
Continuous Migration Support for Domain-Specific
Languages

Daniel Balasubramanian, Tihamer Levendovszky,
Anantha Narayanan and Gabor Karsai

Institute for Software Integrated Systems
2015 Terrace Place
Nashville, TN 37203

{daniel,tihamer,ananth,gabor}@isis.vanderbilt.edu

ABSTRACT
Metamodel evolution is becoming an inevitable part of soft-
ware projects that use domain-specific modeling. Domain-
specific modeling languages (DSMLs) evolve more frequently
than traditional programming languages, resulting in a large
number of invalid instance models that are no longer compli-
ant with the metamodel. The key to addressing this prob-
lem is to provide a solution that focuses on the specification
of typical metamodel changes and automatically deduces
the corresponding instance model migration. Additionally,
a solution must be usable by domain experts not familiar
with low level programming issues. This paper presents the
Model Change Language (MCL), a language and supporting
framework aimed at fulfilling these requirements.

1. INTRODUCTION
Model based software engineering has been especially suc-
cessful in specific application domains, such as automotive
software and mobile phones, where software could be con-
structed, possibly generated from models. A crucial reason
for this has been the tool support available for easily defin-
ing and using domain specific modeling languages (DSMLs).
However, the quick turnover times required by such applica-
tions can force development to begin before the metamodel
is complete. Additionally, the metamodel often undergoes
changes when development is well underway and several in-
stance models have already been created. When a meta-
model changes in this way, it is said to have evolved. Without
supporting tools to handle metamodel evolution, existing in-
stance models are either lost or must be manually migrated
to conform to the new metamodel.

The problem of evolution is not new to software engineer-
ing. In particular, databases have been dealing with schema
evolution for several years. While there have been attempts
to extend these techniques to model-based software [4], two
characteristics of DSMLs suggest that a dedicated solution
is more appropriate. First, metamodels tend to evolve in
small, incremental steps, implying that a model evolution
tool should focus on making these simple changes easy to
specify. This also means that a large portion of the language
is unaffected between versions: an ideal solution should lever-
age this knowledge and require only a specification for the
portion that changes and automatically handle the remain-
ing elements. On the other hand, complex changes do some-
times occur, so a mechanism for these migrations must also
be available. The second point in favor of a dedicated model

migration tool is that domain designers and modelers are of-
ten not software experts, which means a solution should use
abstractions that are familiar to these users and avoid low
level issues, such as persistence formats. Ideally, the mod-
eler should be able to use the same abstractions to build
models, metamodels and evolution specifications.

Our previous work with sequenced graph rewriting [1] pro-
vided some insight into the balance between expressiveness
and ease of use. We have found that a general purpose trans-
formation language tends to be cumbersome for the mostly
minor changes present during metamodel evolution. Thus,
we have designed a dedicated language called the Model
Change Language (MCL) used to specify metamodel evo-
lution in DSLs and migrate domain models. The rest of this
paper describes MCL and is structured as follows. Section
2 presents further motivation and background terminology.
Section 3 describes the overall design of MCL, while the
implementation is presented in Section 4. Related work is
found in Section 5, and we conclude in Section 6.

2. MOTIVATION AND BACKGROUND
Our primary motivation was drawn from experience with
several medium and large DSMLs that continually evolved.
The large number of existing instance models made manual
migration impractical. For very simple language changes,
such as element renamings, we found that XSLT was an ac-
ceptable solution. [11] describes a language capable of gen-
erating XSL transforms that are applied sequentially, which
increases the expressiveness of the evolution, but requires
the user to define the control structure and order of eval-
uation explicitly. Additionally, we occasionally faced more
complex changes, for which XSLT was not sufficient. For
these changes, our graph transformation language, GReAT
[1], provided a powerful alternative, but its model migra-
tion specifications were too verbose for two primary rea-
sons. First, when a metamodel element changes, the migra-
tion rule should be applied to all instance model elements of
that type, regardless of where they are located in the model
hierarchy. Second, metamodels tend to evolve in small, in-
cremental steps, in which the majority of the elements stay
the same. Together, these two points imply that a model
migration tool should:

1. Contain a default traversal algorithm.

2. Automatically handle non-changed elements.

We incorporated both of these ideas into our design. Our es-
sential hypothesis is that evolutionary changes on the model-
ing language will be reflected as changes on the metamodel.
When the modeling language is evolved, the language de-
signer has to modify the metamodel that will now define
the new version of the language. The key observation here is
that metamodel changes are explicit, and these changes are
used to automatically derive the algorithm to migrate the
models in the old modeling paradigm to the models com-
patible with the new version of the paradigm. We make
an essential assumption: changes performed on the meta-
model are known and well-defined, and all these changes are
expressed in an appropriate language. We designed such a
language, which we call the Model Change Language (MCL).
We now briefly describe relevant background terminology.

