
ITML: A Domain-Specific Modeling Language for
Supporting Business Driven IT Management

Ulrich Frank
ulrich.frank@uni-due.de

David Heise
david.heise@uni-due.de

Heiko Kattenstroth
heiko.kattenstroth@uni-due.de

Chair of Information Systems and Enterprise Modeling
University of Duisburg-Essen

Universitaetsstr. 9, 45141 Essen, Germany

Donald F. Fergusona

donald.ferguson@ca.com
Ethan Hadarb

ethan.hadar@ca.com
Marvin G. Waschkec

marvin.waschke@ca.com

CA Inc.
aNew York, NY, USA; bHerzelia, Israel; cWashington, NY, USA

ABSTRACT
Management of today’s IT is a challenging task that requires
a profound understanding of both the IT landscape and the
relevant business context. Numerous relations and depen-
dencies between business and IT exist, which have to be ac-
counted for, e.g., for better IT/business alignment. This pa-
per presents ITML (IT domain specific Modeling Language)
integrated with a comprehensive method for enterprise mod-
eling. The language advantages are illustrated in terms of
support for profound analyses, development of sophisticated
IT Management tools (build-time), and use of corresponding
models at run-time, e.g., as part of IT Dashboards.

Keywords
Domain-Specific Modeling Language, Enterprise Modeling,
IT-Management

1. MOTIVATION AND SCOPE
IT Management is confronted with remarkable challenges.
On the one hand, it is expected to serve the business with
high efficiency, on the other hand it must cope with the di-
versity of IT platforms, networks, and information systems
and their interdependencies. From a technical perspective,
there is need for integrating and consistently maintaining
these IT artifacts. From a managerial perspective, the tran-
sition from taylorism to process-oriented organizations as
well as the growing relevance of cross-organizational busi-
ness processes emphasizes the need for information systems
that are not restricted to particular business functions, but
that provide effective and versatile support for business pro-
cesses and fulfill the business’ needs (’IT/business Align-
ment’, cf.[10, 15]). These challenges are made more difficult
by language barriers between IT and business and between
the different IT domains.

To cope with these challenges, methods and tools are re-
quired that support the range of IT management tasks. Ex-
isting tools and methods for IT Management are unsatis-
factory in this respect. Approaches for integrating IS or
managing the IT infrastructure, such as Enterprise Appli-
cation Integration and Middleware (e.g., [20]) or Configu-
ration Management Databases (CMDBs; e.g., [19]), focus

on issues such as hardware and its operational metrics, e.g.,
address the matter of physical data exchange or manage-
ment of concrete IT resources and the implementation of IT
processes. Their support for elaborate technical analyses,
e.g., for checking IT architectural weaknesses, or for inte-
grating heterogeneous systems (cf. [6]) is somewhat limited,
since these approaches abstract away the business context
of the IS. In contrast, IT Management frameworks such as
ITIL1 or CobIT2 present high-level guidelines for IT organi-
zation’s services and processes. They provide an abstracted
approach for managing IT for typical IT processes, and oc-
casionally define metrics and key performance indicators for
evaluating the quality of the operational status of the IT
domains. However, there remains a gap between the IT
Management and the business context on the one hand, and
the detailed technical level on the other. While the gap is
supposed to be overcome by IT managers, the complexity
of this task suggests appropriate support – both for analysis
purposes and for communicating with various stakeholders.
In this respect, the motivation is twofold: First, we propose
a domain-specific modeling language (DSML) for modeling
IT infrastructures – the IT Modeling Language (ITML). It
provides concepts for conveniently creating illustrative and
consistent models of IT infrastructures, which enable various
types of analyses and transformations. At the same time, it
can be supplemented by corresponding process models to en-
gineer modeling methods for IT Management. Second, the
ITML is intended to support the design of tools for IT Man-
agement (build-time). We also show that ITML is useful
as a versatile management instrument at run-time of these
tools, e.g., by using diagrams as front end for instance data.

The ITML is part of a comprehensive method for enterprise
modeling that includes various other modeling languages,
e.g., an organization modeling language or a strategy mod-
eling language. Therefore, ITML models can be supple-
mented by models of the relevant context in order to pro-
mote IT/business alignment and foster communication be-
tween stakeholders with different professional backgrounds.

1IT Infrastructure Library, [19]
2Control Objectives for Information and Related Technol-
ogy, [11]



The remainder of the paper is structured as follows: In Sec-
tion 2, the requirements for a DSML for IT Management are
analyzed. In Section 3, two exemplary use cases illustrate
concepts and graphical notation of the ITML and the lan-
guage’s benefits for IT Management. Subsequently, the con-
ceptual background of the ITML is presented in the form of
a meta-model and a language architecture. Related work is
discussed in Section 5. The paper closes with an evaluation
of the solution and an outlook on future work.

