
Domain Specific Languages for Business Process
Management: a Case Study

Janis Barzdins Karlis Cerans Mikus Grasmanis
Audris Kalnins Sergejs Kozlovics Lelde Lace Renars Liepins

Edgars Rencis Arturs Sprogis Andris Zarins
Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, LV-1459, Riga, Latvia

{janis.barzdins, karlis.cerans, mikus.grasmanis, audris.kalnins, sergejs.kozlovics, lelde.lace,
renars.liepins, edgars.rencis, arturs.sprogis, andris.zarins}@lumii.lv

ABSTRACT
Nowadays, more and more issues need to be considered when
implementing tools for domain specific languages with an
orientation to the business process management. It is not enough
to build just an editor for the language, various specific services
need to be provided as well. In this paper, we describe our
approach how to develop new domain specific languages for the
mentioned field and their support tools. A description of, so
called, transformation-driven architecture is outlined as well. It is
shown how to use principles of the architecture in developing tool
building platforms. Two domain specific languages together with
tools implementing them are described as an example.

Keywords
Transformation-Driven Architecture, tool building platform,
metamodels, model transformations, business process
management.

1. INTRODUCTION
When talking about business processes and their role in
development of information systems, an abbreviation BPM
usually comes up. However, the meaning of BPM is not always
the same. Initially, the letter M stood for Modeling, so with BPM
everyone was to understand the development of tools being able
to design business processes graphically. Later, the modelers'
community realized it is not enough, and the second meaning of
BPM arose – Business Process Management [1]. Now, business
processes are not only modeled but also managed (meaning the
process modeling tool had been integrated into some process
management system which controls the process execution and
integrates other parts of the information system).

Consequently, two kinds of graphical languages regarding
business processes exist nowadays. Firstly, there are plenty of
business process modeling languages. One of the most popular of
them is probably the UML [2] activity diagrams. And secondly,
there are also some business process management languages for
which a compiler to some code executable on a process engine
exists. Here, one must mention the BPMN (Business Process
Modeling Notation [3]) and its possible target language – the
BPEL (Business Process Execution Language [4]). A very
important component of a BPMN tool is a compiler to the BPEL

code being executable by some BPEL engine. According to the
SOA ideology [1], a web service wrapper is developed for the
information system components allowing the BPEL engine to
manage execution of the whole system being allowed to be
distributed through multiple companies.

However, most of these BPM languages or tools are often not
very useful in everyday situations. Being very complex they are
of course very useful for large enterprises. However, smaller and
more specialized systems usually need only a small part of those
facilities provided by the universal languages and tools. As a
result, the usage of them tends to be too complicated. Moreover,
tools (called the BPM suites) providing efficient and reliable
implementation of process management languages and offering a
whole set of support facilities are basically very expensive.
Certainly, there are also some less expensive suites (e.g., BizAgi
[5]) and cheap software-as-service offers by other vendors (e.g.,
Intalio [6]), but they are based on the same complicated languages
and approaches. Therefore, specialized languages for narrow
business domains are required, and that is where the DSLs
(Domain Specific Languages) come into play. Although universal
languages make advances towards specific tool builders (e.g.,
BPMN offers a possibility to add new attributes for tasks), they
can never give such wide spectrum of facilities as DSLs can. In
addition, frequently there are already well accepted notations for
manual design of processes in some business domains, and they
can be adequately formalized by the DSL approach. Moreover,
buying and adapting some universal language or tool for one's
small and specific case can often overcharge the benefits of using
it afterwards. On the other hand, the development of a DSL can
give little benefit if its implementations cost much. So we do have
a need for some simple and unified way of building domain
specific languages and tools. In this paper, we present a method of
developing and implementing domain specific languages. Also, a
success story of implementing two concrete DSLs is described
here.

The paper is organized as follows. In Section 2, some possible
requirements for tools implementing domain specific languages
have been discussed. Two example tools ordered by real
customers are introduced as well. Since they are to be parts of
some information systems, some concrete services were to be
satisfied by the tool. In Sections 3 and 4, our solution is presented.
Besides that, the most important aspects of our metacase tool's

architecture are sketched here as well. The approach of the
architecture is demonstrated on the mentioned example tools.
Section 5 concludes the paper.

