
Model-View-Controller Architecture Specific
Model Transformation

Hiroshi Kazato
Tokyo Institute of Technology /

NTT DATA CORPORATION
Tokyo 152–8552, Japan

kazato@se.cs.titech.ac.jp

Rafael Weiß
Tokyo Institute of Technology

Tokyo 152–8552, Japan
rweiss@se.cs.titech.ac.jp

Shinpei Hayashi
Tokyo Institute of Technology

Tokyo 152–8552, Japan
hayashi@se.cs.titech.ac.jp

Takashi Kobayashi
Nagoya University

Nagoya 464–8601, Japan
tkobaya@is.nagoya-u.ac.jp

Motoshi Saeki
Tokyo Institute of Technology

Tokyo 152–8552, Japan
saeki@se.cs.titech.ac.jp

ABSTRACT
In this paper, we propose a model-driven development technique
specific to theModel-View-Controllerarchitecture domain. Even
though a lot of application frameworks and source code generators
are available for implementing this architecture, they do depend on
implementation specific concepts, which take much effort to learn
and use them. To address this issue, we define a UML profile to
capture architectural concepts directly in a model and provide a
bunch of transformation mappings for each supported platform, in
order to bridge between architectural and implementation concepts.
By applying these model transformations together with source code
generators, our MVC-based model can be mapped to various kind
of platforms. Since we restrict a domain into MVC architecture
only, automating model transformation to source code is possible.
We have prototyped a supporting tool and evaluated feasibility of
our approach through a case study. It demonstrates model transfor-
mations specific to MVC architecture can produce source code for
two different platforms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Object-oriented design methods; D.2.11 [Software Engineering]:
Software Architectures—Domain-specific architectures, Patterns;
D.4.7 [Operating Systems]: Organization and Design—Interac-
tive systems

General Terms
Design, Languages

Keywords
Model-Driven Development, Model Transformation, Model-View-
Controller Architecture, UML Profile

1. INTRODUCTION
Model-driven development (MDD) [16] is a development para-

digm, which places models as primary artifacts and derives exe-
cutable software by means of model transformation. It aims to
increase productivity, maintainability and reusability of models by
raising the level of abstraction above general-purpose programming
and modeling languages. Some MDD tools, such as openArchi-
tectureWare (oAW) [18] and AndroMDA [1], use their own UML
profiles to include their necessary information into UML models.
Since this kind of tools transform profiled UML models into source
code, hereafter we refer to them as (model-driven) code genera-
tors. Along with the recent evolution in model transformation tech-
niques, they have shown the possibility and effectiveness of MDD
in practice to some extent.

However, because of the diversity of implementation platforms
and code generators, there are a lot of UML profiles corresponding
to various implementation concepts, and thus it is a labor-intensive
and error-prone task to build, maintain and reuse these models. To
cope with these problems, we should think of another level of ab-
straction by identifying similarities of various kind of implementa-
tion platforms and using code generators as building blocks.

In this paper, we propose a model-driven approach called AC-
CURATE, in which theModel-View-Controllerarchitecture style
is used to capture design concepts in a user-interactive applica-
tion as well as to classify implementation platforms such as ap-
plication frameworks and libraries. More specifically, we define a
UML profile to describe architectural concepts directly in a model.
Using this profile as a pivot [3], a bunch of transformation map-
pings is provided for each supported platform, in order to bridge
between architectural and implementation concepts. By applying
these mappings and code generators in sequence, our MVC-based
model can be transformed into implementation models and source
code for various platforms. Automating these transformations is
feasible because we only cover a restricted architecture domain.
The main contribution of this paper is to propose a model-driven
approach specific to theModel-View-Controllerarchitecture.

The rest of this paper is organized as follows. In the next section
we explain our motivation by a brief example. Section 3 presents
the ACCURATE approach. Section 4 briefly introduces the proto-
type implementation of our toolkit and following Sect. 5 evaluates
the approach through a case study of an address book application.
In Sect. 6, we survey some related works and close with conclusion
and future work in Sect. 7.



(a) EJB Profile (b) Spring and Hibernate Profiles

Figure 1: PSM Examples Using Profiles for the Fornax-Platform [10]

2. MOTIVATING EXAMPLE
Class diagrams shown in Fig. 1 are examples taken from two

different platform specific models (PSMs), one uses a profile for
EJB and the other does a combination of profiles for the Spring
Framework and Hibernate. Both of them specify almost same func-
tionality, i.e. object/relational mapping between Java and relational
databases, but they are different from a technical view because of
their platform-specific profiles.

