (all specialties to be shown) and Town (only
those towns which are assigned to MSR to be shown).

The code for Query View section specifies the SQL to be
executed for retrieving required data from database based on the
search criterion. Here, the SQL specifies the physician’s list by
using a join of the Physician table with the Towns table (for
only those towns assigned to a MSR), and further filtering records
based on search criterion. The search inputs submitted by the
client device are stored in variables with names corresponding to
input widget name prefixed by $. Using caret (^) in expressions
such as a.town=$town^ implies that if the input stored in $town
is empty, the expression is to be ignored (reduced to logical true
by VM). The data retrieved from the database using SQL can be
presented in various layouts such as para, dualcol and table.
The resultrecord element specifies presentation for each
record and can contain one or more resultcol elements (data
columns). A resultcol element can also specify a link which is
invoked when user clicks on that column’s value. It can pass that
value (as well as any other value using passvalues attribute) as
query string to the resource pointed to by it.

<?xml version='1.0' standalone='yes'?>
<page id="phylist">

<pageheader>
<image src="images/psf.gif" nobreak="true"/>
<text class="title">Pharma Sales Force</text>
<text href="mvm.php?pageid=home"

nobreak="true">Home</text>
<text expr="' | '" nobreak="true"/>
<text>Physicians List</text>

</pageheader>
<searchrequest>
<text>Search for Physicians</text>
<input type="text" label="Name" name="physician">
<input type="select" label="Speciality"

name="spclcode"
optionsql="select spclCode from specialty"/>

<input type="select" label="Town" name="town"
optionsql="select town from towns where

medrepid=$_userid"/>
<submit label="Submit" />
<reset label="Reset" />

</searchrequest>
<queryview layout="table" recordsperpage="4">
<sql>select a.* from physician a, towns b

where a.town=b.town and b.medrepid=$_userid
and match(a.physician) against ($physician^)
and a.spclcode=$spclcode^ and a..town=$town^
order by physician</sql>

<text expr=" $_reccount . 'Results Found' "/>
<resultrecord>
<resultcol label="Name" sqlcol="physician"

href="mvm.php?pageid=phydet"
passvalues="town;physician"/>

<resultcol label="Speciality"
sqlcol="spclcode"/>

<resultcol label="Town" sqlcol="town" />
</resultrecord>

</queryview>
<!-- pagefooter code omitted -->

</page>
Figure 4.The Specification for Physicians List Page in MobiDSL

3.7 Key Concepts
Sequence of Events and Processing. Though some MobiDSL
element tags and properties might appear to be similar to HTML
tags, they are not HTML tags. Whereas HTML is processed by
the browser on the client device, MobiDSL code is processed by
the VM (on Server) to handle client device inputs or create HTML
output pages accordingly. The following points summarize the
sequence of events and processing for the previous query page.

1. When this page is requested (as mvm.php?pageid=phylist)
for the first time, the VM creates initial XHTML page with
a list of all physicians in all towns assigned to the MSR (as
all search inputs are empty at that time) in following steps:
a) VM reads MobiDSL code for target page (phylist)

and parses it. It saves parsed DSL in cache for re-use.
b) VM begins to construct the XHTML page by generating

the <head> section with page title and embedding the
CSS file as inline <style>.

c) VM then generates HTML for Page Header.
d) Then, VM generates HTML for Search Request section.

If the section contains any Select widgets, it populates
options for these widgets from result sets of
corresponding optionsql. The HTML for this section
is embedded in <form> tag. VM also embeds control
information like pageid & sessionid as hidden fields.

e) To create HTML for Query View section, the VM first
prepares the SQL statement (by substituting the values
of variables used in SQL) and submits it to database
server. The VM fetches the result set and constructs
HTML for presenting the data in the specified manner.

f) Then, VM generates the HTML for Page Footer section.
g) It finally sends the fully constructed XHTML-MP page

with embedded CSS to the client device.
2. The browser on the client device loads the XHTML page.

The user can see list of first four physicians. The user can
use Next link to request the server to send a page with next
set of records. The user can also select the link associated
with physician name to navigate to Physician’s Details
Page. The user can also enter values for some search
criteria and press Submit to request the server for a filtered
set of data.

3. When the user submits the search criteria, it is posted to the
VM. The VM retrieves control information such as pageid
and sessionid from the posted data. It loads the parsed
MobiDSL code from cache based on pageid. It retrieves
search inputs from posted data and cleans it to guard against
SQL injection attacks. The VM then prepares the SQL
statement as explained earlier and submits it to the database
server. It then fetches the result set and re-constructs the
XHTML page and sends it back to the client device.

4. When the user selects any of the pagination link (First,
Prev, Next or Last), a query string is sent to VM with
appropriate information. The VM receives the query string
and processes it in a manner similar to (3). The VM fetches
the result set from cache and reconstructs the XHTML page
with relevant records.

