
Design Guidelines for Domain Specific Languages

Gabor Karsai
Institute for Software
Integrated Systems
Vanderbilt University

Nashville, USA

Holger Krahn
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Claas Pinkernell
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Bernhard Rumpe
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Martin Schindler
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

Steven Völkel
Software Engineering Group

Department of Computer
Science

RWTH Aachen, Germany

ABSTRACT
Designing a new domain specific language is as any other
complex task sometimes error-prone and usually time con-
suming, especially if the language shall be of high-quality
and comfortably usable. Existing tool support focuses on
the simplification of technical aspects but lacks support for
an enforcement of principles for a good language design. In
this paper we investigate guidelines that are useful for de-
signing domain specific languages, largely based on our ex-
perience in developing languages as well as relying on ex-
isting guidelines on general purpose (GPLs) and modeling
languages. We defined guidelines to support a DSL devel-
oper to achieve better quality of the language design and a
better acceptance among its users.

1. INTRODUCTION
Designing a new language that allows us to model new

technical properties in a simpler and easier way, describe or
implement solutions, or to describe the problem resp. re-
quirements in a more concise way is one of the core chal-
lenges of computer science. The creation of a new language
is a time consuming task, needs experience and is thus usu-
ally carried out by specialized language engineers. Nowa-
days, the need for new languages for various growing do-
mains is strongly increasing. Fortunately, also more sophis-
ticated tools exist that allow software engineers to define a
new language with a reasonable effort. As a result, an in-
creasing number of DSLs (Domain Specific Languages) are
designed to enhance the productivity of developers within
specific domains. However, these languages often fit only
to a rather specific domain problem and are neither of the
quality that they can be used by many people nor flexible
enough to be easily adapted for related domains.

During the last years, we developed the frameworks Mon-
tiCore [13] and GME [2] which support the definition of
domain specific languages. Using these frameworks we de-
signed several DSLs for a variety of domains, e.g., a textual
version of UML/P notations [17] and a language based on
function nets in the automotive domain [5]. We experienced
that the design of a new DSL is a difficult task because dif-
ferent people have a varying perception of what a “good”
language actually is.

This of course also depends on the taste of the developer
respectively the users, but there are a number of generally
acceptable guidelines that assist in language development,
making it more a systematic, methodological task and less
an intellectual ad-hoc challenge. In this paper we summa-
rize, categorize, and amend existing guidelines as well as
add our new ones assuming that they improve design and
usability of future DSLs.

In the following we present general guidelines to be consid-
ered for both textual and graphical DSLs with main focus is
on the former. The guidelines are discussed sometimes using
examples from well-known programming languages or math-
ematics, because these languages are known best. Depend-
ing on the concrete language and the domain these guidelines
have to be weighted differently as there might be different
purposes, complexity, and number of users of the resulting
language. For example, for a rather simple configuration
language used in only one project a timely realization is usu-
ally more important than the optimization of its usability.
Therefore, guidelines must be sometimes ignored, altered, or
enforced. Especially quality-assurance guidelines can result
in an increased amount of work.

While we generally focus in our work on DSLs that are
specifically dedicated to modeling aspects of (software) sys-
tems, we believe that these guidelines generally hold for any
DSL that embeds a certain degree of complexity.

1.1 Literature on Language Design
For programming languages, design guidelines have been

intensively discussed since the early 70s. Hoare [8] intro-
duced simplicity, security, fast translation, efficient object
code, and readability as general criteria for the design of
good languages. Furthermore, Wirth [22] discussed sev-
eral guidelines for the design of languages and correspond-
ing compilers. The rationale behind most of the guidelines
and hints of both articles can be accepted as still valid to-
day, but the technical constraints have changed dramati-
cally since the 70s. First of all, computer power has in-
creased significantly. Therefore, speed and space problems
have become less important. Furthermore, due to sophis-
ticated tools (e.g., parser generators) the implementation
of accompanying tools is often not a necessary part of the
language development any more. Of course, both articles



concentrate on programming languages and do not consider
the greater variety of domain specific languages.

