
Evaluating the Use of
Domain-Specific Modeling in Practice

Juha Kärnä
Polar Electro

Professorintie 5
FI-90440 Kempele, Finland

+358 8 5202 100

Juha.Karna@polar.fi

Juha-Pekka Tolvanen
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

jpt@metacase.com

Steven Kelly
MetaCase

Ylistönmäentie 31
FI-40500 Jyväskylä, Finland

+358 14 641 000

stevek@metacase.com

ABSTRACT
Domain-Specific Modeling (DSM) raises the level of abstraction
beyond coding, making development faster and easier. When
companies develop their own in-house DSM solution — domain-
specific modeling languages and code generators — they often
need to provide evidence that it gives better results than their
current practice. We describe an approach applied at Polar to
evaluate a DSM solution for developing embedded devices. The
evaluation approach takes into account the objectives set for the
creation of the DSM solution and collects data via controlled
laboratory studies. The evaluation proved the benefits of the DSM
solution: an increase of at least 750% in developer productivity,
and greatly improved quality of the code and development
process.

Categories and Subject Descriptors
D.2.2 [Software Engineering] Design Tools and Techniques -
user interfaces, state diagrams D.2.6 [Software Engineering]
Programming Environments - programmer workbench, graphical
environments D.3.2 [Programming Languages] Language
Classifications - Specialized application languages, very high-
level languages

General Terms
Design, Economics, Experimentation, Languages.

Keywords
Domain-specific modeling, code generation, empirical evaluation,
language design

1. INTRODUCTION
Domain-Specific Modeling (DSM) improves on current software
development approaches in two ways. First, it raises the level of
abstraction beyond programming by specifying the solution in
languages that directly uses concepts and rules from a specific
problem domain. Second, it can generate fully functional
production code from these high-level specifications. The most
effective DSM solutions are usually applied within a single
company. The domain can then be narrowed and the automation
becomes easier to achieve when addressing the requirements of
only one company.

When a company moves from coding to DSM the fundamental
questions are: will the DSM solution provide the desired benefits,
and can those benefits be measured? Development teams in

companies, however, do not usually have the time and resources
to conduct extensive analysis, such as building the same system
twice with different development approaches, using parallel teams
[2], evaluating dozens of developers [1], analyzing large numbers
of development tasks [2], or focusing on development activities in
detail with video recording, speaking while working, or observing
individual developers’ actions [6]. Many good scientific research
methods are simply too expensive and time-consuming for
practical use in a commercial setting. Some of the characteristics
of good empirical research, like a large number of participants to
support generalization of the results, are not always even possible
since there may only be a handful of developers using the
particular language within the company.

The evaluation of the DSM solution may not even be necessary at
all if a small inspection already shows a major difference: “why
conduct a comparison when we can see that a task that earlier took
days can be done with DSM during an afternoon?” The
comparison is not always so straightforward. The development
team may need to present more compelling data to management to
get resources for finalizing the DSM solution or investing in
training and tools. The nature of the work may be such that there
is no clear view on the current development process, e.g. it is
scattered among teams. The last situation is typical if the DSM
solution reduces duplication and unnecessary work by changing
the roles and division of work among teams or even organizations.

This paper presents the evaluation of a DSM solution at Polar.
The evaluation approach combines developers’ opinions with
quantative measurements of the development process. We first
introduce the domain for which our case’s DSM solution was
created: UI applications in sports heart rate monitors [4]. We
briefly describe the DSM solution and show a sample model to
illustrate the modeling language. Then we move to the actual
evaluation and describe the evaluation criteria and how the
evaluation was conducted. We report the findings: at least a 750%
increase in productivity, with developers also estimating the
quality of the code and the quality of the design process to be
significantly better with DSM. We conclude by proposing some
improvements for evaluating DSM in companies: gathering
metrics stepwise starting from initial prototypes, and considering
development processes outside the typical implementation phase.

