
Evolution of a Domain Specific Language and its
engineering environment - Lehman’s laws revisited

Mika Karaila
Metso Automation Inc.

Lentokentänkatu 11
33101 Tampere, FINLAND

+358407612563

mika.karaila@metso.com

ABSTRACT
Automation domain is under continuous change with new
requirements. Metso Automation has been one of the first vendors
of digital automation systems (1978 Damatic). The last 20 years
of development and maintenance of system architecture and a
dynamic, flexible engineering environment has enabled us to
successfully live with the changes. In this paper, evolution of a
domain specific visual system configuration language called
Function Block Language (FBL) and a supporting environment is
discussed. The evolution is reflected to Lehman's laws. Metso
Automation’s solutions for surviving with the implications of the
laws are also discussed.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Specialized application
languages – domain specific language, visual language.

General Terms
Design, Reliability, Experimentation, Languages.

Keywords
Visual Domain Specific Language, Evolution, Software Laws,
Software Patterns.

1. INTRODUCTION
A distributed control system (DCS) refers to a control system
usually of a manufacturing system, process or any kind of
dynamic system, in which the controller elements are not central
in location but are distributed throughout the system with each
component sub-system controlled by one or more controllers. The
entire system of controllers is connected by networks for
communication and monitoring.
For building DCSs at Metso Automation, a multi-level
architecture is used in MetsoDNA DCS. Controllers use hardware
units such as input/output cards (I/O) to connect field devices into
a system. Software is located in controllers, I/O cards and field
devices. There are different kinds of firmware programs, bus
protocol stacks, operating systems and different kinds of tools and
databases. An automation system executes programs in real-time
in a distributed environment. It can control a small process just
some devices or a huge factory with several paper machines, stock
preparation and own power plant. One key element is
communication between the units. Communication must be
deterministic, real-time, robust and scalable.
Function Block Language (FBL), developed at Metso
Automation, is a visual programming language for writing real-

time control programs for distributed environments. FBL
programs are represented as diagrams that will implement
application programs. Each diagram typically contains 5-10
smaller application programs, which are loaded into a distributed
system. A typical paper manufacturing plant automation is built
from 5000 to 10000 FBL programs. They control 15000
input/output connections (I/O). Total amount of small application
programs is over 100000.
FBL is part of a bigger product family that has a long life cycle.
We will show how in automation domain both FBL and
supporting programming environments such as FBL editor and
other tools will need effort for their controlled and successful
maintenance.
Section 2 introduces FBL and its history in brief. Section 3 briefly
introduces Lehman's laws of software evolution [12]. They
characterize the ways large software systems tend to evolve. In
each subsection, Lehman's laws are discussed with respect to the
automation domain, FBL and its programming environment. This
section also explains the methods that we use to survive with the
evolution. It will explain Metso Automation’s maintenance
process and its benefits. The process has been developed to
manage the challenges software evolving according to Lehman's
laws creates. The key idea is to manage the main principles like
working methods and product features and keep the system and
domain specific language in balance during evolution. Section 4
will discuss and summarize items introduced

2. Domain Specific Languages
The term domain-specific language (DSL) [2] has become popular
in recent years in software development to indicate a
programming language or specification language dedicated to a
particular problem domain, a particular problem representation
technique, and/or a particular solution technique [11]. The concept
is not new. Special-purpose programming languages and all kinds
of modeling/specification languages have existed, but the term has
become more popular due to the rise of domain-specific modeling
(DSM) [10]. Domain-specific languages are 4GL programming
languages. Examples include spreadsheet formulas and macros,
YACC [5] grammars for creating parsers, regular expressions,
Generic Eclipse Modeling System [21] for creating diagramming
languages, advanced DSM tool MetaEdit+ [18], Csound [19], a
language used to create audio files, and the input language of
GraphViz [3], a software package used for graph layout. The
opposite of a domain-specific language is a general-purpose
programming language, such as C or Java, or a general-purpose
modeling language such as UML.