Variables. MobiDSL gives us the flexibility to refer to various
variables in SQL statements or other expressions. These variables
are created and managed by VM automatically in their respective
context; and can be referred to in the specifications in appropriate
contexts. In a nutshell, these variables are:

1. Authentication variables: These are variables like $_userid
and $_userrole. They have global scope.

2. Query String Variables: Name-value pair collections from a
contextual link are stored in variables with corresponding
names prefixed by $. For example, if a query string is
field1=value1&field2=value2, then two variables,
$field1 and $field2 will be created. These variables are
in scope of the page in which they are received.

3. Inputs Fields in a Page: The values received as posted data
from a page are stored in variables with corresponding
names of input fields prefixed by $. These variables are in
scope of the page in which they are received.

4. SQL Query Result Set Control Variable: the $_reccount
variable gives the count of records retrieved by query. It is
in scope of queryview section.

5. SQL Query Result Record Level Variables: a) $_currec
which gives the current record number. b) Result Columns
for current record stored in variables with the column
names prefixed by $_sqlres_. These variables are in
scope of resultrecord specifications.

Expressions. In MobiDSL specifications, we can use expressions
to define some attributes of various elements. These expressions
can be any PHP expression comprising any PHP functions (in-
built functions, library functions or user-defined functions) and
any of the variables available in the given context. The ability to
use expressions in several attributes such as following in the
MobiDSL specification enables the developer to define various
requirements with ease:

1. expr in text and resultcol elements can be used to
define an expression to display required string or value

2. hrefexpr in image, text or resultcol elements to define
an expression for a link associated with that element

3. various attributes such as defvalexpr, disableifexpr,
validexpr etc. for Input field elements in a transaction

It is to be noted that the developer can provide additional
functionality by developing application specific PHP functions
which can be used in expressions. This feature makes MobiDSL
reasonably extensible while keeping its core grammar to a
minimum.

Pass Through SQL. MobiDSL allows us to define a pass through
ANSI SQL to retrieve any data from the database. The SQL can
be of any complexity involving any number of tables and can
contain MobiDSL variables. The MobiDSL VM prepares the SQL
statement by substituting the values of variables and then submits
it to the database server in a pass through fashion. The SQL is
executed as such by the database server and the result set is sent
back to the VM. The SQL can be used in following contexts in the
MobiDSL specification:

1. In queryview section to retrieve the data to be presented.
2. In optionsql attribute for select input widgets to populate

the select options.
3. In pageheader and pagefooter to retrieve required

control information from the database.

3.8 The Physicians Details Query.
We now consider the physicians details query page/screen shown
in figure 5. This screen enables the MSR to not only view contact
details, but also call or email the physician using a single click. It
shows a list of previous visits to the physician and allows the
MSR to view any previous visit transaction. It also allows her to
initiate a new Visit Transaction.

Figure 5. The Physicians Details Query Page

The specification is shown in figure 6. The queryparams
specify query string parameters received by this page. The page
contains two queryview sections:

1. Physician’s Contact Details (Single Record View) - Here,
the SQL specifies the desired selection from the physician
table using query string parameters. The layout is set to be a
two column layout where the first column shows label and
second column shows data. The Telephone, Mobile and
Email values are rendered as links using hrefexpr which
allows us to specify PHP expression for defining the link.

2. Visit Details (List View) - The SQL specifies selection
from phyvisit table. The layout is set as table showing
the visit date and time. The visit date is rendered as a link to
let the user to navigate to Visit Transaction in view mode.

<?xml version='1.0' standalone='yes'?>
<page id="phydet">

<queryparams>
<param name="town"/>
<param name="physician"/>

</queryparams>
<!-- pageheader code omitted -->
<queryview multirecord="false" layout="dualcol">
<sql>select a.*,b.spclname

from physician a,Speciality b where
a.spclcode=b.spclcode and a.town=$town
and a.physician=$physician</sql>

<resultrecord>
<resultcol label="Name" sqlcol="physician"/>
<resultcol label="Speciality"
expr="$_sqlres_spclcode.'-'.$_sqlres_spclname”/>
<resultcol label="Address" sqlcol="address"/>
<resultcol label="Telephone" sqlcol="telno"

hrefexpr=" 'tel:'. $_sqlres_telno "/>
<resultcol label="Mobile" sqlcol="telno"

hrefexpr=" 'tel:'. $_sqlres_mobileno "/>
<resultcol label="Email" sqlcol="telno"

hrefexpr=" 'mailto:'. $_sqlres_emailid "/>
</resultrecord>

</queryview>
<queryview layout="table" recordsperpage="5">
<sql>select * from phyvisit where

town=$town and physician=$physician
order by visitdate desc</sql>

<text expr=" $_reccount . 'Visits' " />
<resultrecord>
<resultcol label="Date" sqlcol="visitdate"

hrefexpr="'mvm.php?pageid=phyvisit'.
'&txmode=view'"

passvalues="phyvisittxno"/>
<resultcol label="Time" sqlcol="intime" />

</resultrecord>
</queryview>
<!-- pagefooter code omitted -->

</page>
Figure 6. The Specification for Physicians List Query Page

3.9 The Physicians Visit Transaction
Now we consider Physicians Visit Transaction page/screen as
shown in figure 7. This screen enables the MSR to enter details of
her visit including the products that she briefed to a physician.