More recently, authors have also discussed the design of
domain specific modeling languages. General principles for
modeling language design were introduced in [14]. These
include simplicity, uniqueness, consistency, and scalability,
on which we will rely later. However, the authors did not
discuss how these higher level principles can be achieved.
In [12] certain aspects of the DSL development are explained
and some guidelines are introduced. More practical guide-
lines for implementing DSLs are given in [10]. These focus
on how to identify the necessary language constructs to gen-
erate full code from models. The authors explain how to
provide tool support with the MetaEdit+ environment. [20]
explains 12 lessons learned from DSL experiments that can
help to improve a DSL. Although more detailed discussions
on explicit guidelines are missing, these lessons embed doc-
umented empirical evidence – a documentation that many
other discussions, including ours do not have. In [16] the
authors introduce a toolset which supports the definition
of DSLs by checking their consistency with respect to sev-
eral objectives. Language designers can select properties of
their DSL to be developed and the system automatically
derives other design decisions in order to gain a consistent
language definition. However, the introduced criteria cover
only a subset of the decisions to be made and hence, cannot
serve as the only criteria for good language design. Quite
the contrary, to our experience many design guidelines can-
not be translated in automatic measures and thus cannot be
checked by a tool.

1.2 Categories of DSL Design Guidelines
The various design guidelines we will discuss below, can

be organized into several categories. Essentially, these guide-
lines describe techniques that are useful at different activities
of the language development process, which range from the
domain analysis to questions of how to realize the DSL to the
development of an abstract and a concrete syntax including
the definition of context conditions. An alignment of guide-
lines with the language development activities and the de-
veloped artifacts has the advantage that a language designer
can concentrate on the respective subset of the guidelines at
each activity. This should help identifying and realizing the
desired guidelines. Therefore, we decided for a development
phase oriented classification and identified the following cat-
egories:

Language Purpose discusses design guidelines for the early
activities of the language development process.

Language Realization introduces guidelines which discuss
how to implement the language.

Language Content contains guidelines which focus on the
elements of a language.

Concrete Syntax concentrates on design guidelines for the
readable (external) representation of a language.

Abstract Syntax concentrates on design guidelines for the
internal representation of a language.

For each of these categories we will discuss the design
guidelines we found useful. Please be aware that the subse-
quently discussed guidelines sometimes are in conflict with

each other and the language developer sometimes has to bal-
ance them accordingly. Additionally, semantics is explicitly
not listed as a separate step as it should be part of the entire
development process and therefore has an influence on all of
the categories above.

2. DSL DESIGN GUIDELINES

2.1 Language Purpose
Language design is not only influenced by the question of

what it needs to describe, but equally important what to do
with the language. Therefore, one of the first activities in
language design is to analyze the aim of the language.

Guideline 1: “Identify language uses early.” The language
defined will be used for at least one task. Most common
uses are: documentation of knowledge (only) and code ge-
neration. However, there are a lot more forms of usage:
definition or generation of tests, formal verification, auto-
matic analysis of various kinds, configuration of the system
at deployment- or run-time, and last but increasingly im-
portant, simulation.

An early identification of the language uses have strong in-
fluence on the concepts the language will allow to offer. Code
generation for example is not generally feasible when the
language embeds concepts of underspecification (e.g., non-
deterministic Statecharts). Even if everything is designed to
be executable, there are big differences regarding the over-
head necessary to run certain kinds of models. If efficient
execution on a small target machine is necessary (e.g., mo-
bile or car control device) then high-level concepts must be
designed for optimized code generations. For simulation and
validation of requirements however, efficiency plays a minor
role.

Guideline 2: “Ask questions.” Once the uses of a language
have been identified it is helpful to embed these forms of
language uses into the overall software development process.
People/roles have to be identified that develop, review, and
deploy the involved programs and models. The following
questions are helpful for determining the necessary decisions:
Who is going to model in the DSL? Who is going to review
the models? When? Who is using the models for which
purpose?

Based thereon, the question after whether the language is
too complex or captures all the necessary domain elements
can be revisited. In particular, appropriate tutorials for the
DSL users in their respective development process should
now be prepared.

Guideline 3: “Make your language consistent.” DSLs are
typically designed for a specific purpose. Therefore, each
feature of a language should contribute to this purpose, oth-
erwise it should be omitted. As an illustrative example we
consider a platform independent modeling language. In this
language, all features should be platform independent as
well. This design principle was already discussed in [14].

2.2 Language Realization
When starting to define a new language, there are several
options on how to realize it. One can implement the DSL
from scratch or reuse and extend or reduce an existing lan-
guage, one can use a graphical or a textual representation,



and so on. We have identified general hints which have to
be taken into account for these decisions.