There are advantages in using DSLs. Domain-specific languages
allow solutions to be expressed in the idiom and at the level of
abstraction of the problem domain. Consequently, programs
written using domain experts themselves can understand, validate,
modify, and often even develop domain-specific languages. Also,
the code is self-documenting in an optimal case. Furthermore,
domain-specific languages enhance quality, productivity,
reliability, maintainability, portability and reusability [10].
Finally, they allow validation at the domain level.
There are also disadvantages in using domain-specific languages.
The cost of designing, implementing, and maintaining a domain-
specific language can be very high. Also finding, setting, and
maintaining proper scopes can be difficult. There can be a lack of
processing capacity compared with hand-coded software. Finally,
code can be hard or impossible to debug.
2.1 An overview of FBL
 Metso Automation has created its own visual domain-specific
language with a supporting FBL framework, i.e. a development
environment that supports FBL and its usage.
FBL drawing is a visual program that can be compiled and
downloaded into a real-time system. In real-time, the program
will, for example, measure a tank's level and control a valve so
that tank level will remain at the desired level. An FBL program is
a signal flow diagram that contains multiple symbols that are
connected by lines. Symbols represent variables or variable
references and functions. An FBL diagram is self-documenting,
because it is a graphical program that explains the code
functionality visually. The generated textual code is multiple
pages of text and connections are just text references in multiple
places of text. An overview of connections is very hard to
understand from the textual format. The visual notation of FBL
consists of symbols and lines connecting them. In FBL, symbols
represent advanced functions. The core elements of FBL, function
blocks, are sub-routines running specific functions to control a

process. As an example, measuring the water level in a water tank
could be implemented as a function block.
In addition to function blocks, FBL programs may contain port
symbols (ports publish access names) for other programs to access
function blocks and their values. Function block values are stored
in parameters. As an analogy, the role of a function block in FBL
is comparable to the role of an object in an object-oriented
language. The parameters which can be internal (private) or
public, can, in turn, be compared to member variables. An internal
parameter has its own local name that cannot be accessed outside
the program. A public parameter can be an interface port with a
local name or a direct access port with a globally unique name.
FBL programs may also contain external data point symbols for
subscribing data published by ports, external module symbols to
represent external program modules, and I/O module symbols to
represent physical input and output connections. An external data
point is a reference to data that is located somewhere else. In
distributed control systems, calculations are distributed to multiple
calculation units. Therefore, if a parameter value is needed from
another module, the engineer has to add an external data point
symbol to the program. By using this symbol, data is actually
transferred (if needed) from another calculation unit to local
memory. An example of an FBL program is depicted in Figure 1.
This program is for detecting binary signal change; it will read the
state 0 or 1 from the field using the I/O-input symbol BIU8 (A) on
the left side. Then the signal is connected to a copy function block
(B) and after it to a delay function block (C) that will filter out
short time (under 5 second) changes. After the delay filtering, the
signal is copied to a port (D) that can be connected to the user
interface (E) to show the state in the actual real-time user
interface. The state is also stored in the history database (F) that
keeps all the state changes for a long time (months or years). The
interface port (G) is for the interlocking usage. The signal can be
used in other diagrams for interlocking. If the state is for example
1 it can prevent a motor from starting.

Figure 1 FBL overview.