2. REQUIREMENTS
The following requirements analysis is aimed at preparing
a foundation for the design of the ITML, and clarifies the
choice between a domain-specific modeling language in gen-
eral and a general-purpose modeling language (GPML).

For many planning and analyses scenarios, accounting for
all resources in all details is not necessary. In fact, too much
detail can obscure goals and make planning and analysis
more difficult than an intelligently simplified view.

Req. 1 – Reduction of Complexity: IT Management demands
for abstractions that allow for focusing on those concepts
that are pivotal for certain types of analyses and applica-
tion scenarios. This requires avoiding distraction caused
by irrelevant technical detail. Nevertheless, ignoring tech-
nical details on principle will not be satisfactory, since
some scenarios require information about concrete instan-
ces.

Ever changing and evolving technologies and corresponding
“buzz words” are distinctive of the IT domain – although the
basic concepts seldom change.

Req. 2 – Protection of Investment: To protect investments
into models, the language concepts should neither repre-
sent technical aspects that are subject to change nor fea-
tures that are specific to particular products. Note that
stressing this kind of abstraction also contributes to the
protection of investments into the IT itself, since it makes
IT infrastructures less vulnerable against changes of vari-
able details.

IT Management is hampered because various stakeholders,
such as end-users, executives, IT experts etc., need to be
involved in planning, designing, and managing IT. The lan-
guage barriers between these groups may cause misunder-
standing, compromising the efficiency of IT systems.

Req. 3 – Support for Multiple Perspectives: On the one hand,
meaningful representations of IT at different levels of ab-
straction are required to satisfy the needs of the various
groups of prospective users of the language. If possible,
they should correspond to concepts and representations
current in the prospective users’ domain. On the other
hand, these perspectives should be integrated to foster
communication between stakeholders with different pro-
fessional backgrounds.

IT is not an end in itself. Instead, it supports an organiza-
tion’s business processes, enterprise goals, and – in general
– its competitiveness. Hence, adequate management of IT
requires a profound understanding of the interdependencies

between business and IT.

Req. 4 – Business Context: IT Management must not be
treated as an isolated function. Instead, users should be
informed of the organizational context of IT. This requires
including concepts that represent the business context,
e.g., strategies and goals or business processes.

IT Management still strives to integrate the multitude of
different tools that are scattered over the enterprise. Data
about the enterprise’s IT areas (e.g., hardware, software, IT
services, security, governance) are often gathered and man-
aged separately in different information systems. This leads
to independent data silos, which jeopardize data consistency
(cf. [6]).

Req. 5 – Integration: To support analyses on interoperati-
bilty of IT systems, there is need for concepts to express
data or functional similarities or functions and integration
deficiencies within business processes. To develop concep-
tual foundations for integrating heterogeneous artifacts,
there is need for concepts – i.e., meta types – that can
be instantiated into a range of corresponding types, e.g.,
different implementation of a type “Customer”.

Models created with the ITML should be used to design
tools for IT Management (build-time), for instance, by trans-
forming the IT models into an enterprise-specific database
schema for software to manage instances of hardware; and
for providing versatile and extensible operational interfaces
that can be used during business operation (run-time).

Req. 6 – Formal Foundation: The semantics of the ITML
should be specified precisely enough for unambiguous trans-
formations into implementation documents such as code.

Ostensibly, general-purpose modeling languages address the
requirements. One could argue that a GPML like the ’Uni-
fied Modeling Language’ (UML, [18]) or the ’Entity Rela-
tionship Models’ (ERM, [2]) meet these requirements. How-
ever, such an approach has serious deficiencies (e.g., [3, 13,
16]). First, a GPML does not effectively support the con-
struction of domain-specific models, because its syntax and
semantics are designed to express any model; they are not
designed to exclude inconsistent models, and thus they do
not constrain users from creating – from a domain’s per-
spective – wrong models, e.g., with ’hardware running on
software’ (lack of integrity). Second, it would be rather in-
convenient to describe IT resources using only generic con-
cepts such as ’Class’, ’Attribute’, or ’Association’ (lack of
convenience), which are well-suited to modeling software,
but were not chosen with modeling IT in mind. Third, the
graphical notation, i.e., concrete syntax of a GPML does
not contribute to an illustrative visualization in the graphic
idiom of IT stakeholders, such as business managers (lack
of comprehensive models); hence, it would, if at all, provide
only little support for cross-IT domain communication.

Against this background, a DSML specific for IT Manage-
ment seems to be more likely to meet the preceding require-
ments than a GPML. In addition to the general requirements
presented above, the design of a DSML is guided by the
objective to reconstruct existing technical languages, in this



case the professional language of IT Management. This is for
two reasons. First, it benefits from the elaborate and proven
technical language of the domain instead of reinventing the
wheel. Second, it makes the DSML more comprehensible,
since its concepts correspond closely to terms the prospec-
tive users are familiar with – i.e., provide high semantics
(cf. [6]).