Guideline 4: “Decide carefully whether to use graphical or
textual realization.” Nowadays, it is common to use tools
supporting the design of graphical DSLs such as the Eclipse
Modeling Framework (EMF) or MetaEdit+. On the other
hand, there exist sophisticated tools and frameworks like
MontiCore or xText for text-based modeling. As described
in [6], there are a number of advantages and disadvantages
for both approaches. Textual representations for example
usually have the advantage of faster development and are
platform and tool independent whereas graphical models
provide a better overview and ease the understanding of
models. Therefore, advantages and disadvantages have to
be weighted and matched against end users’ preferences in
order to make a substantiated decision for one of the real-
izations. From this point on, a more informed decision can
be made for a concrete tool to realize the language based
on their particular features and the intended use of the lan-
guage. Comparisons can be found in [21] or [3].

Guideline 5: “Compose existing languages where possible.”
The development of a new language and an accompanying
toolset is a labor-intensive task. However, it is often the
case that existing languages can be reused, sometimes even
without adaptation. A good example for language reuse
is OCL: it can be embedded in other languages in order
to define constraints on elements expressed in the hosting
language.

The most general and useful form of language reuse is thus
the unchanged embedding of an existing language into an-
other language. A more sophisticated approach is to have
predefined holes in a host language, such that the defini-
tion of a new language basically consists of a composition
of different languages. For textual languages this composi-
tional style of language definitions is well understood and
supported by sophisticated tools such as [11] which also as-
sists the composition of appropriate tools.

However, according to the seamlessness principle [14], the
concepts of the languages to be composed need to fit to-
gether. In the UML, the object oriented paradigm under-
lies both class diagrams and Statecharts which therefore fit
well together. Additionally, when composing languages care
must be exercised to avoid confusion: similar constructs with
different semantics should be avoided.

Guideline 6: “Reuse existing language definitions.” If the
language cannot be simply composed from some given lan-
guage parts, e.g., by language embedding as proposed in
guideline 5, it is still a good idea to reuse existing language
definitions as much as possible. In [18] more possible real-
ization strategies, such as language extension or language
specialization are analyzed. This means, taking the defini-
tion of a language as a starter to develop a new one is better
than creating a language from scratch. Both the concrete
and the abstract syntax will benefit from this form of reuse.
The new language then might retain a look-and-feel of the
original, thus allowing the user to easily identify familiar
notations. Looking at the abstract syntax of existing lan-
guages, one can identify “language pattern” (quite similar
to design pattern), which are good guidelines for language
design. For example, expressions, primary expressions, or
statements have quite a common pattern in all languages.

Only if there is no existing language/notation or the disad-
vantages do not allow using the strategies mentioned above,
a standalone realization should be considered. The websites
of parser generators like Antlr [1] or Atlantic Zoo [19] are a
good starting point for reusing language definitions.

Guideline 7: “Reuse existing type systems.” A DSL used
for software development often comprises and even extends
either a property language such as OCL or an implementa-
tion language such as Java. As described in [8], the design
of a type system for such a language is one of the hardest
tasks because of the complex correlations of name spaces,
generic types, type conversions, and polymorphism.

Furthermore, an unconventional type system would be
hard for users to adopt as well. Therefore, a language de-
signer should reuse existing type systems to improve com-
prehensibility and to avoid errors that are caused by misin-
terpretations in an implementation. Furthermore, it is far
more economical to use an existing type system, than devel-
oping a new one as this is a labor intensive and error-prone
task. A well-documented object-oriented type system can
be tailored to the needs of the DSL or even an implemented
reusable type system can be used (e.g. [4]).

2.3 Language Content
One main activity in language development is the task of
defining the different elements of the language. Obviously,
we cannot define in general which elements should be part
of a language as this typically depends on the intended use.
However, the decisions can be guided by some basic hints
we propose in this Section.

Guideline 8: “Reflect only the necessary domain concepts.”
Any language shall capture a certain set of domain artifacts.
These domain artifacts and their essential properties need
to be reflected appropriately in the language in a way that
the language user is able to express all necessary domain
concepts. To ensure this, it is helpful to define a few models
early to show how such a reflection would look like. These
models are a good basis for feedback from domain experts
which helps the developer to validate the language definition
against the domain. However, when designing a language
not all domain concepts need to be reflected, but only those
that contribute to the tasks the language shall be used for.