A problem occurs, e.g. if one would migrate a PSM based on
EJB to Spring and Hibernate. In this case, the EJB profile first has
to be unapplied by removing stereotypes and tagged values, then
the model has to be modified structurally to conform the constraint
forced by Spring and Hibernate profiles, and finally, stereotypes
and tagged values defined by the target profiles have to be attached
to the model. We identify that problems of profiles are closely cou-
pled with code generators because of the following reasons:

∙ Each profile defines many stereotypes and tagged values whose
names and possible values are closely related to the platform
terminology. For example,≪Entity ≫ stereotypes denote
EJB entity beans in Fig. 1(a), while they are plain-old Java
objects (POJO’s) managed by Hibernate in Fig. 1(b). Thus,
developers are obliged to learn the platform first, rather than
the profile itself.

∙ Concepts and terms introduced by profiles are technical and
separated from the requirements. For example,≪Service-
Operation ≫ stereotype in Fig. 1(b) means that thead-
dOrderoperation runs an application logic within a transac-
tion because the result should be transactional. Thus, one
can hardly tell, which profile need to be applied and how to
elaborate the requirements to models.

∙ Since profiles often put their own constraint over the UML
metamodel, it is not easy to migrate a PSM from one profile
to another, even if both of them offer similar functionalities
and thus are alternatives for the application. For example, the
relationship betweenOrderServiceclass toBookOrderclass
needs to be an association with≪Reference ≫ stereotype
in Fig. 1(a) and a dependency in Fig. 1(b).

For these reasons, PSMs are unsuitable to build, maintain and
reuse for the further software evolution. We find it difficult to deal
with a PSM once an application is built, especially when it has
to be migrated to another platform. To address these issues, we
propose an approach which enables developers to avoid operating
with PSMs and code generators directly.

3. ACCURATE APPROACH
In this section we present the ACCURATE approach. The name

ACCURATE comes from an acronym for ‘A Configurable Code
generator Unified with Requirements Analysis TEchniques’. As it
implies, requirements play an important role in both PIM model-
ing and platform decision. The key idea is to capture functional
and non-functional requirements into separate artifacts, a PIM and
a platform configuration respectively, and join them at the down-
stream of the development.

Figure 2 illustrates the workflow of the approach. It defines four
activities, PIM modeling, platform decision, PIM-to-PSM transfor-
mation and code generation. They are carried out by two kind of
actors, application designer and requirements engineer, who are re-
sponsible for functional and non-functional aspects of the system
respectively. During the proposed workflow, models have to run
through different stages (e.g. a PIM is transformed into a PSM).

PIMModelingApplicationDesigner
TransformationMappingsTransformationRepository

SourceCode
PIM PSM

PlatformConfiguration

PIM-to-PSMTransfor-mation
RequirementsEngineer

PlatformDecision CodeGeneration
Figure 2: ACCURATE Workflow



Figure 3: An Example Usage of the ACCURATE Profile

Following subsections explain these activities in terms of their in-
puts and outputs.

3.1 PIM Modeling
The workflow begins with definition of structure and function-

ality of the system as a PIM. We defined a platform-independent
UML profile, called the ACCURATE profile, to describe PIMs.
This profile adopts established concepts defined in the architecture
styles as names and semantics of stereotypes, since architecture
styles can be considered essentially immutable and independent of
any platforms.

Application designers describe PIMs using UML modeling tools
(such as MagicDraw [15]), which have support for defining and
applying profiles to a UML model. The ACCURATE profile has
fewer stereotypes and tagged values so that designers are easily
able to learn and use, keeping still expressive enough to specify an
application independently of any platform specific details.

Figure 3 illustrates a possible usage of the ACCURATE profile
for the well-knownModel-View-Controllerarchitecture style [6].
According to this style,≪model ≫ classes provide core function-
alities of an application domain and propagate changes to≪con-
troller ≫ and≪view ≫ classes, which are responsible for in-
puts and outputs respectively.

3.2 Platform Decision
In parallel with the PIM modeling activity, requirements engi-

neers communicate with stakeholders around the system to assess
quality attributes expected for the system. The output from this ac-
tivity is a combination of platforms, which usually tends to depend
on experience and knowledge of requirements engineers since esti-
mating quality of the system before implementing it is essentially
a hard problem.