3. ILLUSTRATION OF THE SOLUTION
The following scenario serves to illustrate the use of the
ITML to support IT Management. The scenario is divided
into two steps. First, focus is on a model of IT infrastructure
that is integrated with a business process model. This step
aims at indicating the potential of the modeling language
to support for planning as well as ’strategic’ analysis. Sec-
ond, the models are extended with instance level data, which
promises to support decisions dealing with concrete IT re-
sources, e.g., a particular server or software. This requires
integrating an ITML modeling tool with corresponding sys-
tems at the operational level such as CMDBs.

Figure 1 presents a model of an IT landscape (Resource/
Service and Location level), which is extended by a busi-
ness perspective (Process Map). It shows various types of
IT concepts such as (from top to bottom) IT services, soft-
ware, diverse hardware like database systems, mainframe,
mail servers, or web server, and locations (data centers).
Furthermore, the elements are interrelated if they are de-
pendent in some way, e.g., software runs on hardware and
enables IT services. Such a model of the enterprise’s IT
already enables various analyses for IT Management. Two
simplified examples are illustrated below.

Example 1 – Outsourcing: The depicted model at type
level provides a foundation for outsourcing decisions. First,
depending on the interencies (coupling) an IT resource type
– e.g., the hardware type ’DBS 3’ – has with other IT re-
source types, it might be a good/poor candidate for out-
sourcing. This is based on the following assumption: The
higher the amount of interdependencies, the more compli-
cated it will be to detach it and outsource to an external
location. However, accounting only for the sheer amount of
interdependencies would be an oversimplification. Rather,
it is necessary to evaluate the importance of the interde-
pendencies, i.e., the associations of a resource type. For
instance, one can use the depicted models to assess the de-
pendency between ’DBS 3’ and the software type ’SAP BW’.
If the association between these two types does not indicate
strong coupling, and decoupling might be accomplished rela-
tively easy, the impact of outsourcing will be less substantial.

With respect to the business perspective, the models allow
for evaluating a resource’s relevance for the business, e.g.,
by analyzing the ’business impact’ of a resource in case of
its breakdown/malfunction. In our example, an analysis of
the associations among the modeled types reveals that the
’DBS 3’ is used – to a yet unknown extent – in two services
(’customer rating’, ’customer contact’), which in turn sup-
port various business process types. Hence, in contrast to
predominant descriptions of IT – such as records in configu-
ration databases (e.g., a CMDB) – the model-based descrip-
tion, although still on type level, already indicates mani-
fold advantages, like comprehensive analyses. The illustra-

Customer Rating

located at

Data Center

Houston

Data Center

Austin
Data Center

Munich, GermanyL
o
c
a
ti
o
n

P
ro
c
e
s
s
 M
a
p

R
e
s
o
u
rc
e
 /
 S
e
rv
ic
e

DBS 1

Oracle 10g

DBS 3DBS 2 Exchange Website

Groupware

Web-MailOutlook

BI / DW

DBS 9

SAP BW

DW HPC 1

Customer ContactCustomer Data

Web-Server

Mail-Server

Mainframe

Database-Server

Software

IT ServiceBusiness 

Process
Location

Legend

Business Process 5

Business Process 4

Business Process 3

Business Process 2

Business Process 1

runs on
comprises / requires
supported by

Data Center

Georgia

Figure 1: Exemplary Scenario

tive visualization further allows for inspecting a model on
sight and by stakeholders that are not familiar with, e.g.,
data-querying languages that are necessary for analyses in
database-oriented apporaches like CMDBs.

In a second step, these models can be enriched with ad-
ditional information about the actual instances. Figure 2
shows the IT/business process models, in which two types,
the ’business process 2’ and the ’customer data’ IT service,
are enhanced with information about current instances. This
requires that the types in the model (e.g., the IT service
type ’Customer Data’) are ’linked’ to corresponding instan-
ces (e.g., information about actual instance of this service).
Such an integration of models with corresponding instance
information, i.e., the use of models at run-time, fosters a
more profound decision-making and a variety of analyses
than analyzing at instance level only, since information about
particular instances are now enriched with the business con-
text, while at the same time distracting complexity of the
domain is still reduced. For our example, this can be applied
to:

- Resource type ’DBS 3’: Is there need for an upgrade in
any way (e.g., based on purchase date, end of maintenance
contract, number of breakdowns/incidents, costs)?

- Software types and their utilization of resource types:
How frequent ly do they depend on each other (e.g., based
on capacity utilization, amount of database accesses)?

- IT services: How frequent are the services accessed (e.g.,
charges, amount of instances)?

- Evaluating the return on investment by monitoring the
IT services usage: How frequent are the services accessed
(e.g., charges, amount of instances)?

- Business processes adjustments: What is the process’ crit-
icality (e.g., based on its value to customer, revenue, amount
of instances)?