Guideline 9: “Keep it simple.” Simplicity is a well known
criterion which enhances the understandability of a language
[8, 14, 22]. The demand for simplicity has several rea-
sons. First, introducing a new language in a domain pro-
duces work in developing new tools and adapting existing
processes. If the language itself is complex, it is usually
harder to understand and thus raises the barrier of intro-
ducing the language. Second, even when such a language is
successfully introduced in a domain, unnecessary complexity
still minimizes the benefit the language should have yielded.
Therefore, simplicity is one of the main targets in designing
languages. The following more detailed Guidelines 10, 11,
and 12 will show how to achieve simplicity.

Guideline 10: “Avoid unnecessary generality.” Usually, a
domain has a finite collection of concepts that should be
reflected in the language design. Statements like “maybe
we can generalize or parameterize this concept for future
changes in the domain” should be avoided as they unneces-



sarily complicate the language and hinder a quick and suc-
cessful introduction of the DSL in the domain. Therefore,
this guideline can also be defined as “design only what is
necessary”.

Guideline 11: “Limit the number of language elements.” A
language which has several hundreds of elements is obviously
hard to understand. One approach to limit the number of
elements in a language for complex domains is to design
sublanguages which cover different aspects of the systems.
This concept is, e.g., employed by the UML: different kinds
of diagrams are used for special purposes such as structure,
behavior, or deployment. Each of them has its own notation
with a limited number of concepts.

A further possibility to limit the number of elements of
a language is to use libraries that contain more elaborated
concepts based on the concepts of the basic language and
that can be reused in other models. Elements which were
previously defined as part of the language itself can then
be moved to a model in the library (compare, e.g., I/O in
Pascal vs. C++). Furthermore, users can extend a library
by their own definitions and thus, can add more and more
functionality without changing the language structure itself.
Therefore, introducing a library leads to a flexible, extensi-
ble, and extensive language that nevertheless is kept simple.
On the other hand, a language capable of library import
and definition of those elements must have a number of ap-
propriate concepts embedded to enable this (e.g., method
and class definitions, modularity, interfaces - whatever this
means in the DSL under construction). This principle has
successfully been applied in GPL design where the languages
are usually small compared to their huge standard libraries.

Guideline 12: “Avoid conceptual redundancy.” Redun-
dancy is a constant source of problems. Having several con-
cepts at hand to describe the same fact allows users to model
it differently. The case of conceptual richness in C++ shows
that coding guidelines then usually forbid a number of con-
cepts. E.g., the concept of classes and structs is nearly iden-
tical, the main difference is the default access of members
which is public for structs and private for classes. There-
fore, classes and structs can be used interchangeably within
C++ whereas the slight difference might be easily forgot-
ten. So, it should be generally avoided to add redundant
concepts to a language.

Guideline 13: “Avoid inefficient language elements.” One
main target of domain specific modeling is to raise the level
of abstraction. Therefore, the main artifacts users deal with
are the input models and not the generated code. On the
other hand, the generated code is necessary to run the final
system and more important, the generated code determines
significant properties of the system such as efficiency. Hence,
the language developer should try to generate efficient code.

Furthermore, efficiency of a model should be transparent
to the language user and therefore should only depend on
the model itself and not on specific elements used within
the model. Elements which would lead to inefficient code
should be avoided already during language design so that
only the language user is able to introduce inefficiency [8].
For example, in Java there is no operator to get all instances
of one class as this would increase memory usage and oper-
ating time significantly. However, this functionality can be
implemented by a Java user if needed.

2.4 Concrete Syntax
Concrete syntax has to be chosen well in order to have an
understandable, well structured language. Thus, we con-
centrate on the concrete syntax first and will deal with the
abstract syntax later.

Guideline 14: “Adopt existing notations domain experts
use.” As [20] says, it is generally useful to adopt what-
ever formal notation the domain experts already have, rather
than inventing a new one.

Computer experts and especially language designers are
usually very practiced in learning new languages. On the
contrary, domain experts often use a language for a longer
time and do not want to learn a new concrete syntax es-
pecially when they already have a notation for a certain
problem. As already mentioned, it is often the case that the
introduction of a DSL makes new tools and modified pro-
cesses necessary. Inventing a new concrete syntax for given
concepts would raise the barrier for domain experts. Thus,
existing notations should be adopted as much as possible.
E.g., queries within the database domain should be defined
with SQL instead of inventing a new query language. Even
if queries are only part of a new language to be defined SQL
could be embedded within the new language.

In case a suitable notation does not already exist, the new
language should be adopted as close as possible to other
existing notations within the domain or to other common
used languages. A good example for commonly accepted
languages are mathematical notations like arithmetical ex-
pressions [8].