We assume our approach could be combined with certain re-
quirement analysis and quality estimation techniques, but this topic
is out of the scope of this paper due to the limitation of pages.

3.3 PIM Transformation
Once platforms are determined for a system, a PIM can be trans-

formed to a PSM automatically by a model transformation. The
output from this activity is a PSM that conforms to the UML pro-
files for the designated platforms. It can be used directly as an input

/ * map a PIM class to a PSM identically * /
mapping Class::toPSMClass() : Class {

name := self.name.firstToUpper();
isAbstract := self.isAbstract;
visibility := self.visibility;
...
ownedAttribute := self.ownedAttribute->map

toProperty()->asOrderedSet();
ownedOperation := self.ownedOperation->map

toOperation()->asOrderedSet();
}

/ * map a PIM operation to a PSM identically * /
mapping Operation::toPSMOperation() : Operation {

name := self.name;
type := self.type;
...
ownedParameter := self.ownedParameter->map

toPSMParameter()->asOrderedSet();
}

/ * map a Controller class to a Service class * /
mapping Class::toService():Class
inherits Class::toPSMClass
when{

self.isStereotypeApplied(ACCURATE::controller)
}{

end {
result.applyStereotype(Spring2::Service);

}
}

/ * map an operation on a controller class to
a ServiceOperation * /

mapping Operation::toServiceOperation():Operation
inherits Operation::toPSMOperation
when {

self.class.isStereotypeApplied(ACCURATE::controller)
}{

end {
result.applyStereotype(Spring2::ServiceOperation);

}
}

Figure 4: Mappings between the ACCURATE and the Spring2
Profiles

for the following code generation activity.
To implement this transformation, we defined mappings between

elements of a PIM and a PSM for each supported platform. A
transformation can be achieved by a stepwise conversion of all
contained elements of the PIM due to the mappings to PSM ele-
ments. To define these mappings, we categorized existing stereo-
types and tagged values of the profiles for PSMs according to the
established concepts used in the architecture styles. Although ar-
chitecture styles defines typical structure and behavior of the el-
ements, they usually need to be modified due to additional con-
straints enforced by target platforms.

For example, let’s consider a mapping from a PIM elementOr-
derServicewith the stereotype≪controller ≫ (see Fig. 3) to
the PSM elementOrderServicewith ≪Service ≫ and≪Ser-
viceOperation ≫ stereotypes for the Spring Framework (see
Fig. 1). Figure 4 shows a part of the mappings specified in the MOF
QVT operational language [17]. These mappings create PSM ele-
ments from input PIM elements and map ACCURATE stereotypes
to Spring ones.

As one might notice, not only the stereotypes and tagged values
need to be changed, but it is also required to remove unnecessary
elements (such as≪external ≫ stereotyped elements) or mod-
ify the structure (e.g. change associations to dependencies) in this
transformation.



Figure 5: Platform Selection Dialog for the MVC Architecture
Style

3.4 Code Generation
Source code for the application based on the platform configu-

ration is generated at the end of the workflow. Here we make use
of existing code generator frameworks (such as oAW, AndroMDA)
that support various platforms by separating definitions of transfor-
mation mappings from their execution engines. Such transforma-
tion mappings are often calledcartridgesdue to their replaceable
character and stored in the transformation repository for reuse (as
shown in Fig. 2).

According to the platform configuration determined by the plat-
form decision activity, transformation mappings are chosen from
the repository to configure a code generator specific to that plat-
forms. Using a valid PSM from the PIM-to-PSM transformation
activity, source code generation can be less error-prone.

4. SUPPORTING TOOLS
We have prototyped a PIM-to-PSM transformation tool as a plug-

in for the Eclipse platform. This tool implements transformation
mappings using the QVT operational language implemented by the
Eclipse M2M [8] project. It offers a user interface to specify a PIM
and platform decisions for the system with a wizard-style dialog
shown in Fig. 5. Users just have to select appropriate platforms for
the≪model ≫, ≪view ≫ and≪controller ≫ parts of the
target system from drop-down menus.

After the wizard dialog is finished, a PSM and a platform con-
figuration file are generated. This file is used in the following
oAW code generator to distinguish, which transformation mapping
have to be executed from the transformation repository to generate
source code conforming to the designated platforms. As for the
PSM-to-PSI transformation, we make use of the oAW code gener-
ator framework. One common transformation repository for oAW
is the Fornax-Platform, which offers a variety of cartridges to gen-
erate application code based on profiled UML models and thus is a
possible candidate for the code generator in our tool chain.