Customer Rating

Data Center
Houston

Data Center
Austin

Data Center
Munich, GermanyL

o
c
a
ti
o
n

P
ro
c
e
s
s
 M
a
p

R
e
s
o
u
rc
e
 /
 S
e
rv
ic
e

DBS 1

Oracle 10g

DBS 3DBS 2 Exchange Website

Groupware

Web-MailOutlook

BI / DW

DBS 9

SAP BW

DW HPC 1

Customer ContactCustomer Data

Business Process 5

Business Process 4

Business Process 3

Business Process 2

Business Process 1

Data Center
Georgia

No. of current instances

Average Revenue / Instance

Total number of faulty 
instances

136

4157 $

445

02:54 minutes

Utilization

Averagte duration

Availability

Average costs / 
instance

1.20 $

Figure 2: Exemplary Scenario enhanced with in-
stance information

Example 2 – Consolidation/Integration: Already the
development of an ITML model helps to structure the do-
main of interest and identify potential similarities, for in-
stance between services offered to the business processes.
Thereby, such models foster identification of candidates for
consolidation and integration, e.g., of redundant data cen-
ters caused by mergers and acquisitions. If a data center
offers services that are identical or closely related to ser-
vices from another data center, it might be a candidate for
consolidation. In many cases, such analyses still require an
inspection and interpretation of the models by the users.
However, depending on the analyses and application sce-
nario tool-support might be possible, e.g., by highlighting
IT services that have similar relationships; and, for instance,
in contrast to querying datasets in a CMDB, it is more intu-
itive and comprehensive in terms of Req. 3 & 4. In the exam-
ple illustrated in Fig. 1, the data center ’Austin’ offers the
service ’Customer Data’ that is apparently closely related
to the service ’Customer Contact’ provided by data cen-
ter ’Munich’. Moreover, both data centers jointly provide
the service ’Customer Rating’. In order to decide about
consolidating similar or related services into a single data
center, the models can be enriched with information about
the instances, for example, to assess the importance of the
different services and accordingly of the data centers, the
criticality of the underling infrastructure, and type of solu-
tion, the number of problems and tickets associated with the
instance level over time, and more. Note that in decision-
making usually far more information than only name and
associations of, e.g., an IT service type – such as depicted in
Fig. 1 & 2 – is required; in this respect, the models presented
are simplifications (i.e., attributes are omitted for sake of
space restrictions).

4. CONCEPTUAL BACKGROUND: META
MODEL & LANGUAGE ARCHITECTURE

The DSML is specified in a meta model using the Meta
Modeling Language MML (cf. [7]), which was specifically de-
signed for specifying languages for enterprise modeling that
feature a high degree of inter-language integration. The de-

sign of the DSML is guided by several objectives, driven by
the requirements identified in Section 2. First, the model-
ing language should provide concepts that represent a re-
construction of the technical terminology of the IT domain
(cf. Req. 1 ). This requires finding abstractions that closely
correspond to concepts in the domain – i.e., provide a high
level of semantics – in order to facilitate a comfortable use of
the DSML and communication between the involved stake-
holders. At the same time, the concepts of the modeling lan-
guage should be rather generic in the sense that they apply
to a wide range of enterprise settings and over a longer pe-
riod (cf.Req. 2 ). The reconstruction also pertains to business
terminology. The language has to consider concepts from the
business domain that might be relevant for IT Management
and provide integration between both domains (cf. Req. 4 ).

While there are various ways to structure the IT Manage-
ment domain, we follow Kirchner [14], who proposes three
categories of concepts for an earlier version of the ITML:
technological concepts, such as hardware, software, network,
peripherals, and so on; organizational concepts, which in-
clude business processes, roles/people, costs, and goals; and
additional abstractions like IT services or information sys-
tems. Figure 3 illustrates a semantic net of the basic rela-
tions of the most prominent core concepts (cf. [14]): ’hard-
ware’ is located at a ’location’ and required by ’software’.
An ’information system’ is an abstraction over a certain set
of software and hardware. It provides ’IT services’, which
support ’business processes’ and, in the end, contribute to
the realization of the company goals and strategies. Organi-
zational roles are related to these concepts in various ways,
e.g., by means of utilization, maintenance, or responsibility,
and as part of information systems (e.g., a database admin)
or apart from them (e.g., help desk staff). Consequently,
these core concepts constitute the foundation for the ITML
language specification presented in Section 4.1.

Business Processes

Software

Hardware

IT Service

Business Goal

Information System

Location

runs on

realizes

provides

supports

located at

Organizational Role

Figure 3: Core Concepts of ITML

A second design objective refers to offering a graphical nota-
tion (concrete syntax). In contrast to, e.g., textual or formal
descriptions, a graphical notation supports a rich and intu-
itive documentation while it at the same time can depict
numerous relations in a more comprehensible way. The no-
tation has already been illustrated to some extent Section 3.

4.1 The ITML Meta Model (Excerpt)
The concepts in Figure 3 already provide a basis for the
ITML meta-model. However, the specification of the mod-
eling language still faces a number of challenges. The three
most pivotal ones are discussed below. Subsequently, corre-
sponding design decisions are presented.