2.2 Development history of FBL
In 1988, the first release of FBL was introduced to customers. It
included all the basic elements: ports, externals, function blocks
and I/O modules of the language itself. The code generator was
hand written and the implementation contained a pattern based
text generator [9] that used output templates. Currently, there are
framework tools available for that purpose [17].
The Automation Language is a simple domain specific textual
language. The FBL code generator produces Automation
Language. FBL has been used from the year 1988. The FBL
programming IDE, editor is FbCAD (product name for the
Function Block CAD). The Function Test tool was introduced in
1990. It allows the user to debug run-time values in the FbCAD
(visual debugging mode). This is not always trivial with DSL
because generated code may need its own IDE that can be hard to
implement. Function Explorer is a tool for multiple users in a
client-server environment. It allows concurrent programming and
is an easy way to change parameters for the FBL programs saved
in the database. The last major development step was support for
"Templates" in the year 2003. Visual templates are domain
specific models that can be used to create new FBL program
instances efficiently [8]. Another way to support reuse relies on
patterns. In the last years, we have detected patterns from visual
programs. They are solutions to small problems that can be solved
with few symbols.
The development of FBL has had various goals. One of them is to
aim at a visual language to make programs understandable and the
programming environment easy to use and learn. The user can
always add both textual and graphical comments to the program.
The initial setup for developing FBL was the fact that the
automation language was too hard to understand and the
connection network was impossible to figure from the textual
code. The basic architecture separates user interface to its own
part and the code generator to its own. In the beginning, the basic
user interface was static and very simple. It was then extended,
and more dynamics were added, like the visual testing tool. Now
the focus of user interface development is on usability issues.
Also a lot of new dynamics have been added to fulfill new
requirements. Programming effectiveness is one major target. We
always try to make programming faster. There are small
improvements in the user interface level and in the language level,
but the biggest improvement has been the introduction of
templates [8]. Templates are reusable domain models that can be
instantiated. An instance will need only a set of parameters to
work. It has significantly reduced engineering work and made
large modifications easy to make. Adding new elements to it have
also extended the FBL language itself. Finally, improving the
code generation in FBL has raised the quality of the programs. It
is more accurate and detects more errors and also gives warnings
to users.
If we compare FBL programs created in 1988 and now, the major
difference is that they are now bigger and more complex. This is
due to the new requirements for higher automation levels.
3. Lehman's laws and evolution of FBL and
its supporting engineering environment
In this section, Lehman's laws are revisited in the context of the
automation industry domain and in particular the evolution of
FBL and its programming environment. Each of eight laws is
discussed and the name of the law is the title of the subsection.
These results are collected and formed based on 20 years of
development history. The connections and network between

Metso Automation's own people and customers have given a lot of
feedback on FBL and its programming environment. The
maintenance process of FBL itself is an iterative process that
relies on the feedback system. These processes and methods can
be used to gain better results and to manage the evolution FBL.

3.1 Law I: Continuing change

E-type systems must be continually adapted else they become
progressively less satisfactory.

The automation domain itself is under change. In addition, also
the environment that is used for FBL and its editor and other tools
are under change. For instance, the operating system has changed
multiple times from UNIX (Xenix, SCO, Ultrix, and HP) to DOS
and Windows (NT, XP, Vista) and also the compiler is under
change all the time. The CAD platform that is the base of the FBL
editor has been changed according to the operating system and
needed compiler. The selected CAD platform (AutoCAD) was a
market leader. The use of a commercial platform helped a lot,
because its development and maintenance was carried out by
others. The only major work was to port the FBL user interface
(editor) always into the selected release. The selection process
was guided by a technology roadmap. This kind of preplanning
gave development teams time to prepare for new things in
advance.
This does not directly affect FBL itself, but the editor and the
code generator both require major maintenance work. There is a
compatibility requirement; life-time cycles are demanding in
automation domain. FBL editor changes according to the style of
the CAD platform and operating system. The change in the visual
appearance is significant if we compare the very first 640 x 480
resolution to the current 1024 x 768 one. Outlook is also improved
by new better fonts and more colors that are used today. Actual
FBL improvements have been mostly visual.
As Lehman's first law indicates, resisting changes is not a fruitful
solution in the long run. Instead, we have chosen to live with the
changes and upgrade environment. The software environment
changes in the domain create needs for changes in FBL and its
tools: the domain specific language must evolve with the
environment.

3.2 Law II: Increased complexity

As an E-type system evolves, its complexity increases unless work
is done to maintain or reduce it.

Metso Automation DCS size grows both hardware & software.
Also other additional functions make the system more complex.
As an example, new I/O-cards are needed and they include new
features and more channels. FBL language supports changes, e.g.
new symbols can be created into FBL. Some of these are typically
similar to existing ones, like new function blocks. New function
blocks do not extend FBL, but give new features for
programming. This was seen already 20 years ago. The internal
architecture of the code generator was built to be generic and the
variation point was built into symbol level.
There are intelligent devices with new communication protocols
evolving which will require support. The Foundation Fieldbus
(FF) [4] integration, for instance, needed its own FBL symbols.
The code generation was extended to support FF configuration.
This required new semantics. This was mainly solved by the

generic part, only the connection solver needed a special
algorithm and the 'output-printer' was extended for FF domain
with new C++ classes. Other integrated protocols are Profibus DP
[16] and OLE [13] for Process Control (OPC) [15]. They,
however, did not need such big integration work for FBL.
In the FBL language level complexity is isolated to its own
symbols. The code generator architecture does not need in a
typical case any changes. The increased complexity is isolated
into FBL editor and code generation as configurable extensions.
In this way new protocol specific variations can be integrated by
settings and they will not need code changes into the FBL tools
every time. A typical way to reduce complexity is abstraction and
capsulation, but in cases where this is not possible it is good to
first identify variation points and then locate them to selected
places in architecture.
3.3 Law III: Self regulation

E-type system evolution process is self regulating with distribution
of product and process measures close to normal.