5. CASE STUDY
In order to evaluate our approach, we have carried out a case

study derived from a possible real-world scenario in which a sys-
tem is using a specific platform technique. Due to changing re-
quirements of the project, the platform decision was out-dated. As
a result, the PSM and PSI have to be regenerated to adopt the new
platform decision. The aim of the case study is to show that a plat-
form, developed using the ACCURATE approach, can handle such
a situation properly. Furthermore, we are going to argue on the
feasibility and benefits of our approach in Sect. 5.2.

5.1 Address Book Example
Consider a company that is implementing an application for man-

aging their customer’s addresses using the ACCURATE approach.
At the beginning of the scenario, designers described a PIM and

requirements. The ACCURATE profile is applied to the PIM (as
shown in Fig. 6). Around the same time, requirements engineers
assessed quality attributes of the system and determined to adopt
Hibernate for the≪model ≫, POJO’s for the≪controller ≫
and a Swing GUI for the≪view ≫. Using the PIM and the plat-
form decision, the ACCURATE plug-in generated an accordant
PSM (see Fig. 7(a)). After transforming the PIM into a PSM, the
application consists of 28 generated Java classes (six for Hibernate
and 22 POJO’s). From these 22 POJO’s only seven classes have to
be implemented manually since the remaining 15 classes are auto-
matically generated interfaces, abstract or implementation classes
that don’t need to be modified. Besides this, three Hibernate map-
ping files and a Hibernate property file are generated that also not
have to be modified. The PIM-to-PSM transformation took about
one minute and the PSM-to-PSI transformation around ten seconds
with an average laptop PC (with a Pentium M processor at 1.60
GHz and 1.5 GB of memory) in this scenario.

At some point of the project, the project manager decided to
adopt the Spring Framework as a≪controller ≫ technology.
Since the PIM doesn’t not hold any platform specific information
by definition, no changes to the PIM have to be made. Using the
ACCURATE plug-in again, another PSM conforming to the new
platform is generated in about one minute (as shown in Fig. 7(b)).
One might notice that Swing is still used as the≪view ≫ tech-
nology but the PSM elements are mapped to≪SpringBean ≫
instead of≪JavaObject ≫ this time. Afterwards, the PSM-
to-PSI transformation is triggered to regenerate the source code,
which took around ten seconds. At this point manual implemen-
tation of the missing parts has already been finished. Since oAW
doesn’t overwrite manual implementation classes during the PSM-
to-PSI transformation, the number of newly generated artifact in
this second scenario is lower than before. As a result, one interface,
abstract and implementation class for each≪controller ≫ com-
ponent was generated. These classes are stored at a different lo-
cation due to the platform specification. Furthermore, two helper
classes for enhanced access to Spring beans and three configuration
files are automatically generated. As the final task, the developer
has to move the manually implemented code fragments from the
outdated≪controller ≫ classes to the newly generated ones.

5.2 Discussion
One of the main benefits shown in this case study is that the plat-

form of the application can be switched within a small time period
and without modifying the PIM at all. Since the ACCURATE pro-
file is based on architecture styles, which have an essentially plat-
form independent and immutable nature, PIMs using such a profile
show improved maintainability and reusability. Thus, they could
live on until some functional requirement changes or platform evo-
lutions occur in the future.

Furthermore, in case that new platforms emerge they need to be
adopted to our approach, e.g. another implementation technique for
≪view ≫ classes. In such a case, we only have to define a trans-
formation from our PIM to the PSM of the new platform, as long
as this platform conforms to some architecture styles adopted in the
ACCURATE approach. Compared to arbitrary PSM-to-PSM trans-
formations like the example shown in Sect. 2, it is rather straight-
forward to refine PIM concepts to those of PSM and thus most of
the transformation can be automated. It has to be mentioned, that
our approach expect a code generator together with a PSM defi-