2. TYPICAL REQUIREMENTS FOR DSL
TOOLS IN THE FIELD OF BPM
2.1 DSL tools in general
When developing a tool for a domain specific language (a DSL
tool) ordered by a customer, various needs have to be satisfied
usually. Generally speaking, a DSL tool consists of two parts – a
domain specific language it implements, and services it offers. So,
various tools differ one from another not only in the notation of a
DSL, but also in extent how easy they can be integrated in the
outer world. Nowadays, life does not end with an editor of some
domain specific language, it just starts there. In general, various
types of functionality must be provided when designing a domain
specific language including (but not limited to) a compiler to
some target environment, a simulation feature, a debugger etc.
However, when designing a DSL in the field of business process
management, some more specific features come to mind. For a
BPM domain specific tool to be successful, it must be able, for
instance, to establish a connection to some external data source,
for instance, a relational database. A DSL editor is often supposed
to be a part of some larger information system, so it must provide
facilities of collaboration with other parts of the system, the
database being one of them. Besides, the collaboration must be
possible in both design and run time of the tool. A crucial feature
is also the ability to convert a process definition in this DSL into
specification for some process execution engine in the system.
Other important issue to be considered is the ability to generate
some kind of reports from the model information. DSL editors are
often used to ease the preparation of, e.g., HTML or Microsoft
Word documents containing information about the domain. So the
tool should provide a way of generating such documents from the
user-drawn diagrams.
Considering these issues is a crucial factor when designing a new
DSL tool building platform. Some of the key facilities can be
designed easily and added to the platform. However, others can
be added later when such a necessity occurs. So, trying to satisfy
the needs of different customers can play a great role in the
growth of the platform. Therefore, in the next sections, we offer a
description of two domain specific tools and explain their
implementation within our DSL tool building platform.

2.2 Example tools
In this section, two concrete domain specific languages together
with the tools implementing them will be discussed. First of them
– Project Assessment Diagrams (further – PAD) – is an editor for
visualizing business processes regarding review and assessment of
submitted projects. This editor is based on UML activity diagrams
and thus contains means for modeling business processes. Yet,
some new attributes and some new elements have been added in
order to handle the specific needs. For example, elements for
controlling execution duration have been designed (elements
SetTimer and CheckTimer that can be attached to a flow). The
PAD editor has to be a part of a bigger information system for
document flow management (a simplified BPM suite), so services
providing interconnection between the system and the editor were
needed. For example, a PAD model needs to be imported in a

database where the information system can, for instance, make a
trace for each client's project and then project this trace back to
the editor for the visualization. This requirement was in some way
similar to the business process monitoring performed, e.g., in
ARIS [7] where groups of reasonably selected instances can be
monitored. They go even further – a process mining is introduced
to automate the monitoring process. So again – the problem has
been known for some time already, but here we are trying to solve
it by the means of a DSL instead of a universal language. Also,
we do not need such powerful features providing the whole
mining process. Instead, a very simple solution for business
process monitoring was requested here.

The other domain specific language (and tool) we have developed
is an editor for business processes in the State Social Insurance
Agency (further – SSIA). Since users' habits were to be taken into
account, this language syntactically is closer to BPMN. Again,
specific services needed to be satisfied by the tool, three of which
are the most worth mentioning:

• Online collaboration with a relational database – the searching
for information in a database was to be combined with the
graphical tool. The use case of that was a possibility to
browse for normative acts during the diagram design phase –
the normative acts are stored in a database and need to be
accessed from the tool.

• Users wanted to start using the tool as soon as possible – even
before the language definition has been fully completed. That
means we need to assure the preservation of user-made
models while the language can still change slightly. So the
DSL evolution over the time is an issue to be considered.

• The tool must be able to generate some kind of reports from
the visual information, preferably – in the format of Microsoft
Word. Moreover, some text formatting possibilities must be
provided in the tool, e.g., by ensuring the rich text support to
input fields.

Besides those, some more minor issues were highlighted during
the DSL design phase, but we are not going to cover all of them
here due to the space limitation.