2. DOMAIN
The study was conducted at Polar, the leading brand in the sports
instruments and heart rate monitoring category, delivering state-
of-the-art training technology and solutions. This study focused
on heart rate monitors. Figure 1 illustrates three typical products

in this product category. The features in these products depend on
the product segment and the type of sports the product is designed
for, such as running, cycling, fitness and cross-training, team
sports or snow sports. Some possible features in these products
include:

• Heart rate measurement, analysis and visualization
• Calorie calculation, e.g. current, cumulative, expenditure

rate, active time
• Speed: current, average, maximum
• Distance, based on interval, trip, recovery
• Altimeter, vertical speed, altitude alarms, slope counter,

graphical trend
• Cycling information, e.g. pedaling rate and cycling power
• Barometer, pressure drop alarm, graphical trend
• Compass

• Temperature
• Odometer
• Logbooks
• Exercise diaries
• Sensor connectivity (heart rate, speed, cadence, power, GPS)
• Data transfer for web and other applications
• Date and weekday indicator
• Localization with different display texts
• Visual and audible alarm in target zones

Depending on the features there are also various settings, starting
from age and weight to bicycle wheel size adjustment and various
exercise settings and plans. These products also show time with
various time related applications, such as dual time zone,
stopwatch, alarm, countdown timer and lap time.

Figure 1. Sample products

Software development for these devices is constrained by the
limited resources they contain, such as the amount of memory,
processor speed and battery life. The actual area of interest — the
domain — reported in this study is the UI applications: how the
various capabilities and features are available to the user. The
sample products in Figure 1 give some indication of what UI
applications can look like as they show the display and its content
in different applications. UI applications, however, do not focus
on (G)UI elements alone. They also cover control, navigation, and
connectivity to other devices, such as to sensors and other
applications to transfer the data. The design and implementation
of the UI applications is heavily constrained by device capabilities
such as display size, type, and user interaction controls. It is worth
mentioning that as these devices are used in special conditions —
users may have little time and concentration capability while
exercising — the usability of UI applications is crucial.

3. THE DSM SOLUTION
When implementing the DSM solution Polar decided to focus on
UI applications for two main reasons. First, the UI applications
form the single largest piece of software, typically requiring 40–

50% of the development time. Improvements to UI application
development would therefore have the greatest impact on overall
development times. Second, the analysis of the domain showed
that 70% of UI applications would be easy to automate with
DSM, while a further 25% could probably also be handled with
DSM. This left only 5% of the UIs that would be difficult to cover
with DSM, indicating that the domain was understood well
enough to specify the languages and code generators.

Polar set a number of requirements for the DSM solution. These
included:

1. Fundamentally improve the productivity of UI
application development

2. Significantly reduce the manual work needed to copy
data from specifications into code

3. Be independent of the target environment
4. Be independent of the programming language, but

support currently used languages such as C and
Assembler

5. Make the introduction of new developers easier
6. Be usable for both experienced and novice developers

7. Improve the quality and maintainability of the code
8. Be easy to modify to meet new and changing

requirements, e.g. when resources in the device change

At Polar, one UI application developer defined the modeling
language, along with the generators that transformed models made
with that language into the artifacts the company needed (e.g.
code, configuration files, links to simulators, document
generation). The modeling language was supported by a tool [5]
that provided the functionality needed to work effectively with
models, such as reusing models, refactoring and replacing model
elements, organizing and handling large models, multi-user access
— as well as usual modeling operations like copy and paste.

UI application developers can thus use this modeling language
and tool to create high-level models, such as Figure 2. This model
shows a small sample feature for selecting a favorite drink: a

selection state along with two views ('Water', 'Milk') as well as
various navigation paths within the application. The diagram uses
a small portion of the modeling language: the full set of modeling
concepts are shown in the toolbar. These concepts originate from
the problem domain and thus the modeling language raises the
abstraction from coding, while also providing support for reuse
when developing multiple products. The diagram is also
executable, in that full code can be automatically generated from
it.

While the application in Figure 2 illustrates the use of the
language, it is about the smallest possible model. In real cases
there may be dozens of elements in a diagram, dozens of diagrams
in an application, and dozens of applications in a full product. An
element in one diagram can be linked, referred to and reused in
other diagrams, or can be linked to a subdiagram specifying it in
more detail. Applications too can be reused between products.