Figure 7. The Physicians Visit Transaction Page
The specification for this page is shown in figure 8. As before,

the queryparams specify query string parameters received by
this page. While the query parameter phyvisittxno is passed to
load the transaction in View Mode, the town and physician
parameters are passed in New Mode to serve as default values for
these fields. This page contains a simpletxn section which
contains two transaction blocks (identified by txnblock):

1. The first transaction block corresponds to phyvisit table.
This block is defined as a parent block with single record

set in dual column layout. While the tablekeys specify
primary keys of the table, loadkeys define corresponding
variables whose values should be used to retrieve the
transaction in View or Edit Mode. The block contains
several fields, the first of which is Tx. No, whose datatype
is defined as autoincr (value of field to be generated by
database server while saving the record). The next field is
Tx. Date, which has default value of current date. The Med.
Rep. field is a protected field with a default value of MSR’s
userid. Then, we have more input fields whose
specifications are self-explanatory.

2. The second transaction block corresponds to phybriefs
table. This block is defined as a child block with multiple
records set in tabular layout. The first field here is Prod.
Code which has a foreign key validation against products
table. The second field is Samples which is optional.

While the transactional model uses Controls such as Submit
button and Cancel link in New Mode, it uses Edit link, Delete
link and Back link in View Mode. The behavior of these controls
is fixed and the developer can only specify alternate labels for
these controls.
<?xml version='1.0' standalone='yes'?>
<page id="phyvisit">

<queryparams>
<param name="town"/>
<param name="physician"/>
<param name="phyvisittxno"/>

</queryparams>
<!-- pageheader code omitted -->
<simpletxn>
<txnblock blocktype="parent" multirecord="false"

layout="dualcol" tablename="phyvisit"
tablekeys="phyvisittxno"
loadkeys="$phyvisittxno" />

<input type="text" label="Tx. No."
name="phyvisittxno" datatype="autoincr"
disableifexpr="1"/>

<input type="text" label="Tx. Date"
name="visitdate" datatype="date"
defvalexpr="date('Y-m-d')"/>

<input type="text" label="Med. Rep."
name="medrepid" datatype="char" size="20"
defvalexpr="$_userid" disableifexpr="1"/>

<input type="text" label="Town"
name="town" datatype="char" size="20"
defvalexpr="$town" disableifexpr="1"/>

<input type="text" label="Physician"
name="physician" datatype="char" size="30"
defvalexpr="$physician" disableifexpr="1"/>

<input type="text" label="In Time" name="intime"
datatype="time" size="5"/>

<input type="text" label="Out Time"
name="outtime" datatype="time" size="5"
valdexpr1="$outtime > $intime"
valdmsg1="OutTime must be morethan InTime"/>

</txnblock>
<txnblock blocktype="child" multirecord="true"

layout="table" tablename="phybriefs"
tablekeys="phyvisittxno"
loadkeys="$phyvisittxno" />

<title>Products Briefed</title>
<input type="select" label="Prod. Code"

name="prodcode" datatype="char" size="10"
optionsql="select prodcode from products"
fkeytable="products"
fkeytablefields="prodcode"
fkeyvaluefields="$prodcode"
fkeyerrmsg="Invalid Product"/>

<input type="text" label="Samples"
name="sampleqty" datatype="num" size="2"
required=”false”/>

</txnblock>
</simpletxn>
<!-- pagefooter code omitted -->

</page>
Figure 8. The Specification for Physicians Visit Transaction

3.10 MobiDSL Metamodel
We can see that MobiDSL has very high expressive power as it
allows us to specify page structure, presentation (static/dynamic
text, widgets), navigation, data retrieval, data formatting and
transactional logic at almost same level of expression as required
in communicating the specifications to a programmer. Further, the
use of pass-through SQL enables system designers, analysts and
programmers to leverage their knowledge to develop mobile web
applications with relative ease without any web programming.
Moreover, MobiDSL allows extensibility by allowing developers
to use any user-defined function in various expressions. Figure 9
presents a simplified view of MobiDSL metamoddel, which
depicts various design elements/constructs at a glance.