It must be mentioned that, when designing languages, the main
emphasis was put on the fact that processes must be easy
perceived by the user. At the same time, however, languages had
to be suitable for serving as process management languages
without any changes. Since languages have been designed in such
a manner, it is possible to integrate them into a full-scale BPM
suite later. There the process definitions will be used to manage
the document flows in a typical to BPM manner.

3. IMPLEMENTATION BACKGROUND
3.1 General ideas
We have used our metamodel-based Graphical Tool-building
Platform GrTP [8] to implement the domain specific languages
PAD and SSIA. The recent version of GrTP is based on principles
of the Transformation-Driven Architecture (TDA, [9]). In this
Section, the key principles of the TDA and GrTP as well as their
applications in DSL implementation are discussed.

Figure 1. The Transformation-Driven Architecture framework filled with some interfaces.

3.2 The Transformation-Driven Architecture
The Transformation-Driven Architecture is a metamodel-based
approach for system (in particular, tool) building, where the
system metamodel consists of one or more interface metamodels
served by the corresponding engines (called, the interface
engines) and the (optional) Domain Metamodel. There is also the
Core Metamodel (fixed) with the corresponding Head Engine.
Model transformations are used for linking instances of the
mentioned metamodels (see Fig. 1).

The Head Engine is a special engine, whose role is to provide
services for transformations as well as for interface engines. For
instance, when a user event (such as a mouse click) occurs in
some interface engine, the Head Engine may be asked to call the
corresponding transformation for handling this event. Also, a
transformation may give commands to interface engines. Thus,
the Core Metamodel contains classes Event and Command, and
the Head Engine is used as an event/command manager.

Since it has been published in [9], we won’t go into details about
TDA here. Instead, we will just outline the main technical
assumptions for TDA in order to set the background:

• The model data are stored in some repository (like EMF [10],
JGraLab [11] or Sesame [12]) with fixed API (Application
Programming Interface).

• The API of the repository should be available for one or more
high-level programming languages (such as C++ or Java), in
which interface engines will be written.

• Model transformations may be written in any language (for
instance, any textual language from the Lx family [13] or the
graphical language MOLA [14] may be used). However, the
transformation compiler/interpreter should use the same
repository API as the engines.

• When a transformation is called, its behavior depends only on
the data stored in the repository.

• Only one module (transformation or engine) is allowed to

access the repository at the same time. Concurrency and
locking issues are not considered.

We have developed a, so called, TDA framework which
implements the principles of the TDA. The TDA framework
contains one predefined engine – the head engine – and the
repository (we are using our very efficient in-memory repository
[15] with a fixed API being available from the programming
language C++ in which engines are to be written). Other interface
engines may also be written and plugged-in, when needed. The
TDA framework is common to all the tool building platforms
built upon the TDA. The framework is brought to life by means of
model transformations. One can choose between writing different
transformations for different tools and writing one configurable
transformation covering several tools.

Actually, one more layer is introduced between the model
transformations and the repository. It is called the repository
proxy and it contains several features being common for all tool
building platforms built upon the TDA. The most notable of them
is perhaps the UNDO/REDO functionality – since it is embedded
in the proxy, engines and transformations do not have to consider
the UNDO and REDO actions. All the commands are intercepted
by the proxy and then passed further to the repository.

3.3 The TDA-based Tool Building Platform
GrTP
Next, we have developed a concrete tool building platform called
the GrTP by taking the TDA framework and filling it with several
interfaces. Besides the core interface, five more interfaces have
been developed and plugged into the platform in the case of
GrTP:

• The graph diagram interface is perhaps the main interface
from the end user’s point of view. It allows user to view
models visually in a form of graph diagrams. The graph
diagram engine [16] embodies advanced graph drawing and
layouting algorithms ([17, 18]) as well as effective internal
diagram representation structures allowing one to handle the

Figure 2. The way of coding models.

visualization tasks efficiently even for large diagrams.

• The property dialog interface allows user to communicate
with the repository using visual dialog windows.

• The database interface ensures a communication between the
model repository and a database.

• The multi-user interface performs the task of turning a project
into a multi-user project and considers other issues regarding
that.