Software
implementationLanguage : String

installationDate : String
lastUpdate : Date

SoftwareRole
description : String

License
licenseType : String

validUntil : Date

Hardware
avgAvailability : String
isAtomic : Boolean

serial-no : String
purchaseDate : Date

NetworkDevice
ip-address : String

Network
isWired : Boolean

ip-range : String

HardwareRole
description : String

Location

InformationSystem

IT Service
priority : Integer

availability-start : Date
availability-end : Date

SLA

i
i

SoftwareRoleAttribute
designator : String
attributeType : String

HardwareRoleAttribute
designator : String
attributeType : String

supports aimed at

of
fe

rs

comprises

defined by

requires

runs on

requires has
located at

has

ac
ce

ss
es

BusinessProcess
Goal

name : String
description : String
priority : String

1..1

1..*

1..*1..*
ha

s

i
i

comprises

i
valid for

enriched by

comprises

governs

1..1

specialized from

1..1

specialized from

0..1

context Software
def: let allSuperTypes: collect (me | me = me.super)
inv: (self.allSuperTypes-> includes self) = false

C1

i
i i

i

specified in MEMO-OrgML

1..*1..*

1..1

i i

1..*

1..1

0..1 1..*

1..1

0..1

‚Intrinsic Feature’i

Figure 4: The ITML Meta Model (Excerpt)

Modelling Challenge A: Contingent Classification.
Besides generic concepts such as ’software’ or ’hardware’
there exists a plethora of further refinements and characteri-
zations for these concepts. For instance, software can be cat-
egorized with regard to its architecture (e.g., client/server),
primary purpose (e.g., database management, middleware,
web server), or its nature (e.g., infrastructure, application,
frontend). From a modeling perspective such differentia-
tions can be realized in different ways: In terms of specific
meta types, by the use of generalization/specialization (i.e.,
differentiations as sub-types of ’software’), as a value of an
attribute of the generic meta type ’software’ (e.g., an enu-
meration ’type of software’), or as a role. At first glance,
reconstructing all classifications as separate meta types or
sub-types would conform to Req. 1. However, such a re-
construction would not be compliant with the demand for
invariant concepts (Req. 2 ) and to an unambiguous assign-
ment of real-world entities to concepts of the language. The
concerns can be that the classification of software is often
superficial and a matter of perspective – i.e., while in one
decision scenario a software might count infrastructural, it
can be regarded as application software in another. Though
accurate in terms of technical concerns of a repeating struc-
ture, it remains conceptually different in a business context.
Prominent examples are modern operating systems (usually
infrastructure software) that provide integrated functional-
ities that count as application software; or complex appli-
cation servers that provide, among others, database, mid-
dleware, and server functionalities. Furthermore, software
can be assigned to several categories. The same accounts
for the concept of ’hardware’. Even more, consider the con-
vergence of devices, when multi-purpose hardware solutions
such as a combined print/fax/copy machine, or a media-
phone-handheld computer are introduced, classification is-
sues are more evident

Modelling Challenge B: Interfacing to Instance Level.
The DSML is designed for creating models at type level
(cf. Req. 5 ); hence, the concepts in the models represent types.
For design purposes, this focus is usually sufficient and nec-
essary at the same time. However, often, it is required to
differentiate between types and instances (cf. Req. 1 ). Ignor-
ing instance information in general might generate wrongful

assumptions as indicated by the above application scenarios.
Therefore, the language concepts should allow for referring
to instances somehow.

Modelling Challenge C: Type Differentiation. The
modeling challenge pertains to the restrictions given by the
type/instance dichotomy commonly applied in conceptual
modeling (such as in [17]) and the semantic differences be-
tween instantiation and specialization. A discrimination of
types and instances is – especially in the IT domain – not
trivial, and it remains often unclear whether a real-world
entity is represented as a modeling concept (i.e., a type)
or as an application (i.e., an instance) of a modeling con-
cept. Take, for instance, the meta-type ’software’. Possi-
ble type instantiations could be ’Word Processing Software’,
’Microsoft Word’, ’Microsoft Word 2003’, or ’Microsoft Word
2003 Business Edition’. However, at the same time, ’Mi-
crosoft Word’ could be regarded as an instance of a meta-
type ’Word Processing Software’ or as a specialization. Hard-
ware concepts raise similar abstraction problems. For exam-
ple, ’Printer’ could be conceptualized as a meta-type with
instantiated types such as ’Laser Printer’ or ’Ink Jet Printer’.
Alternatively, ’Laser Printer’ could be specified as meta-
type, with ’Color Laser Printer’, ’HP Laser Printer XY-
Series’ etc. as instantiated types (cf. [5]). The decision for a
certain abstraction, i.e., what is regarded as software type,
as its specialisation and as its instance, variies among enter-
prises. If a modeling language is not flexible in this regard,
it might constrain its application range or even be unsuit-
able for enterprises. Hence, the ITML should provide users
with appropiate concepts and guidelines.