Guideline 15: “Use descriptive notations.” A descriptive
notation supports both learnability and comprehensibility
of a language especially when reusing frequently-used terms
and symbols of domain or general knowledge. To avoid mis-
interpretation it is highly important to maintain the seman-
tics of these reused elements. For instance, the sign “+”
usually stands for addition or at least something seman-
tically similar to that whereas commas or semicolons are
interpreted as separators. This applies to keywords with
a widely-accepted meaning as well. Furthermore, keywords
should be easily identifiable. It is helpful to restrict the num-
ber of keywords to a few memorizable ones and of course, to
have a keyword-sensitive editor.

A good example for a descriptive notation is the way how
special character like Greek letters are expressed in Latex.
Instead of using a Unicode-notation each letter can be ex-
pressed by its name (\alpha for α, \beta for β, and so on).

Guideline 16: “Make elements distinguishable.” Easily dis-
tinguishable representations of language elements are a ba-
sic requirement to support understandability. In graphical
DSLs, different model elements should have representations
that exhibit enough syntactic differences to be easily dis-
tinguishable. Different colors as the only criteria may be
counterproductive, e.g., when printed in black and white. In
textual languages usually keywords are used in order to sep-
arate kinds of elements. These keywords have to be placed
in appropriate positions of the concrete syntax, as other-
wise readers need to start backtracking when “parsing” the
text [8, 22]. The absence of keywords is often based on effi-
ciency for the writer. But this is a very weak reason because
models are much more often read than written and therefore
to be designed from a readers point of view.



Guideline 17: “Use syntactic sugar appropriately.” Lan-
guages typically offer syntactic sugar, i.e., elements which do
not contribute to the expressiveness of the language. Syn-
tactic sugar mainly serves to improve readability, but to
some extent also helps the parser to parse effectively. Key-
words chosen wisely help to make text readable. Generally,
if an efficient parser cannot be implemented, the language
is probably also hard to understand for human readers.

However, an overuse of the addition of syntactic sugar dis-
tracts, because verbosity hinders to see the important con-
tent directly. Furthermore, it should be kept in mind that
several forms of syntactic sugar for one concept may hinder
communication as different persons might prefer different
elements for expressing the same idea.

Nevertheless the introduction of syntactic sugar can also
improve a language, e.g., the enhanced for-statement in Java
5 is widely accepted although it is conceptually redundant to
a common for-statement. This is a conflict to guideline 12,
but the frequency of occurrence of common for-statements in
Java legitimates a more effective alternative of this notation.

Guideline 18: “Permit comments.” Comments on model
elements are essential for explaining design decisions made
for other developers. This makes models more understand-
able and simplifies or even enables collaborative work. So
a widely accepted standard form of grouped comments, like
/* ... */, and line comments, like // ... for textual
languages or text boxes and tooltips for graphical languages
should be embedded.

Furthermore, specially structured comments can be used
for further documentation purposes as generating HTML-
pages like Javadoc. In [8] it is mentioned that the “purpose
of a programming language is to assist in the documenta-
tion of programs”. Therefore we recommend that every DSL
should allow a user to generally comment at various parts
of the model. If desired, the language may even contain the
definition of a comment structure directly, thus enforcing a
certain style of documentation.

Guideline 19: “Provide organizational structures for mod-
els.” Especially for complex systems the separation of mod-
els in separate artifacts (files) is inevitable but often not
enough as the number of files would lead to an overflowed
model directory. Therefore, it is desirable to allow users
to arrange their models in hierarchies, e.g., using a pack-
age mechanism similar to Java and store them in various
directories.

As a consequence, the language should provide concepts
to define references between different files. Most commonly
“import” is used to refer to another name space. Imports
make elements defined in other DSL artifacts visible, while
direct references to elements in other files usually are ex-
pressed by qualified names like“package.File.name”. Some-
times one form of import isn’t enough and various relations
apply which have to be reflected in the concrete syntax of
the language.

Guideline 20: “Balance compactness and comprehensibil-
ity.” As stated above, usually a document is written only
once but read many times. Therefore, the comprehensibility
of a notation is very important, without too much verbosity.
On the other hand, the compactness of a language is still
a worthwhile and important target in order to achieve ef-
fectiveness and productivity while writing in the language.

Hence a short notation is more preferable for frequently used
elements rather than for rarely used elements.