In the automation domain we cannot release a new build each
week or month. Customers cannot shut down factories so often. A
normal case is to have one planned shutdown each year,
sometimes perhaps only twice a year.
In distributed automation system architecture allows that parts can
be turned off and on. In this way non-critical parts can be
updated/upgraded or even replaced while the process is running.
Usually it is a broken device or I/O-card that must be replaced.
Same modularity can be seen in FBL language level. An FBL
program can be downloaded into the system in runtime without
any disturbance. The modularity makes it possible to download
small application programs into the running factory without
interruptions.
The evolution process that requires new technologies works
according to Moore's law [14]. But in automation domain a new
technology, for example a new operating system, is taken into use
after careful consideration and after other industry experiences.
Technological steps are taken in 2-3 year intervals. As an
example, FBL editor and operating system are upgraded with that
interval. A conservative attitude and caution normalize
technological evolution.
3.4 Law IV: Conservation of organizational
stability

The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.

In the automation domain you have to know something about field
devices, process, and electronics. The automation system
architecture and teams are formed in the same way (logical
structures are similar, c.f. Conway's law [1]). Development and
project organizations have been structured in the same way for
about the last 20 years. The team cannot change many persons at
the same time because the learning process takes time. Nobody
can have all the knowledge but a good programmer must
understand the domain. It usually takes months to start to
understand the whole automation domain from the controller level
to the device level.
A small core team is an example of good practice that allows
smooth FBL development and maintenance. A challenging

environment and continuous learning keep these people pleased.
The needed domain knowledge that requires multi-talented people
will help in keeping organizational stability.
3.5 Law V: Conservation of familiarity

As an E-type system evolves all associated with it, developers,
sales personnel, users, for example, must maintain mastery of its
content and behavior to achieve satisfactory evolution. Excessive
growth diminishes that mastery. Hence the average incremental
growth remains invariant as the system evolves.

The principles, namely business rules in the domain, are very old
in distributed systems. As new communication protocols are
integrated into the system, they will have the following typical
characteristics like determinism and robustness. These kinds of
facts always keep architectural solutions very stable. There are
architectural level design patterns that give good solutions to these
problems.
The abstraction level in the FBL language is selected to hide
unnecessary parts from the end user. The needed parameters are
asked from the user and the semantics and the basic layout of
communication symbols have remained the same since 1989. In
the FBL language the basic symbols are still almost identical.
We have to keep all new extensions somehow similar to existing
ones. FBL symbol editor and FBL editor are integrated and
mainly old symbols are handmade. The FBL editor has same
logical operations for all similar symbols. In this way, the learning
process is easier and more logical for an engineer who will use
FBL. As people are conservative and do not like very big changes
it helps to keep things familiar.

3.6 Law VI: Continuing growth

The functional content of E-type systems must be continually
increased to maintain user satisfaction over their lifetime.

Automation systems are typically growing. The application
programs that we have delivered to factories are growing. In the
hardware architecture the old hardware was VME based Motorola
68030 processors with 2 Mb Memory. Now we use Intel based
Pentium with 256 Mb Memory. Also the communication bus
speeds have improved from 2 Mb/s to 100 Mb/s. In the hardware
level the growth is seen clearly.
We have a reuse library that contains most of the delivered
projects. We have measured from the library statistics that the
average amount of function blocks in the FBL program has
increased from 20 to 30 in the last 10 years (cf. Table 1).