+doNew() : void
+doOpen() : void
+doSave() : void
+doSaveAs() : void

<<controller>>

AddressBookController

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String

<<model>>

Entry

<<view>>

AddressBookView

+uri : String

<<model>>

AddressBook

+doEdit() : void
+doDelete() : void
+doAdd() : void

<<controller>>

EntryController

<<view>>

EditEntryView

<<view>>

AddEntryView

<<external>>

User

R8

-entries

0..*

-book

R3

-addview

-userR1

-view

-user

R11 -model

-editview

R13

-addview

-model

R10

-addview-controller

R9

-controller-editview

R6-controller

-model

R5

-controller-view

R4

-view

-model

R2
-editview

-user

R12-controller

-model

Figure 6: A PIM for the Address Book Example

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String
<<Key>>+key : long

<<Entity>>

Entry

+doNew() : void
+doOpen() : void
+doSave() : void
+doSaveAs() : void

<<JavaObject>>

AddressBookController

<<JavaObject>>

AddressBookView

+uri : String
<<Key>>+key : long

<<Entity>>

AddressBook

+doAdd() : void
+doDelete() : void
+doEdit() : void

<<JavaObject>>

EntryController

<<JavaObject>>

AddEntryView

<<JavaObject>>

EditEntryView

R8 -entries

0..*

-book

R6 -controller-model

R11 -model

-editview

R13

-addview

-model

R10

-addview-controller

R9

-controller-editview

R4

-view

-model

R5

-controller-view

R12-controller

-model

(a) POJO as a
≪controller ≫

<<ServiceOperation>>+doNew() : void
<<ServiceOperation>>+doOpen() : void
<<ServiceOperation>>+doSave() : void
<<ServiceOperation>>+doSaveAs() : void

<<Service>>

AddressBookController

<<ServiceOperation>>+doAdd() : void
<<ServiceOperation>>+doDelete() : void
<<ServiceOperation>>+doEdit() : void

<<Service>>

EntryController

+firstName : String
+lastName : String
+address : String
+city : String
+state : String
+zip : String
+phone : String
<<Key>>+key : long

<<Entity>>

Entry

<<SpringBean>>

AddressBookView

+uri : String
<<Key>>+key : long

<<Entity>>

AddressBook

<<SpringBean>>

EditEntryView

<<SpringBean>>

AddEntryView

R8 -entries

0..*

-book

(b) Spring as a
≪controller ≫

Figure 7: Two PSMs using Hibernate as a≪model ≫ and Swing GUI as a≪view ≫

nition. Otherwise, we would have to implement the PSM-to-PSI
transformation by ourselves.

Another advantage worth mentioning is that handwritten parts of
source code are preserved during code regeneration. In the case
study, Swing GUI and Hibernate classes are reused, except that
their instantiation code (i.e. constructor calls) is replaced by a XML
configuration file for Spring. On the other hand, the generated part
for ≪controller ≫ classes are regenerated based on the Spring
service components, while handwritten part of the POJO’s are left
untouched. This means that there are some remaining parts, which
have to be migrated manually, even though task can be achieved in
a reasonable time due to the size of the handwritten code. We sup-

pose, that generating complete source code from PIM or providing
help and guidance for each possible migration are two possible so-
lutions to address these problems.

6. RELATED WORK
There is already some existing work focusing on platform inde-

pendent modeling and model transformation in a different problem
domain. Bezivin et al. [4] propose to use ATL transformation [7] to
transform PIMs defined by Enterprise Distributed Object Comput-
ing into PSMs for different web service platforms. Billig et al. [5]
define PIM-to-PSM transformations in the context of EJB by using
QVT [17]. Besides this, some related work define PIMs via UML



profiles. Link et al. propose to use GUIProfile to model PIMs and
transform them into PSMs [13]. Richly et al. focus on a UML pro-
file to define PIMs for databases [11]. He et al. use template role
models together with PIM profiles for templates to design PIMs,
which are specific for web applications [12] . Ayed et al. propose a
UML profile for modeling platform independent context-aware ap-
plications [2]. Lopez-Sanz et al. define a UML profile for service-
oriented architectures [14]. Finally Fink et al. combine UML and
MOF profiles for access control specifications [9]. As one can no-
tice, there are a lot of approaches, which describe a PIM on a more
abstract level than a PSM. Even so, these approaches are still tai-
lored to a specific technology or architecture and thus need some
detailed knowledge of the concrete problem domain. Furthermore,
the adoption to a different problem domain or architecture such as
MVC is hindered due to the specific notations of these PIMs.

7. CONCLUSION AND FUTURE WORK
In this paper, we have stated out some clear problems of MDD

approach when it has to change a platform to another. To address
this problem, we have introduced an approach called ACCURATE,
which consists of a profile for describing PIMs and transformation
mappings to bridge a PIM to PSMs of existing code generators. Our
approach shows how to specify systems easily without any PSM
modeling skills. The approach offers much automation of the de-
velopment process and thus reducing costs under the pressure of a
shorter time-to-market.