Guideline 21: “Use the same style everywhere.” DSLs are
typically developed for a clearly defined task or viewpoint.
Therefore, it is often necessary to use several languages to
specify all aspects of a system. In order to increase under-
standability the same look-and-feel should be used for all
sublanguages and especially for the elements within a lan-
guage. In this way the user can obtain some kind of intuition
for a new language due to his knowledge of other ones. For
instance, it is hardly intuitive if curly braces are used for
combining elements in one language and parentheses in an-
other. Additionally, a general style can also assist the user in
identifying language elements, e.g., if every keyword consists
of one word and is written in lower case letters.

A conflicting example is the embedment of OCL. One the
one hand it is possible to adapt the OCL syntax to the
enclosing language to provide the same syntactic style in
both languages. On the other hand different OCL styles
impede the comprehensibility of OCL, what endorses the
use of a standard OCL syntax.

Guideline 22: “Identify usage conventions.” Preferably
not every single aspect should be defined within the language
definition itself to keep it simple and comprehensible (see
guideline 11). Furthermore, besides syntactic correctness it
is too rigid to enforce a certain layout directly by the tools.
Instead, usage conventions can be used which describe more
detailed regulations that can, but need not be enforced.

In general, usage conventions can be used to raise the level
of comprehensibility and maintainability of a language. The
decision, whether something goes as a usage convention or
within a language definition is not always clear. So, usage
conventions must be defined in parallel to the concrete syn-
tax of the language itself. Typical usage conventions include
notation of identifiers (uppercase/lowercase), order of ele-
ments (e.g. attributes before methods), or extent and form
of comments. A good example for code conventions for a
programming language can be found in [9].

2.5 Abstract Syntax

Guideline 23: “Align abstract and concrete syntax.” Given
the concrete syntax, the abstract syntax and especially its
structure should follow closely to the concrete syntax to ease
automated processing, internal transformations and also pre-
sentation (pretty printing) of the model.

In order to align abstract and concrete syntax three main
principles apply: First, elements that differ in the concrete
syntax need to have different abstract notations. Second,
elements that have a similar meaning can be internally rep-
resented by reusing concepts of the abstract syntax (usually
through subclassing). This is more a semantics-based deci-
sion than a structurally based decision. Third, the abstract
notation should not depend on the context an element is
used in but only on the element itself. A pretty bad exam-
ple for context-dependent notations is the use of “=” as as-
signment in OCL-statements (let-construct) and as equality
in OCL-expressions. Here, the semantics obviously differs
whilst the syntax is equal.

Furthermore, the use of a transformation engine usually
also requires an understanding of the internal structure of a
language, which is related to the abstract syntax. Therefore,



the user to some extent is exposed to the internal structure
of the language and hence needs an alignment between his
concrete representations and the abstract syntax, where the
transformations operate on.

Alignment of both versions of syntax and the seamlessness
principle discussed in [14] assures that it is possible to map
abstractions from a problem space to concrete realizations
in the solution space. For a domain specific language the
domain is then reflected as directly as possible without much
bias, e.g., of implementation or executability considerations.

Guideline 24: “Prefer layout which does not affect trans-
lation from concrete to abstract syntax.” A good layout of
a model can be used to simplify the understanding for a hu-
man reader and is often used to structure the model. Nev-
ertheless, a layout should be preferred which does not have
any impact on the meaning of the model, and thus, does not
affect the translation of the concrete to the abstract syntax
and the semantics. As an example, this is the case for com-
puter languages where the program structure is achieved by
indentation. From a practical point of view, line separators,
tabs, and spaces are often treated differently depending on
editors and platforms and are usually difficult to distinguish
by a human reader. If these elements gain a meaning, de-
velopers have to be much more cautious and a collaborative
development requires more effort. For graphical languages
a well-known bad example is the twelve o’clock semantics in
Stateflow [7] where the order of the placement of transitions
can change the behavior of the Statechart. To simplify the
usage of DSLs, we recommend that the layout of programs
doesn’t affect their semantics.

Guideline 25: “Enable modularity.” Nowadays, systems
are very complex and thus, hard to understand in their en-
tirety. One main technique to tackle complexity is modu-
larization [15] which leads to a managerial, flexible, compre-
hensible, and understandable infrastructure. Furthermore,
modularization is a prerequisite for incremental code gener-
ation which in turn can lead to a significant improvement
of productivity. Therefore, the language should provide a
means to decompose systems into small pieces that can be
separately defined by the language users, e.g., by providing
language elements which can be used in order to reference
artifacts in other files.