• The Word interface helps user to establish a connection to
Microsoft Word and to send data to it.

The final step is to develop a concrete tool within the GrTP. This
is being done by providing model transformations responding to
user-created events. A fair part of these transformations usually
tend to be universal enough to be taken from our already existing
transformation library instead of writing them from scratch
(transformations responding to main events like creating new
element, reconnecting line ends, making a mouse click or double
click etc., as well as such platform specific transformations as
copy, cut, paste, delete, import, export, etc.). In order to reduce
the work of writing transformations needed for some concrete
tool, we introduce a tool definition metamodel (TDMM) with a
corresponding extension mechanism. We use a universal
transformation to interpret the TDMM and its extension thus
obtaining concrete tools working in such an interpreting mode.
This is explained a bit more in the next subsection.

3.4 The tool definition metamodel and its
usage for building concrete tools
First of all, we explain the way of coding models in domain
specific languages. The main idea is depicted in Fig. 2. As can be
seen here, the graph diagram metamodel (conforming the one
from Fig. 1) is complemented with types turning a general graph
diagram into a diagram of some concrete tool (e.g., some business
process editor). A model here is a set of graph diagrams every one

of which consists of elements – nodes and edges. An element in
its turn can contain several compartments. At runtime, each visual
element (diagrams, nodes, edges, compartments) is attached to
exactly one type instance (see classes DiagramType,
ElementType, CompartmentType) and to exactly one style
instance. Here, types can be perceived as an abstract syntax of the
model while the concrete syntax being coded through styles.

Now, about the proposed tool definition metamodel. The main
idea of the tool definition metamodel together with the extension
mechanism is presented in Fig. 3. Apart from types, the tool
definition metamodel contains several extra classes describing the
tool context (e.g., classes like Palette, PopUp, ToolBar, etc.).
Moreover, the tool definition metamodel contains, so called,
extension mechanism providing a possibility to change behavior
of tools represented by the metamodel. The extension mechanism
is a set of precisely defined extension points through which one
can specify transformations to be called in various cases. One
example of a possible extension could be an
“AfterElementCreated” extension providing the transformation to
be called when some new element has been created in a graph
diagram. Tools are being represented by instances of the TDMM
by interpreting them at runtime. Therefore, to build a concrete
tool actually means to generate an appropriate instance of the
TDMM and to write model transformations for extension points.
In such a way, the standard part of any tool is included in the tool
definition metamodel meaning that no transformation needs to be
written for that part. Instead, an instance of the TDMM needs to
be generated using a graphical configurator. At the same time, the
connection with the outer world (e.g., a database or a text
processor) is established by writing specific model
transformations and using the extension mechanism to integrate
them into the TDMM.

3.5 Benefits of the TDA
The main advantage of the transformation-driven architecture is
its idea of providing explicit metamodeling foundations in
building tools for domain specific languages. Although there

Graph Diagram Metamodel

GraphDiagram
caption :String

GraphDiagramType
name:String

Element

Node Edge

Compartment
value:String

ElementType
name:String

NodeType EdgeType

CompartmentType
name:String

Pair

ElementStyle
lineColor:Integer
...

NodeStyle
width: Integer
height: Integer
bkgColor: Integer
shape: Integer
...

EdgeStyle
startShape: Integer
middleShape: Integer
endShape: Integer
lineType: Integer
thickness: Integer
...

GraphDiagramStyle
layoutMode:Integer

CompartmentStyle
fontSize: Integer
fontColor: Integer
...

*

*

start1

end
1

* *

1..*

start1

end
1

*
1

*
1

*
1

*

*

0..1
*

0..1
*

0..1
*

*

refinement
0..1

*

refinementType
0..1

0..1
1

0..1
1

0..1
1

Figure 3. Basic principles of the tool definition metamodel.