Table 1 Project Function Blocks and Complexity growth.
Project Average number of

Function Blocks
Complexity

A 1999 15 8
B 1999 27 3
C 1999 15 5
D 1999 7 2
E 1999 28 9
F 2008 34 19
G 2008 25 10
H 2008 30 12
I 2008 28 15

The project size has grown from 1000 to 5000 application
programs. This is partly due to the technology change. Field
devices are more intelligent and they are connected by bus into
the system. Instead of having signals connected by traditional
wires there are multiple software signals coming from one
physical connection. But each software signal still needs its own
handling, which causes growth. This all means that the total
amount of program code is five times more than 10 years earlier
(1999 --> 2008).
We can get these statistics of FBL usage easily because the same
working methods are used in each customer project. One part of
the customer project process is to archive it.
The engineering tools are also growing. We can measure from the
version control system statistics that will show the FBL code
generator & DB-adapter growth from 2000 to the current year.
2008 has been about 10 kLOC, which is in average 1 kLOC/year
(numbers shown in Table 2). The statistics show that FBL itself
has grown during 2000-2008 with about 600 new function blocks
and other symbols, the average being 75 new symbols per year.
We have thus observed also growth in the FBL language itself,
not only in its programming environment. The author of this paper
is not aware that Lehman’s laws have been earlier discussed in the
context of programming languages. They are, however, widely
discussed in the context of large software systems. Continuous
growth of FBL itself is interesting and due to its increasingly
broad use in different contexts and by different customers.
Moreover, we assume that such growth is not typical for general
purpose languages, but can be more natural for domain-specific
ones.

Table 2 Code generator and DB adapter size and growth.
Program Code and Lines in

Year 2000
Codes and Lines
in Year 2008

Code
Generator

35999 44304

DB adapter 20642 31986

These numbers show that increased functionality increases the
code in the application layer (not in the system core). In the
system core, the increase comes from the supported hardware,
operating systems and new communication protocols. We can
manage the growth because it is isolated into selected places. The
variation points are designed and the solution is to use data centric
generation (usually more symbols needed). The code generator
core part is very stable. The initial number of symbols was
approx. 500 and now it is over 1600 symbols. A good
architecture helps in managing the growth. The amount of code is
not growing, instead, the growth is at data level.
A very long life-cycle and evolution has not yet affected to the
meta-model. The original meta-model is still used. The
architecture separates extensions into symbols, and the code
generator is still quite compact. The language rules and semantics
are fine-tuned by the code generator.
3.7 Law VII: Declining quality

The quality of E-type systems will appear to be declining unless
they are rigorously maintained and adapted to operational
environment changes.

The previous laws, like continuous change, increased complexity
and continuing growth, are easily causing problems in quality

control. Also all new features, operating system/hardware changes
and new protocols can cause new bugs.
The basic architecture isolates modifications. It will also keep the
system robust because a bug in one part will not crash the whole
system. In the language level, FBL helps in regression testing
because it can be used in different environments and different
versions. All old FBL programs should be compatible upwards.
This kind of FBL interoperability helps in testing. The same FBL
program can be used and code generator results can be used for
comparing and validating that the system is still working in the
same way. Interoperability and compatibility can be used in
regression testing to help in quality assurance.

3.8 Law VIII: Feedback system

E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base.

New communication methods like the internet and email allow
customers to contact vendors much easier. The information
collecting process uses data from multiple sources. The feedback
process is shown in Figure 2. Wishes for new features and minor
changes come from the testing and support contacts. All the
testing defects are reported and stored in a database. This database
is actually a huge diary that contains events that are caused by
programmers or designers. The support contacts from the
customers or own personnel are also stored in the database. These
tools are now integrated so that the user can link and create cards
just by one click. So for the development and maintenance all the
defects are collected into one database. In this way, it is much
easier to prioritize errors and decide who should fix and test the
error and when. Information processing is now easier and project
managers can focus on those errors in priority order. This makes
the focus setting easier and the error handling is up to date all the
time.
The process is now organized and made formal. It allows us to
have the feedback system running 24/7 and also check that each
case is handled. We archive and analyze all the feedback so that it
helps us to improve the quality of the products. The amount of
feedback issues have grown from some hundreds to over three
thousand during the last 20 years. The actual reason comes from
the fact that earlier issues were handled more freely. Formalized
feedback entering was started at the end of the year 2004. This
made it more visible and easier to statistically handle all issues. In
numbers this means: bug reports over 1300/year, support cases
1800/year, dissatisfactions over 100/year and ideas 200/year.
These issues concern engineering, user interface, controls and
hardware parts. Most of the issues are not critical, but they are
focusing mostly on user interface and usability issues today. We
formalize, control and analyze all collected feedback to really
improve both product quality and product features.
The whole feedback framework is made to help, link and reuse
information more easily. Also tracking and testing is managed
through the process. The process is more transparent and tracking
from initiator, coder, and tester to final version report is possible.
Each bug report or feature request has its own number and those
can be selected to a version report. This makes the quality of the
process better. Different views into bug records make it possible
to filter and find not handled records. One way to first categorize
a bug is to use architecture. The component level can be used to

assign a bug for fixing. In the same way, the project manager and
project number can be found and used in the process.