Guideline 26: “Introduce interfaces.” Interfaces in pro-
gramming languages provide means for a modular develop-
ment of parts of the system. This is especially important
for complex systems as developers may define interfaces be-
tween their parts to be able to exchange one implementa-
tion of an interface with another which significantly increases
flexibility. Furthermore, the introduction of interfaces is a
common technique for information hiding: developers are
able to change parts of their models and can be sure that
these changes do not affect other parts of the system when
the interface does not change. Therefore, we recommend
that a DSL should provide an interface concept similar to
the interfaces of known programming languages.

One example of interfaces are visibility modifiers in Java.
They provide a means to restrict the access to members in
a simple way. Another common example are ports, e.g., in
composite structure diagrams, which explicitly define inter-
action points and specify services they provide or need, thus
declaring a more detailed interface of a part of a system.

3. DISCUSSION
In the previous sections we introduced and categorized a

bundle of guidelines dedicated to different language artifacts
and development phases. Some of them already contained
notes on relationships with other guidelines and trade-offs
between them, and some of them briefly discussed their im-
portance in different project settings. However, the follow-
ing more detailed discussion shall help to identify possible
conflicting guidelines and their reasons and gives hints on
decision criteria.

The most contradicting point is reuse of existing artifacts
versus the implementation of a language from scratch (cf.
No. 5, 6, and 7). The main reason for the reuse of a lan-
guage or a type system is that it can significantly decrease
development time. Furthermore, existing languages often
provide at least an initial level of quality. Thus, some of the
guidelines, e.g., guidelines which target at consistency (e.g.,
No. 21) or claim modularity (e.g., No. 25), are met auto-
matically. However, reusing existing languages can hinder
flexibility and agility as an adaption may be hard to realize
if not impossible. The same ideas apply to an improvement
of the reused language itself (e.g., to meet guidelines which
were not respected by the original language): the implemen-
tation of a single guideline may require a significant change
of the language. Another important point is that this ap-
proach may influence the satisfiability of other guidelines.
One example is No. 14 which suggests the reuse of exist-
ing notations of the domain. In case there are no languages
which are similar to these notations, this guideline and lan-
guage reuse are obviously contradicting. Furthermore, com-
bining several existing languages may introduce conceptual
inconsistencies, such as different styles or different underly-
ing type systems which have to be translated into each other
(cf., No. 5).

Implementing a new language from scratch in turn permits
a high degree of freedom, agility, and flexibility. In this
case, some guidelines can be realized more easily than in the
case of reuse. However, these advantages are not for free:
designing concrete and abstract syntax, context conditions,
and a type system are time- and cost-intensive task. To
summarize, a decision whether to reuse existing languages
or to implement a new one is one of the most important and
critical decisions to be made.

Another important point which was already mentioned
in the introduction is that some of the presented guidelines
have to be weighted according to the project settings, to the
form of use, etc. One example is the expected size of the
languages instances. Some DSLs serve as configuration lan-
guages and thus, typical instances consist of a small amount
of lines only. Other DSLs are used to describe complex sys-
tems leading to huge instances. In the former case guidelines
which target at compositionality or claim references between
files (e.g., No. 19 and 25) have nearly no validity whereas in
the latter example these guidelines are of high importance.
However, not only the expected size of the instances can in-
fluence the weight of guidelines. Another important aspect
is the intended usage of the language. Sometimes DSLs are
not executable; they are designed for documentation only.
In these cases, the guideline which demands to avoid inef-
ficient elements in the language (No. 13) is of course not
meaningful. However, for languages which are translated
into running code, this is of high importance.

A last point we want to discuss here are the costs induced



by applying the guidelines. Some of them can be imple-
mented easily and straightforward (e.g., distinguishability
of elements or permitting comments, No. 16 and 18) whilst
others require a significant amount of work (e.g., introduc-
tion of references between files including appropriate reso-
lution mechanisms and symbol tables, No. 19). Of course,
especially guidelines whose implementation is cost intensive
have to be matched against project settings as described
above. For small DSLs such guidelines should be ignored in-
stead as the cost will often not amortize the improvements.
However, from our experiences DSLs are often subject to
changes. While growing these guidelines become more and
more important. The main problem which emerges in these
cases is that adding new things to a grown language (e.g.,
modularity) is typically more difficult and time-consuming
than it would have been at the beginning. Therefore, ana-
lyzing the domain and usage scenarios as described in Guide-
lines 1 and 2 can prevent those unnecessary costs.