already exist some metacase tools accepting the idea of DSL tool
definition by a metamodel (e.g., Eclipse GMF [19] and Microsoft
DSL Tools [20]), they generally offer only some configuration
facilities allowing definition of a DSL tool in a user-friendly way
while a direct access to metamodels is either limited or provided
using some low level facilities. The pace-maker of the field is
perhaps the Metacase company whose product MetaEdit+ [21]
provides Graph, Object, Property, Port, Relationship and Role
tools to ensure the easy configuration of concrete domain specific
tools. Another well-known example is Pounamu/Marama [22, 23]
which offers shape designer, metamodel designer, event handler
designer and view designer to obtain a DSL tool. On the contrary,
the TDA is completely transparent meaning a user can have a free
read and write access to its metamodels and their instances. Of
course, extra services like graphical configurator of a DSL tool
can be offered as well, but the user is not forced to use it. It must
be underlined that, if following the TDA, the definition of a
concrete domain specific tool only involves developing model
transformations and nothing else. The TDA follows the ideas of
the MDA [24] stating that the common part of syntax and
semantics can be formalized through a metamodel. The whole
specific part at the same time can be put into model
transformations.

The other notable advantage of the TDA is its ability to get in
touch with the outer world. This is being done by adding new

engines to the TDA framework. Since there is no need to go deep
in implementation details of other engines or other parts of the
TDA, this is considered to be a comparatively easy task.

4. The development of PAD and SSIA using
GrTP
Besides the trivial part – generation of a tool definition
metamodel’s instance forming the graphical core of the tool – we
decided to develop three more engines we did not have at that
moment. Those engines were the database engine, the multi-user
engine and the Word engine. Since the TDA framework provides
a possibility to plug in new interfaces (engines together with their
respective metamodels) easily, the development and integration of
the engines was done quite harmlessly. We must admit there were
some difficulties to integrate the multi-user interface, however
they were mostly of technical nature – the tool definition
metamodel had to be changed a bit as well.

Next, according to the extension mechanism, some specific
transformations needed to be written in order to put a life into the
static tools – to make them dynamic. These transformations
referred to generating, for instance, the correct items for combo
boxes, to changing items in context menus dynamically, to
assigning the correct styles to visual elements (although this can
be partly specified in the static part as well) etc. These
transformations had to be written and attached to appropriate

Tool Definition Metamodel: The Core (Simplified) Tool Definition Metamodel:
Extension Mechanism (Simplified)

ElemStyle
name:String
...

PaletteLine

Palette

PaletteBox

Tool
name:String

ElemType
name:String

EdgeType

Pair
startMultiplicityConstraint:Multiplicity
endMultiplicityConstraint:Multiplicity

NodeType
multiplicityConstraint:Multiplicity

CompartType
name:String
startValue:String
isInElement:Boolean
isInDialog:Boolean
isEditable:Boolean

GraphDiagramStyle
layoutMode:Integer
...

PaletteElement
name:String
picture:String

Before
Element
Deleted

After
Element
Modified

After
Element
Created

After
Compart
Created

After
Compart
Modified

AfterClick
ComboBox

ListBox

CompartStyle
fontSize:Integer
fontColor:Integer

PopUpElement
name:String
isVisible:Boolean

GraphDiagramType
name:String Keyboard

Toolbar

ToolbarElement
name:String
picture:String
isVisible:Boolean

Key
name

PopUp

Transformation
name: String

PredefinedToolbarElement AdvancedToolbarElement

 *

defaultStyle
 1

 1

 *

oElType
optionalStyle 1
 *

dElType
defaultStyle 1
 0..1

start

 *
 1..*

{ordered}
 *

{ordered}
 *

end

 *

 1..*

start
 1
end
 1

 1..*

focusStart 0..1

dCompStyle

defaultStyle

 1

 0..1

oCompStyle

optionalStyle

 1

 *

 *

 *

first
 1

{ordered}
 *

choiceItemsGenerator
 0..1

{ordered}
*

{ordered}
 *

{ordered}
 *

 0..1

 0..1

{ordered} *

{ordered}
 *

RClickElement
 0..1

 1

source

target

 *

 0..1

new

 1

 1..*

new

 1

 1

 0..1

Figure 4. Browsing for normative acts stored in the
database from the tool’s dialog window.

Figure 5. A rich text component.

extension points thus forming the concrete tool.