Figure 4 illustrates an excerpt of the ITML meta-model.
Note that certain aspects were simplified due to space re-
strictions. It also shows only one exemplary OCL-constraint
(C1 ), as well as ’0..*’-cardinalities are omitted for reason
of clarity. The meta-model illustrates the design decisions
which target the above challenges:

Ad A – ’Roles’: To enable users to express that a soft-
ware/hardware type can be assigned to different categories,
we use the concept ’role’. Software and hardware types are
instantiated from meta-types software or hardware. To as-



sign a type a specific purpose, it can be associated to an ac-
cording softwareRole or hardwareRole, which either already
exists or has to be instantiated (cf. [14]). In order to reuse
and extend software roles that also provide (higher) seman-
tics, a software role can be enriched with further attributes
(SoftwareRoleAttribute/ HardwareRoleAttribute), which al-
lows for defining individual sets of software/hardware roles.
While it would be possible to present a set of predefined role
types by specializing softwareRole/hardwareRole in an en-
terprise specific language modification, our solution is more
convenient because it can be used by users without meta
modeling expertise – i.e., it is not necessary to adapt the
meta model.

Ad B – ’Intrinsic features’: There are certain apparent
features of IT artifacts that we cannot express through the
specification of a type only, since they are used to represent
instance states (e.g., an IP address of a network device, serial
number of hardware, or installation date of software). With
regard to Req. 1, neglecting such instance features would not
be satisfactory. To meet this challenge, we use the concept
of ’intrinsic features’ [7]. An intrinsic feature is a type, an
attribute or an association that reflects a characteristic that
we associate with a type that applies, however, only to the
instance level. Hence, an intrinsic feature within a meta
model is not instantiated at type level, but only one level
further, i.e., at the instance level. In the MEMO Meta Mod-
eling Language (MML), which is used to specify the present
meta model in Fig. 4, intrinsic features are marked by an ’i’
that is printed white on black (cf. [7]). A meta type that is
marked as intrinsic, is actually a type (such as ’Location’).

Ad C – Customized Specialisation: With respect to the
restricted number of instantiation levels available for model-
ing, there is no perfect solution to this challenge. The ITML
offers two approaches to cope with it: First, the meta-types
are restricted to a few rather generic ones (such as ’Hard-
ware’, ’Computer’, ’Printer’ etc.– some are not shown in
the excerpt). More specific types would then be created by
instantiation, e.g. ’Laser Printer’ from ’Printer’. Second,
if there is need to create more specialized types, this can
be done by making use of a ’specialized from’-relationship,
which is specified for IT artifacts such as Hardware or Soft-
ware. Note that the introduction of a specialization rela-
tionship implies additional constraints. These constraints
are not included in the excerpt – along with further at-
tributes and additional concepts such as (software) techni-
cal Standards, Software/Hardware Interfaces, and Organi-
zational Roles.

4.2 Language Architecture
The integration with the business context requires to offer
not only concepts that represent the IT domain, but that
also account for concepts from business (cf. Req. 4 ). In the
ITML meta-model the business context is represented by the
meta types business process and goal. It would be inefficient
to “re-invent” these modeling concepts for the ITML again,
especially since they are not its primary concepts and main
focus. To promote such reuse the ITML is integrated with
other modeling languages for, e.g., business process or goal
modeling in a way that allows for reusing concepts at the
meta level and, by this, fosters the integrity of the corre-
sponding models at the type level.

Figure 5: MEMO Architecture and the integration
of ITML

For this purpose, the ITML is integrated with a method for
enterprise modeling – the multi-perspective enterprise mod-
eling (MEMO) method [4] – that already contains a number
of domain-specific modeling languages. MEMO is multi-
perspective in that it provides different groups of stakehold-
ers with special abstractions and specific views on their rel-
evant activities within the enterprise. Figure 5 illustrates a
simplified version of the language architecture of MEMO.
A more elaborate version can be found in [7]. All model-
ing languages within MEMO, including ITML, are specified
using the MEMO Meta Modeling Language (MML, [7]) at
the M3 level. This fosters their integration since they are
specified using the same modeling concepts – which allows
for defining and re-using common concepts at the meta-level
(M2). This consequently leads to integrated models at type
level (M1), e.g., integrated IT and business process models.
Thus, the ITML is integrated with a DSML for business pro-
cesses and organizational structure (organizational modeling
language, OrgML [4]), for resources (resource modeling lan-
guage, ResML [12]), and for strategies and goals (strategy
modeling language, SML [8]).

Concerning the use of the ITML, the integration with MEMO
broadens the scope of the ITML as it is extended from an
IT perspective to a more comprehensive view on an enter-
prise, thus fostering IT/business alignment and communica-
tion between the various enterprise stakeholders.