Figure 2. Sample model of a UI application.

While the whole lifecycle of product development was
acknowledged and known, the DSM solution focused on technical
design and implementation. In other words, the primary users of
the language and generators described in the paper are the current
UI application developers. This means that the expected outcome
of the generators was the full code of the UI applications, which
earlier had to be written by hand. Other artifacts than code can
also be generated from the same models, e.g. documentation,
build scripts and material for review meetings, saving the UI
developers further time.

In addition to serving UI application implementation, generators
could also be created to support other roles and processes in the
life cycle: Generators can provide input for testing, parts of the
user manuals, or rapid prototyping as part of user interface and
interaction design, typically carried out before the implementation
phase. Limited space does not allow us to go into these details and
the evaluation reported in this paper addresses only the technical
design and implementation tasks.

4. EVALUATING THE DSM SOLUTION
With their evaluation Polar wanted to find out how well, if at all,
the requirements set for the created DSM solution were met. The

evaluation was made by using the DSM solution in product
development, covering the application design and implementation
phases. Development tasks were carried out using the modeling
language to create models and the generator to produce the
application code. The starting point for DSM use during the
evaluation was a UI specification, as used in the current
development process. The evaluation therefore did not test the
possible scenario of using the DSM solution further upstream at
the UI specification phase. Similarly links to other development
phases, like testing, localization, documentation and providing
user manuals, were excluded from the evaluation: although DSM
could help there too, the current DSM solution offers at least the
same output to those phases as earlier manual coding.

Before the evaluation, the creator of the DSM solution had
already used it to build example models during its creation.
During a pilot project he had also implemented the majority of a
whole product’s UI applications, including some large ones.

The evaluation focused on three factors: developer productivity,
product quality and the general usability of the tooling. These
factors also formed the major requirements for the DSM solution
as outlined in Section 3. The measures for these factors were
selected so that they could be easily understood and estimated by
the developers. To calculate the return on investment — when the
effort to define the language and generators is amortized — the
application development time was recorded in addition to asking
developers opinions on the possible influence to productivity. The
evaluation did not evaluate if the requirements of independency of
target environment (#3) and of generated programming language
(#4) were met as the generators were made only for one target and
programming language applied in the company. As the support of
customizable code generators for different targets and
programming languages is well attested, these requirements were
not further analyzed.

The evaluation was set up to find credible and repeatable results
with reasonable costs. Rather than developing a whole product,
Polar set up a laboratory experiment to develop one typical UI
application: the setup for sporting exercises. Experience from the
pilot project allowed the size and complexity of this application to
be chosen such that it was expected to be completed with the
DSM solution within a few hours. Results of the single UI
application development were then compared to the development
approach currently in use, and to the experiences of modeling on a
larger scale in the pilot project.

In the laboratory experiment the same UI application was
developed separately by 6 developers. The developers were
selected so that they all had experience of making UI applications.
They could then compare the DSM approach with the current
development approach. Four of the developers had over three
years’ experience in UI application development; the other two
had less than one year’s experience. Only one of the developers
had previous experience with the modeling tool used.

4.1 Evaluation process
The evaluation process had four phases: training, conducting the
laboratory experiment, evaluating the correctness of the results
and reporting experiences. Training covered introduction to the
modeling language and to the modeling tool. Since the language
concepts were taken directly from the problem domain, and hence

already familiar to the developers, training took 1 hour. In this
time the basic modeling features of the tool were also taught.

The input for the development task in the laboratory experiment
was the specification of the desired exercise setup UI application.
The developers were each timed separately as they modeled the
application. They were asked to finish the task as completely as
possible, and the completeness and correctness of the result were
checked together with the developer. If there were errors or data
was missing the specification or the modeling language was
explained so that the developer could finish the implementation.

Finally, the developers’ experiences and opinions were collected
with a questionnaire and with interviews. The results are
described in the following sections.

4.2 Development time and productivity
The influence on productivity (requirement #1) was inspected in
two ways: by measuring the development time and by collecting
developers’ opinions after having used both approaches: the
current development method and the DSM approach used for the
first time.