Furthermore, a prototype tool is provided, which both assures the
integrity during model transformation and offers guidance through
the software development process to the user. The current imple-
mentation of the tool provides a workable and extendable solution
to address the stated problems. However, there are still some en-
hancements that we would like to adopt to our approach in the near
future. These possible extensions can be summarized as follows:

1. Further evaluation: This paper focused on applying the
ACCURATE approach to the MVC architecture style. Since
this is just one possible example for an architecture, we would
like to evaluate our approach to a different architecture style
(e.g. Pipes and Filters or Blackboard) and on a larger scale to
prove the applicability more sustained.

2. Platform decision models: As mentioned before, the plat-
form decision can be supported by assessing quality attributes
expected for the system. We are going to introduce platform
decision models more precisely. The first model we are now
focusing on is based on Bayesian networks, which allows to
infer platform decisions based on predefined probability dis-
tribution metrics.

3. Interaction with coding: In theory, complete source code
could be generated from a model. But due to unfamiliarity of
graphical PIM modeling and immaturity of tool support for
MDD at this moment, developers prefer to finish up imple-
mentation by complementing or adjusting generated source
code in their common programming languages like Java. We
would like to adopt oAW recipes to help the developer track
the missing parts of the implementation, and hopefully prop-
agate changes in source code (e.g. adding a method) to its
originated PIM.

8. REFERENCES
[1] AndroMDA.org. AndroMDA.org - Home.

http://www.andromda.org/ .

[2] D. Ayed and Y. Berbers. UML Profile for the Design of a
Platform-Independent Context-Aware Applications. In
MODDM’06: Proceedings of the 1st Workshop on Model
Driven Development for Middleware, pages 1–5, 2006.

[3] J. Bezivin and S. Gerard. A Preliminary Identification of
MDA Components. InGTCMDA’02: Proceedings of the
OOPSLA 2002 Workshop in Generative Techniques in the
Context of Model Driven Architecture, 2002.

[4] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying
MDA approach for Web service platform. InEDOC’04:
Proceedings of the 8th IEEE International Enterprise
Distributed Object Computing Conference, pages 58–70,
2004.

[5] A. Billig, S. Busse, A. Leicher, and J. G. Süss. Platform
Independent Model Transformation Based on TRIPLE. In
Middleware’04: Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware, pages 493–511,
2004.

[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal.Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, Inc., 1996.

[7] eclipse.org. ATLAS Transformation Language (ATL).
http://www.eclipse.org/m2m/atl/ .

[8] eclipse.org. Model to Model (M2M) Project.
http://www.eclipse.org/m2m/ .

[9] T. Fink, M. Koch, and K. Pauls. An MDA approach to
Access Control Specifications Using MOF and UML
Profiles.Electronic Notes in Theoretical Computer Science,
142:161–179, 2006.

[10] fornax-platform.org. The Fornax-Platform.
http://www.fornax-platform.org/ .

[11] D. Habich, S. Richly, and W. Lehner. GignoMDA:
Exploiting Cross-layer Optimization for Complex Database
Applications. InVLDB’06: Proceedings of the 32nd
International Conference on Very Large Data Bases, pages
1251–1254, 2006.

[12] C. He, F. He, K. He, and W. Tu. Constructing Platform
Independent Models of Web Application. InSOSE’05:
Proceedings of the 2005 IEEE International Workshop on
Service-Oriented System Engineering, pages 85–92, 2005.

[13] S. Link, T. Schuster, P. Hoyer, and S. Abeck. Focusing
Graphical User Interfaces in Model-Driven Software
Development. InACHI’08: Proceedings of the 1st
International Conference on Advances in Computer-Human
Interaction, pages 3–8, 2008.

[14] M. López-Sanz, C. Acuña, C. Cuesta, and E. Marcos. UML
Profile for the Platform Independent Modelling of
Service-Oriented Architectures.Software Architecture, pages
304–307, 2007.

[15] No Magic. MagicDraw UML.
http://www.magicdraw.com/ .

[16] OMG. MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf ,
2003.

[17] OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.0.
http://www.omg.org/docs/formal/08-04-03.pdf ,
2008.

[18] openArchitectureWare.org. Official openArchitectureWare
Homepage.
http://www.openarchitectureware.org/ .