Note, even the excerpt in Fig. 4 might overstrain some users.
Hence, the ’technical’ details of modeling should be hidden
from users, e.g., by a corresponding modeling tool. Further-
more, the amount of concepts that are necessary and the
preferred level of detail vary between decision scenarios and
the stakeholders involved. Thus, it is necessary to adapt
the application of the language from case to case – which
leads to the topic of ’method engineering’ (cf. [1]). Method
engineering is supported by MemoCenterNG3, a modeling
environment that implements the presented language archi-
tecture in Fig. 5). Thereby, it offers modeling editors for the
MEMO languages, which includes an ITML modeling edi-
tor (see [7]). It also offers a meta-model editor that allows
for creating further model editors. This enables experienced
users to generate model editors that are based on the ITML
meta-model and provide customized diagram types that, for

3Visit http://www.wi-inf.uni-due.de/fgfrank/memocenter-
en or refer to [7] for more details.



instance, hide concepts that are irrelevant in the specific
application scenario.

5. RELATED WORK
In practice, various tools for IT Management, e.g., for moni-
toring, network management, or IT Service Management are
available, which are often based on a Configuration Manage-
ment Database (CMDB) or similar databases. Such tools
often allow for arbitrary models and do not provide a clear
separation between different levels of abstraction, e.g., type
and instance level (cf. Req. 1–3 ). Furthermore, these mod-
els mainly focus the management of instance data about
IT resources and hardly account for the business context
(cf. Req. 4 ).

An example of a related approach for modeling IT land-
scapes is the Common Information Model (CIM) published
by the Distributed Management Task Force (DMTF4). It
comprises a meta-model that defines basic concepts used for
vendor-independent descriptions of IT landscapes. In this
regard, the CIM solely focuses on describing IT resources
and its main purpose is to use it as a schema for corre-
sponding databases. However, since CIM does not provide
any concepts from the business domain, e.g., abstractions
for business processes, it neither contributes to a better
IT/business alignment nor fosters communication between
different stakeholders (cf. Req. 3 & 4 ).

Note, there are some modeling tools available (e.g., ARIS5,
ADOit6) that provide concepts for modeling IT landscapes
and – to a certain extent – allow to integrate them with
models of the business context. However, their language
specification is usually not available. As far as we can ex-
trapolate by examining these tools, they do not foster the
development of customized tools, e.g., through code gen-
eration (cf. Ref. 6 ). Finally, these approaches and tools do
not go beyond a company’s boundaries – yet, there exist no
mechanisms for exchanging and reusing IT models between
enterprises or even within an enterprise (cf. Req. 2 & 5 ).

6. EVALUATION & FUTURE RESEARCH
In this paper, we outlined a domain-specific modeling lan-
guage for IT landscapes. The language is aimed at accom-
plishing transparency by structuring and integrating the do-
main and, by this, reducing its complexity in order to sup-
port IT Management.

The language was designed to fulfill six requirements: The
core concepts of the ITML have been reconstructed from
the IT domain to provide abstraction that focus on relevant
aspects (Req. 1 ). For this purpose, irrelevant technical de-
tails have been omitted. Thereby, focus is on invariant con-
cepts so that efforts and investments made into IS/models
are protected (Req. 2 ). This also fosters reuse of models and
integration of IS (Req. 5 ). By embedding the ITML into
a method for enterprise modeling, representations of IT in-
frastructures can be enriched with related representations.
This supports not only accounting for the business context,
e.g., for a better alignment with business objectives (Req. 4 )

4http://www.dmtf.org/standards/cim/
5http://www.ids-scheer.com
6http://www.boc-group.com

but also facilitates the communication between stakeholders
with different professional backgrounds (Req. 3 ). Finally,
the semantics of the ITML allow for transforming an IT
model into, e.g., a database schema for a CMDB, as well as
for code generation in order to develop (integrated) software
for managing IT resources (cf. [9, 13]; Req. 6 ).

Currently, the ITML primarily focuses on modeling IT in-
frastructures, albeit it also accounts for services and pro-
cesses. Modeling of further important aspects of the IT do-
main, such as IT projects, is subject to future work. More-
over, we plan to refine the language specification, e.g., by
further research projects with business practice, and advance
the implementation of the modeling environment. This in-
cludes research on the aspects addressed, such as promoting
the use of the ITML in IT Management dashboards, i.e., us-
ing models created with a DSML at run-time for advanced
information systems. In this regard, the integration of in-
stance information is a pivotal issue, which will be addressed
next.