Development time for the UI application varied among the
developers from 75 minutes to 125 minutes, with a mean of 105
minutes. Implementing the same UI application with the current
development approach would take about 960 minutes (16 hours).
The productivity improvement for the mean time is thus over
900%. Even for the slowest completion time, the productivity
increase is over 750%.

The pilot project had produced UI applications whose
implementation time with the current development approach was
estimated to have taken 3 weeks (120 hours). The size of the UI
application models in the experiment was measured to be 16% of
the total size of the pilot project, based on the number of states
and views in the models. This gives us a second way to estimate
the time to code this UI application, 16% of 120 hours = 1152
minutes. Taking the mean of the two estimates, 1056 minutes,
gives a mean productivity increase over the 6 developers of over
1000%.

The influence on productivity was also measured by asking the
developers’ opinions — after all, they now had experience of
using both approaches. As shown in Figure 3, there were almost
no differences among developers’ opinions: all found the DSM
approach to be significantly faster than current practice.
Developers’ opinions were asked on a scale from 1 to 5, with 5
being the best. Although the laboratory experiment did not cover
maintenance (new features and error corrections), developers were
also asked if the DSM solution would support maintenance better
than the current approach: 5 developers thought DSM would be
better and one could not say.

Figure 3. Perceived productivity
(scale 1–5, 5=best productivity).

4.3 Quality of process and resulting code
When studying the influence on quality, both process and result
were evaluated (requirement #7). The influence on the process
was evaluated by asking developers’ opinions on how well the
development approaches — current and DSM — prevented
errors. As with the results of the productivity measurement there
was a clear difference in DSM’s favor, although the answers
varied more (Figure 4). The piloting of the DSM solution also
showed that the DSM solution’s support for error prevention
could be further improved. For example, the DSM solution did
not check that values entered as text met a specific syntax (using
regular expressions in MetaEdit+ [5]), and some fields used string
entries when selection lists would better ensure correctness. Also,
model checking did not inspect all relevant parts of model
completeness and errors. These areas for improvement will be
taken into account in future versions of the DSM solution, and the
error prevention grades are expected to improve as a result.

Figure 4. Error prevention

The quality of the outcome was measured by inspecting the
generated code and comparing it with the manually written code.
Code quality is particularly relevant for embedded products like
heart rate monitors. The results show that the generated code was

considered to be of better quality: a smaller, but still clear,
difference between the approaches (Figure 5).

Figure 5. Code quality.

4.4 Usability and learning
To assess the usability (requirement #6) developers were asked
how usable they found the resulting modeling tools and how easy
it was to learn and use the modeling language. The answers were
then compared to the evaluation of the current approach. Figure 6
shows the results on usability. Here the opinions of developers
differed the most, but the created DSM tooling (average 4.5) was
still considered clearly better than current tools (average 2.5).

Figure 6. Tool usability.

Since none of the developers was a beginner the study did not
directly measure how well new developers could learn the DSM
approach (requirement #5). Introducing new developers just for
the sake of DSM evaluation was not considered practical. Instead,
developers estimated the ease of learning. The results indicated
that learning the UI application design and implementation with
DSM would be much easier than with the current approach. As
Figure 7 indicates this opinion was quite clear.

Figure 7. Ease of learning.

5. RETURN ON INVESTMENT
The benefits of DSM do not come for free: first the modeling
language and generators, the DSM solution, must be developed.
Depending on the tooling used, time may also need to be allocated
to tool creation and maintenance.

At Polar, creation of the DSM solution took 7.5 working days,
covering the development of the modeling language and the code
generator. Both of these were implemented using MetaEdit+
Workbench [5]. MetaEdit+ automatically provides modeling tools
based on the modeling language, so no extra time needed to be
spent on tool building. It is worth noting that the 7.5 days also
included the creation of example models specifying UI
applications, along with related code. This was natural since the
best way to test a DSM solution under development is to apply it
immediately on real examples.