The most challenging part of the development of tools was
perhaps the ensuring interconnection between the tool and a
relational database. Since the graphical tool was meant to be just
one piece of the whole information system’s software, it was
already clear before that this problem will have to be faced sooner
or later. The issue has been classic in the world of workflows –
some business process has been being modeled in a tool and
passed to a relational database afterwards. The information
system would then take care of applying the process to individual
clients and storing the history of how far each client has gone
through the process. On request, the tool should be able to
visualize the history for some particular client as well.

The classic solution of the problem advises using the ORM
method (Object-relational mapping, [25]) stating that a simple
mapping between the model repository and the database must be
made and a generation of metamodel instances and/or database
records must be performed. However, this solution was not
acceptable in our case because of its limitations in the process of
generation of instances as a response to a query for the database –
the types or return tables must be known before. At the same
time, the SSIA project required the possibility of receiving answer
to an arbitrary query.

Our solution included turning a part of the metamodel storing the
business processes together with their respective element types
and styles (see Fig. 2) into a database schema. That was a pretty
straightforward job – if abstracting from the details, the database
was made to store data in RDF format [26]. So, all the database
engine had to do was generating the contents of the database from
the model and vice versa. Next, a translator was made in an
information system part of the system carrying out a connection
between the RDF-type database and the actual database of the
system. Thus, by introducing such an intermediate layer between
the tool and the actual database, the database engine was to be
written once and for all – it does not depend on the actual
database schema.

Eventually, the tools obtained in GrTP satisfied all the needs
customers had highlighted, including the ones mentioned in
Section 2. The connection to the relational database provided by
the database engine ensured fast information searching
capabilities in database in combination with the tool. Thus, an
easy browsing for information stored in the relational database (in

this case – normative acts) was possible from the tool interface
(see Fig. 4). Next, an add-only DSL evolution comes at no extra
cost if using the tool definition metamodel to develop tools in
GrTP. Indeed, if the DSL demands some more element or
compartment types to be added, we just add new instances to
ElementType or CompartmentType classes in the model coding
metamodel. Since it has nothing to do with already existing types
of the language, existing models remain unmodified. This can be
achieved because of the fact that we store the DSL definition in
the same modeling level with the actual models – the connection
between a model element and its definition is obtained without
crossing levels. However, if changes in DSL are not of add-only
type, some extra work needs to be done – elements and
compartments of old types may need to be either deleted of
relinked to some new types (see dashed associations in Fig. 2). In
our framework, all this work can be done by model
transformations. It must be mentioned that add-only changes are
comparatively easy to implement in most metacase tools,
although not in all. For example, it is still a quite tough problem
in tools based on JGraLab repository [11].

Finally, a report generator was built using the Word engine. It
introduces a simple graphical language allowing one to specify
the information to be put in a Microsoft Word document. In the
engine, several extra services were implemented as well. For
example, a Word window was embedded in a property dialog
windows generated by the property dialog engine and providing a
possibility for a user to create rich text compartment values as
was requested by the customer (see Fig. 5).

5. CONCLUSIONS
In this paper, we described our approach how to develop new
domain specific languages and tools for supporting them. A short
description of the transformation-driven architecture and its
framework was outlined as well. The architecture was illustrated
in its application in the graphical tool building platform GrTP
upon which two concrete domain specific languages were
implemented.

It was mentioned that nowadays DSL is often to be only a part of
some bigger information system and the tool supporting it thus
must be able to communicate with the outer world. In fact, this
approach is only one of the possible solutions for the problem of
how to integrate the tool with other parts of an information
system. The other possible way is to develop so called business
process management suites in which all the necessary features are

included. It involves also the issue of how to include fragments of
existing information systems into a tool environment. It is usually
done by turning components of the information system into a web
service thus providing an appropriate network addressable
application program interface for it.

Considering the issues mentioned above, our closest goal is to
develop a platform for building domain specific suites. One of the
possible domains for the approach could be suites incorporating
process and document management integrated with sophisticated
document generation procedures. Though large-scale expensive
solutions such as EMC Documentum exist here, a very
appropriate niche for small-scale, but logically sophisticated
DSL-based solutions could be document management in various
government institutions. The web service based approach will
ensure very tight integration of the DSL execution environment
with the rest of the suite including full access to databases.