Compared to other approaches as described in Section 5,
our approach shows clear advantages, mainly by featuring
a higher level of semantics. Beyond satisfying the require-
ments discussed above, the ITML promises to supplement
de-facto standards such as CobIT and ITIL by providing
common concepts to describe the IT Management domain
– thus fostering the integrated use of both standards. Fur-
ther, the ITML serves as an instrument for bridging the gap
between their high-level guidelines and the technical, i.e.,
more detailed view of IT Management. As highlighted in
the application scenario and the language specification, the
ITML features integration with the instance level, i.e., ITML
models can be used to generate schemata for databases that
manage instance data. Taken one-step further, this integra-
tion can be used to leverage ITML models for run-time, too.
Envisioning an integration of the MEMO modeling environ-
ment with operational systems that manage the instance
data (e.g., workflow management systems or the CMDB),
ITML diagrams can also serve to build versatile and mean-
ingful ’dashboards’ for IT Management. Furthermore, we
illustrated, that the ITML and corresponding models of the
IT landscape foster comprehensive analysis and facilitate
profound decision-making. Finally and with respect to Req. 5,
the language serves as conceptual foundation for integrating
information systems on a level of semantics that goes beyond
all current capabilities: Information systems can describe
themselves by referring to IT models extended (i.e., inte-
grated) with business models – hence, enabling self-referential
information systems (cf. [9]).

7. REFERENCES
[1] S. Brinkkemper. Method engineering: engineering of

information systems development methods and tools.
INFORM SOFTWARE TECH, 38(4):275–280, 1996.

[2] P. P. Chen. The Entity-Relationship Model – Toward
a Unified View of Data. ACM T DATABASE SYST,
1(1):9–36, 1976.

[3] R. Esser and J. Janneck. A Framework for Defining
Domain-Specific Visual Languages. In Proc. of the 1st

OOPSLA Workshop on Domain-Specific Modeling
(DSM’01), Tampa Bay, 2001.

[4] U. Frank. Multi-Perspective Enterprise Modeling



(MEMO): Conceptual Framework and Modeling
Languages. In Proc. of the 35th Hawaii International
Conference on System Sciences (HICSS-35).
Honolulu, 2002.

[5] U. Frank. Ebenen der Abstraktion und ihre Abbildung
auf konzeptionelle Modelle – oder: Anmerkungen zur
Semantik von Spezialisierungs- und
Instanzierungsbeziehungen. EMISA Forum,
23(2):14–18, 2003.

[6] U. Frank. Integration – Reflections on a Pivotal
Concept for Designing and Evaluating Information
Systems. In R. Kaschek, C. Kop, C. Steinberger, and
G. Fliedl, editors, Information Systems and e-Business
Technologies, pages 111–122, Berlin, Heidelberg, 2008.
Springer.

[7] U. Frank. The MEMO Meta Modelling Language
(MML) and Language Architecture. ICB Research
Report 24, Institute for Computer Science and
Business Information Systems (ICB), University of
Duisburg-Essen, 2008.

[8] U. Frank and C. Lange. E-MEMO: a method to
support the development of customized electronic
commerce systems. Inf. Syst. E-Business
Management, 5(2):93–116, 2007.

[9] U. Frank and S. Strecker. Beyond ERP Systems: An
Outline of Self-Referential Enterprise Systems. ICB
Research Report 31, Institute for Computer Science
and Business Information Systems (ICB), University
of Duisburg-Essen, 2009.

[10] J. C. Henderson and N. Venkatraman. Strategic
alignment: Leveraging information technology for
transforming organisations. IBM SYST J, 32(1):4–16,
1993.

[11] IT Governance Institute, editor. CobiT 4.1:
Framework, Control Objectives, Management
Guidelines, Maturity Models. IT Governance Institute,
Rolling Meadows, 2007.

[12] J. Jung. Entwurf einer Sprache für die Modellierung
von Ressourcen im Kontext der
Geschäftsprozessmodellierung. Logos, Berlin, 2007.

[13] S. Kelly and J.-P. Tolvanen. Domain-Specific
Modeling: Enabling Full Code Generation. Wiley, New
York, 2008.

[14] L. Kirchner. Eine Methode zur Unterstützung des
IT–Managements im Rahmen der
Unternehmensmodellierung. Logos, Berlin, 2008.

[15] J. N. Luftman, P. R. Lewis, and S. H. Oldach.
Transforming the Enterprise: The Alignment of
Business and Information Technology Strategies. IBM
SYST J, 32(1):198–221, 1993.

[16] J. Luoma, S. Kelly, and J.-P. Tolvanen. Defining
Domain-Specific Modeling Languages: Collected
Experiences. In Proc. of the 4th OOPSLA Workshop
on Domain-Specific Modeling (DSM’04), Oct 2004.

[17] Object Management Group. Meta Object Facility
(MOF) Core Specification,
http://www.omg.org/docs/formal/06-01-01.pdf.
2009-08-07.

[18] Object Management Group. Unified Modeling
Language Infrastructure,
http://www.omg.org/docs/formal/07-11-04.pdf.
2009-08-07.

[19] Office of Government Commerce, editor. ITIL –
Service Operation. The Stationery Office, London,
2007.

[20] D. Serain. Middleware and Enterprise Application
Integration. Springer, London, 2002.