4. CONCLUSION
In this paper 26 guidelines have been discussed that should

be considered while developing domain specific languages.
To our experience this set of guidelines is a good basis for
developing a language. For space reasons, we restricted our-
selves to guidelines for designing the language itself. Other
guidelines are needed for successfully integrating DSLs in
a software development process, deploying it to new users,
and evolving the syntax and existing models in a coherent
way.

In general, a guideline should not be followed closely, but
many of them are proposals as to what a language designer
should consider during development. Some of the guidelines
have to be discussed in certain domains, because they might
not have the same relevance and as discussed many guide-
lines contradict each other and the language developer has
to balance them appropriately.

But generally, the consideration of explicitly formulated
guidelines is improving language design. We also think that
it is worthwhile to develop much more detailed sets of con-
crete instructions for particular DSLs. We currently focus
on textual languages in the spirit of Java.

Although we have compiled this list from literature and
our own experience, we are sure that this list is not com-
plete and has to be extended constantly. In addition, guide-
lines might change during time as developers gather more
experience, tools become more elaborate, and taste changes.
Maybe some guidelines are not relevant anymore in a few
years, as some guidelines from the 1970’s are less important
today.

Acknowledgment: The work presented in this paper is
partly undertaken in the MODELPLEX project. MOD-
ELPLEX is a project co-funded by the European Commis-
sion under the“Information Society Technologies”Sixth Frame-
work Programme (2002-2006). Information included in this
document reflects only the authors’ views. The European
Community is not liable for any use that may be made of
the information contained herein.

5. REFERENCES
[1] Antlr Website www.antlr.org.

[2] GME Website
http://www.isis.vanderbilt.edu/projects/gme/.

[3] T. Goldschmidt, S. Becker, and A. Uhl. Classification
of concrete textual syntax mapping approaches. In
ECMDA-FA, pages 169–184, 2008.

[4] J. Gough. Compiling for the .NET Common Language
Runtime (CLR). Prentice Hall, November 2001.

[5] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, and
B. Rumpe. View-based modeling of function nets. In
Proceedings of the Object-oriented Modelling of
Embedded Real-Time Systems (OMER4) Workshop,
Paderborn,, October 2007.

[6] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. Textbased Modeling. In 4th International
Workshop on Software Language Engineering, 2007.

[7] G. Hamon and J. Rushby. An operational semantics
for stateflow. In Fundamental Approaches to Software
Engineering: 7th International Conference (FASE),
volume 2984 of Lecture Notes in Computer Science,
pages 229–243, Barcelona, Spain, March 2004.
Springer-Verlag.

[8] C. A. R. Hoare. Hints on programming language
design. Technical report, Stanford University,
Stanford, CA, USA, 1973.

[9] Java Code Conventions
http://java.sun.com/docs/codeconv/.

[10] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley,
2008.

[11] H. Krahn, B. Rumpe, and S. Völkel. Monticore:
Modular development of textual domain specific
languages. In Proceedings of Tools Europe, 2008.

[12] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. Technical
Report SEN-E0309, Centrum voor Wiskunde en
Informatica, Amsterdam, 2005.

[13] MontiCore Website http://www.monticore.de.

[14] R. Paige, J. Ostroff, and P. Brooke. Principles for
Modeling Language Design. Technical Report
CS-1999-08, York University, December 1999.

[15] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[16] P. Pfahler and U. Kastens. Language Design and
Implementation by Selection. In Proc. 1st
ACM-SIGPLAN Workshop on
Domain-Specific-Languages, DSL ’97, pages 97–108,
Paris, France, January 1997. Technical Report,
University of Illinois at Urbana-Champaign.

[17] B. Rumpe. Modellierung mit UML. Springer, Berlin,
May 2004.

[18] D. Spinellis. Notable Design Patterns for Domain
Specific Languages. Journal of Systems and Software,
56(1):91–99, Feb. 2001.

[19] The Atlantic Zoo Website
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/.

[20] D. Wile. Lessons learned from real DSL experiments.
Science of Computer Programming, 51(3):265–290,
June 2004.

[21] D. S. Wile. Supporting the DSL Spectrum. Computing
and Information Technology, 4:263–287, 2001.

[22] N. Wirth. On the Design of Programming Languages.
In IFIP Congress, pages 386–393, 1974.