Figure 9. A simplified view of MobiDSL metamodel

4. Discussions
4.1 Application Life-Cycle Management
MobiDSL provides a reasonably sound framework for complete
life-cycle management of mobile web applications:
Prototyping: As the MobiDSL specifications are at very high
level almost mirroring the functional requirements, it is possible
to create working prototypes using MobiDSL in similar time that
might be needed to create a prototype using any prototyping tool.
Development: MobiDSL is compact DSL designed specifically
for mobile web applications. The constructs provided in the DSL
along with the ability to use pass through SQL and user defined
functions make it reasonably adequate to cover most of the needs.
Testing: MobiDSL code, being declarative in nature, is far easier
to debug than a procedural code. Moreover, the VM allows quick
testing as the changes are reflected immediately in the application.
This can save considerable time as the change-compile-build-
deploy cycle is eliminated.
Deployment: The VM uses basic protocols (HTTP) and basic
API’s (CGI, pass through SQL). As a result, it can be deployed on
commodity hardware or most of the existing infrastructure in an
organization. It provides scalability by allowing multiple
application servers, which can be added or removed without need
to shut down the application. Finally, the VM does not require any
special middleware typically seen in many high-end applications.
4.2 Generative vs. Interpretive Approach
We believe that a carefully crafted implementation of a VM can
offer several benefits at speeds matching that of the generated

code. Whereas generated code needs to be maintained, versioned,
compiled and installed on an application server, these tasks are
eliminated in the interpretive approach, leading to easier
deployment and maintenance of the application.

5. Conclusions
Contribution. In this paper, we have looked into the question of
how we can simplify the development, deployment and life cycle
management of mobile web applications. The question is
important because mobile web is a fast growing information
delivery medium and it is vital for organizations to quickly
develop systems for mobile platform with least effort. Our main
contributions can be summarized as follows:

1. Identifying core requirements and design elements of
mobile web applications

2. Designing a DSL for defining the complete specifications
of a Page/Screen

3. Incorporating the concept of using SQL in DSL for Queries
4. Creating a VM to support the DSL
This research has resulted in development of a lightweight

framework consisting of MobiDSL and its associated VM. It has
been tested extensively by us, and was found to perform as per
our design expectations on parameters such as coverage of
problem domain, ease of development and deployment, speed of
execution, scalability and reliability. This framework is also being
used in industry to create mobile specific versions of certain parts
of their enterprise application.
Future Work. MobiDSL being a nascent framework, is evolving
continuously. Future work includes enhancing the DSL to
increase functionality, providing client-side validations using
JavaScript (based on device capability) and conducting a detailed
comparative study of various metrics with respect to other popular
web engineering methodologies.

Acknowledgments
We thank the anonymous reviewers for their valuable comments.
We also thank all those who have helped in this work.

References
[1] Mobile Web Initiative. Available: http://www.w3.org/Mobile/
[2] Mobile Web Best Practices1.0. Available:

http://www.w3.org/TR/2008/REC-mobile-bp-20080729/.
[3] dotMobi Mobile Web Developer's Guide. Available:

http://mobiforge.com/starting/story/dotmobi-mobile-web-
developers-guide.

[4] Instant Mobilizer. Available: http://www.instantmobilizer.com/
[5] Janne Luoma,,Steven Kelly, Juha-Pekka Tolvanen : Defining

Domain-Specific Modeling Languages: Collected Experiences.
Available: http://www.metacase.com

[6] Arie van Deursen, Paul Klint, Joost Visser: Domain-Specific
Languages: An Annotated Bibliography. SIGPLAN Notices 35(6):
26-36 (2000)

[7] Nunes, D. A.; Schwabe, D. : Rapid Prototyping of Web Applications
Combining Domain Specific Languages and Model Driven Design.
in 6th International Conference on Web Engineering (ICWE’06),
ACM Press, Jul. 2006.

[8] Martin Nussbaumer, Patrick Freudenstein, Martin Gaedke: Towards
DSL-based web engineering. WWW 2006: 893-894

[9] Eelco Visser: WebDSL, “A Case Study in Domain-Specific
Language Engineering,” in GTTSE 2007: 291-373

[10] Stefano Ceri, Piero Fraternali, Aldo Bongio: Web Modeling
Language (WebML): a modeling language for designing Web sites.
Computer Networks 33(1-6): 137-157 (2000)

[11] Atzmon Hen-Tov, David H. Lorenz, Lior Schachter: ModelTalk: A
Framework for Developing Domain Specific Executable Models.
CoRR abs/0906.3423: (2009)

http://www.w3.org/Mobile/
http://www.w3.org/TR/2008/REC-mobile-bp-20080729/
http://mobiforge.com/starting/story/dotmobi-mobile-web-
http://www.instantmobilizer.com/
http://www.metacase.com