P ro je c t
M a n a g e r

P ro d u c t
M a n a g e r

C u s to m e rs
E x te rn a l u s e rs

P ro je c t p e rs o n e l
In te rn a l u s e rs

T ig h t c o -o p e ra t io n

U s e r
c lu b s

M e e t in g s

P ro je c ts to g e th e r F e a tu re s :
R e q u e s t
D e m a n d

D o m a in c h a n g e s :
F u n c tio n a l ity : s a fe ty s y s te m s

In te g ra tio n
H a rd w a re : C P U / m e m o ry

B u g re p o r ts

T e s tin g p e rs o n e l
In te rn a l u s e rs

M a n a g e s : p r io r ity e tc .

R e p o r ts , te s ts

T e c h n ic a l , m is s in g fe a tu re
F a s t fe e d b a c k , d i re c t b y c a s e #

S lo w e r fe e d b a c k , p ro d u c t le v e l fe a tu re s

Figure 2 FBL development processes and feedback channels.
The feedback process is a multi-level, multi-feedback system and
making it formal will help in tuning it.
FBL improvements that are collected are currently focused on
symbols. The symbols´ size is too big or some feature is missing
from the function block. Another found improvement comes from
the size of the FBL programs. New navigation and intelligent find
actions are needed in the FBL editor. Also a more context
sensitive user interface is required. These kinds of features exist
for example in Microsoft Visual Studio.

3.9 Patterns & idioms in Domain Specific
Language
As discussed above, Lehman’s laws for software evolution apply
for the FBL environment, and partly to the FBL language itself. In
addition, certain patterns / idioms seem to occur in FBL programs
and eventually turn into common practices. FBL template models
form patterns that are heavily reused. In the same way smaller
coding patterns (idioms) exist in FBL. For instance, idioms in
FBL can solve a problem that can be seen in runtime behavior.
Next two small function block level examples are presented,
identified from the FBL programs.
The first idiom is negation. A binary signal with a value 1 or 0 can
be converted with one function block “NOT”, but more common
is to use “XOR” for that because if negation is not needed, XOR
can be turned off by setting the input to 0. This can be done at
run-time which is a very good feature in a real-time environment.
The original use of NOT function block is thus not any longer so
common because if the logic is designed first in the wrong way,
the designer must remove the symbol and connect the signals
again.

The second pattern is alarm masking. In many cases the FBL
program contains function blocks that will generate an alarm. In
process control there are abnormal situations like starting the
process or shutting it down. In these cases there can be off limit
values in the measurements. It is typical to suppress these by
masking the alarm signals for a certain time like 10 to 30 seconds.
A time alarm is needed because there is most probably some real
problems in the process.
As design patterns are identified in traditional programming
languages and there are architectural level patterns, it is natural to
also find them in DSL. Besides supporting FBL programmers,
they can partly support the maintenance and evolution process of
the language.

4. SUMMARY
In this paper, the evolutionary history of FBL, a language used for
implementing automation control programs, and its programming
environment has been discussed.
The use of FBL is growing. Interestingly, we have observed that
the projects that are using visual programming are very well on
schedule. Component reuse is the first step in efficient
programming [6, 7, 8 and 20]. Metso Automation’s future work
will concentrate on patterns and template maintenance and we
will look for extending FBL to integrate more advanced functions.
Development agility is the part of the process that has modified
FBL and the tools to be flexible. According to our experiences at
Metso Automation, language development is a fascinating and
dynamic challenge but it requires a well-managed maintenance
and evolution process. We have also noticed that the key to such a
successful and controlled evolution process is in collecting
feedback from different stakeholders and in storing, managing,
and using it to further enhance the language. The management