When we compare the time to implement the DSM solution to the
productivity improvements when creating UI applications, it is
evident that the investment would pay back very quickly, as
illustrated in Figure 8. The pilot project was estimated to be about
64% of a whole product, so a whole product would take over 23
days to build with the current development method. With DSM,
after the 7.5 days’ metamodeling, the first whole product would
take 2.3 days to build, making DSM over twice as fast as coding
even for the first product. Each subsequent product would take
another 2.3 days, so in the time it took to build one whole product
by coding, Polar could build several whole products with DSM.

The time required to build the UI applications for a complete
product may seem to become almost trivial. However in reality,
the problem domain is not completely static. Therefore after the
pilot project it is essential to evolve the DSM solution further to
maintain the measured benefits. From our experiences in other
languages [3], after the first few products the effort to maintain
the DSM solution becomes a small fraction of the time to develop
each product.

Figure 8. Return on investment: comparison.

6. CONCLUDING REMARKS
We described an approach and results to evaluate a particular
DSM solution. The evaluation showed that the DSM solution for
developing UI applications for heart rate monitors is applicable
for its domain. The applicability was inspected with a pilot
project, laboratory experiment and questionnaire. In the pilot
project the majority of a whole product was developed with the
DSM solution. In the laboratory experiment, the DSM solution
was found to be at least 7.5 times and on average 10 times as
productive as the current development approach. In the
questionnaire, the DSM solution was considered to offer better
productivity, quality and usability, and be easier to learn. Figure 9
summarizes the questionnaire findings by comparing the current
approach and DSM based on the average grading calculated from
developers’ opinions.

Figure 9. Comparing approaches based on average grades.

While the actual evaluation focused on the laboratory experiment
and questionnaire, the DSM solution was also evaluated during its
construction and in the pilot project, which developed a large
portion of a whole product. The collection of data could already
have been started with those initial prototypes, so that
development time statistics could be measured from a wider
variety of modeling tasks. A further point of evaluation would be
to extend the scope of the DSM solution to cover a larger part of
the development processes, from requirements and UI
specification steps to build automation and testing. This would
allow the same domain concepts to be applied pervasively within

the company through the modeling languages. Parts of these steps
could also be automated with generators, saving time and
avoiding manual errors when copying data from one step to
another (requirement #2). The DSM solution evaluated here is
thus not final and complete, but can be extended incrementally in
the future. One obvious way is to extend the language to include
future new UI concepts. This need for extensibility was actually
one requirement (#8) that was not evaluated here, because of the
focus on a single product and its set of UI concepts. One way to
evaluate the extensibility would be to apply the DSM solution to
model older generation products and study if their development
could be supported.

Since companies have limited resources to evaluate new
approaches in practice, the evaluation approach described strikes
a balance between the effort expended on the evaluation and the
credibility of the results achieved. It was considered particularly
important to have several developers involved in the evaluation,
as this improved the visibility of the DSM solution within the
company and the credibility of its evaluation. It also helped to
train the developers and offered the possibility to obtain feedback
for further improvements. While the results are not statistically
significant or generalizable, they are highly relevant and credible
for the company performing the evaluation. The evaluation
approach itself can be used to evaluate other kinds of DSM

solutions and in other companies. In that case, the main
foreseeable changes would be adaptations to the questionnaire to
ensure it covers the issues most relevant to that company’s
development.

7. REFERENCES
[1] Cao, L., Ramesh, B., Rossi, M., Are Domain Specific

Models Easier to Maintain Than UML Models?, IEEE
Software, July/August, 2009

[2] Kieburtz, R. et al., A Software Engineering Experiment in
Software Component Generation, Proceedings of 18th
International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, 1996

[3] Kelly, S., Tolvanen, J-P., Domain-Specific Modeling:
Enabling Full Code Generation, Wiley-IEEE Society Press,
2008

[4] Kärnä, J., Using DSM for embedded UI development (in
Finnish), Master’s thesis, University of Oulu, 2009

[5] MetaCase, MetaEdit+ Workbench 4.5 SR1 User’s Guide,
http://www.metacase.com/support/45/manuals/, 2008

[6] Wijers, G., Modeling Support in Information Systems
Development, Thesis Publishers Amsterdam, 1991