6. REFERENCES
[1] J. F. Chang. Business Process Management Systems.

Auerbach Publications, 2006, pp. 286.
[2] UML, http://www.uml.org.
[3] BPMN, http://www.bpmn.org.
[4] BPEL, http://www.bpelsource.com.
[5] BizAgi, http://www.bizagi.com.
[6] Intalio, http://www.intalio.com.
[7] ARIS platform, http://www.ids-

scheer.com/en/ARIS_ARIS_Software/3730.html.
[8] J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L.

Lace, R. Liepins, A. Sprogis. GrTP: Transformation Based
Graphical Tool Building Platform. Proc. of Workshop on
Model Driven Development of Advanced User Interfaces,
MODELS 2007, Nashville, USA.

[9] J. Barzdins, S. Kozlovics, E. Rencis. The Transformation-
Driven Architecture. Proceedings of DSM’08 Workshop of
OOPSLA 2008, Nashville, USA, 2008, pp. 60–63.

[10] Eclipse Modeling Framework (EMF, Eclipse Modeling
subproject), http://www.eclipse.org/emf.

[11] S. Kahle. JGraLab: Konzeption, Entwurf und
Implementierung einer Java-Klassenbibliothek f¨ur
TGraphen, Diplomarbeit, University of Koblenz-Landau,
Institute for Software Technology, 2006.

[12] Sesame, http://www.openrdf.org, 2007.
[13] J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs. Model

Transformation Languages and their Implementation by

Bootstrapping Method. Pillars of Computer Science, LNCS,
vol. 4800, Springer-Verlag, 2008, pp. 130-145.

[14] A. Kalnins, J. Barzdins, E. Celms. Model Transformation
Language MOLA, Proceedings of MDAFA 2004, LNCS,
vol. 3599, Springer-Verlag, 2005, pp. 62-76.

[15] J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins,
M. Opmanis, K. Podnieks. Towards Semantic Latvia.
Communications of the 7th International Baltic Conference
on Databases and Information Systems (Baltic
DB&IS’2006), Vilnius, 2006, pp. 203-218.

[16] J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins. A
Graph Diagram Engine for the Transformation-Driven
Architecture. Proceedings of MDDAUI’09 Workshop of
International Conference on Intelligent User Interfaces
2009, Sanibel Island, Florida, USA, 2009, pp. 29-32.

[17] P. Kikusts, P. Rucevskis. Layout Algorithms of Graph-Like
Diagrams for GRADE Windows Graphic Editors.
Proceedings of Graph Drawing ’95, LNCS, vol. 1027,
Springer-Verlag, 1996, pp. 361–364.

[18] K. Freivalds, P. Kikusts. Optimum Layout Adjustment
Supporting Ordering Constraints in Graph-Like Diagram
Drawing. Proceedings of The Latvian Academy of Sciences,
Section B, vol. 55, No. 1, 2001, pp. 43–51.

[19] A. Shatalin, A. Tikhomirov. Graphical Modeling Framework
Architecture Overview. Eclipse Modeling Symposium, 2006.

[20] S. Cook, G. Jones, S. Kent, A. C. Wills. Domain-Specific
Development with Visual Studio DSL Tools, Addison-
Wesley, 2007.

[21] MetaEdit+, http://www.metacase.com.
[22] N. Zhu1, J. Grundy, J. Hosking. Pounamu: a meta-tool for

multiview visual language environment construction. Proc.
IEEE Symposium on Visual Languages and Human Centric
Computing (VLHCC’04), 2004, pp. 254-256.

[23] J. Grundy, J. Hosking, N. Zhu1, N. Liu. Generating Domain-
Specific Visual Language Editors from High-level Tool
Specifications. 21st IEEE International Conference on
Automated Software Engineering (ASE’06), 2006, pp. 25-36.

[24] MDA Guide Version 1.0.1. OMG,
http://www.omg.org/docs/omg/03-06-01.pdf.

[25] C. Richardson. POJOs In Action. Manning Publications Co,
2006, pp. 560.

[26] Resource Definition Framework, http://www.w3.org/RDF.