must have a very large product view and good knowledge about
used techniques.
These experiences are limited to the automation industry and in
particular to FBL and our experiences at Metso Automation.
Therefore, we do not claim all the results can be directly
generalize to e.g. general purpose programming languages.
However, we feel that the process improvement and methods to
live with Lehman’s laws can be adapted to other cases and
software maintenance. In a dynamic environment, it is very
important to manage the maintenance and evolution processes.
One success factor has been that we control the maintenance and
evolution process with iteration. An essential factor for the
success has been a feedback handling mechanism that gives us
priorities and new ideas for further development. Another success
factor is architecture that is still dynamic and flexible.
The management of development and maintenance processes help
in evolution. Both processes have gone through improvements
and generations.

ACKNOWLEDGMENTS
The author would like to thank Tarja Systä for her comments and
support in writing. This article was written at Tampere University
of Technology.

5. REFERENCES
[1] Conway, M.E. 1968 How do Committee's Invent,

Datamation, 14 (5): 28-31.
[2] Deursen, A. , Klint, P. and Visser, J. 2000 Domain-

Specific Languages: An Annotated Bibliography, ACM
SIGPLAN.

[3] Ellson, J. and Gansner, E. and Koutsofios, E. and North,
S.C. and Woodhull, G. 2002, Graphviz— Open Source
Graph Drawing Tools Springer Berlin / Heidelberg,
Volume 2265/2002, 594-597.

[4] Foundation Fieldbus http://www.fieldbus.org/
[5] Johnson, S. C. 1975 Yacc: Yet Another Compiler-

Compiler. Compiler, Computing Science Technical Report
No. 32, , Bell Laboratories, Murray Hill, NJ 07974

[6] Karaila, M. and Leppäniemi, A.2004 Multi-Agent Based
Framework for Large Scale Visual Program Reuse, IFIP,
Volume 159/2005, 91-98.

[7] Karaila M., Systä T. 2005 On the Role of Metadata in
Visual Language Reuse and Reverse Engineering – An
Industrial Case Electronic Notes in Theoretical Computer
Science, 2005, Volume 137, Issue 3, 29-41.

[8] Karaila, M. and Systä, T. 2007 Applying Template Meta-
Programming Techniques for a Domain-Specific Visual
Language--An Industrial Experience Report, ICSE 2007.

[9] Kastens, U. PTG: Pattern-based Text Generator. v1.1
[10] Kelly, S. and Tolvanen, J-P.2008 Domain-Specific

Modeling Wiley-IEEE Computer Society Press, 448.
[11] Korhonen, K. 2002 A case study on reusability of a DSL in

a dynamic domain, 2nd OOPSLA Workshop on Domain
Specific Visual Languages.

[12] Lehman, M.M. ,Ramil, J F. ,Wernick, P D. ,Perry, D E.
and Turski, W M. 1997 Metrics and laws of software
evolution -The Nineties View Software, Proc. of the 4th
International Symposium on Software Metrics.

[13] Microsoft OLE. http://support.microsoft.com/kb/86008
[14] Moore, G. 1965 Moore's law.
[15] OPC communication http://www.opcfoundation.org/
[16] Profibus http://www.profibus.com/
[17] Schmidt, C. and Kastens, U. and Cramer, B. Using DEViL

for Implementation of Domain-Specific Visual Languages.
University of Paderborn.

[18] Tolvanen, J-P and Pohjonen, R. and Kelly, S. 2007
Advanced Tooling for Domain-Specific Modeling:
MetaEdit+., Computer Science and Information System
Reports, Technical Reports, TR-38, University of
Jyväskylä, Finland 2007, ISBN 978-951-39-2915-2.

[19] Vercoe, B. 1992 A Manual for the Audio Processing
System and Supporting Programs with Tutorials.

[20] Vyatkin, V. and Hanish, H-M. 2005 Reuse of Components
in Formal Modeling and Verification of Distributed
Control Systems ETFA 2005. 10th IEEE Conference on
Publication Date: 19-22 Sept. 2005 Volume: 1 On page(s):
129 - 134, 2005, Volume 1, 129-13.

[21] White, J. and Douglas C. Schmidt, 2007 A. N. E. W.
Introduction to the Generic Eclipse Modeling System,
Eclipse Magazine, Vol. 6, 11-19.