A metamodel ML defines a modeling language L by defining
its abstract syntax, concrete syntax, well-formedness rules,
and dynamic semantics [1]. Here, we are focusing on the ab-
stract syntax of the modeling paradigm. There are various
techniques for specifying the abstract syntax for modeling
languages, and the most widely used is the Meta-object Fa-
cility (MOF) [10], but for clarity here we will use UML class
diagrams. The examples in this paper use UML class dia-
grams with stereotypes indicative of the role of the element,
such as Model (a container), Atom (an atomic model ele-
ment) or Connection (an association class) - but they may
be understood as simple UML classes. Note that the actual
models can be viewed as object diagrams that are compliant
with the UML class diagram of the metamodel.

3. THE MODEL CHANGE LANGUAGE
The Model Change Language (MCL) defines a set of id-
ioms and a composition approach for the specification of
the migration rules. The MCL also includes the UML class
diagrams describing both the versions of the metamodel be-
ing evolved, and the migration rules may directly include
classes and relations in these metamodels. MCL was de-
fined using a MOF-compliant metamodel. For space reasons
we cannot show the entire metamodel, rather we introduce
the language through examples. Note that MCL uses the
metamodel of the base metamodeling language, and MCL
diagrams model relationships between metamodel elements.
For a more in-depth look at MCL, please see [2].

The basic pattern that describes a metamodel change, and
the required model migration, consists of an LHS element
from the old metamodel, an RHS element from the new
metamodel, and a MapsTo relation between them (stating
that the LHS type has “evolved” into the RHS type). The
pattern may be extended by including other node types and
edges into the migration rule. The node at the left of the
MapsTo forms the context, which is fixed by a depth first
traversal explained in Section 4. The rest of the pattern
is matched based on this context. The WasMappedTo link
in the pattern is used to match a node that was previously
migrated by an earlier migration rule. For the sake of flexi-
bility, it is possible to specify additional mapping conditions
or imperative commands along with the mapping. This ba-
sic pattern is extended based on various evolution criteria,
as explained below.

The MCL rules can be used to specify most of the common

(a) Adding a new element

(b) Deleting an element

Figure 1: MCL rules for adding and deleting ele-
ments

metamodel evolution cases, and automate the migration of
instance models necessitated by the evolution of the meta-
model. The core syntax and semantics is rather simple, but
for pragmatic purposes higher-level constructs were needed
to describe the migration. We have identified a number of
categories for metamodel changes based on how metamod-
els are likely to evolve and created a set of MCL idioms to
address these cases. These idioms may also be composed
together to address more complex migration cases. We will
describe a number of these idioms next. We first introduce
the representative patterns.

3.1 Adding Elements
A metamodel may be extended by adding a new concept into
the language, such as a new class, a new association, or a new
attribute. In most cases, old models are not affected by the
new addition, and will continue to be conformal to the new
language, except in certain cases. If the newly added element
holds some model information within a different element in
the old version of the metamodel, the information must be
appropriately preserved in the migrated models. In fact, this
falls under the category of “modification” of representation,
and is described further below.

If the newly added element plays a role in the well-formedness
requirements, then the old models will no longer be well
formed. The migration language must allow the migration
of such models to make them well formed in the new meta-
model. For instance, suppose that the domain designer adds
a new model element called Thread within a Component -
and adds a constraint that every Component must contain
at least one Thread. The old models can then be migrated
by creating a new Thread within each Component, as shown
in Fig. 1(a). The LHS or ‘old’ portion of the MCL rule is
shown in a greyed rectangle for clarity in this and all subse-
quent figures.

3.2 Deleting Elements
Another typical metamodel change is the removal of an ele-
ment. If a type is removed and replaced by a different type,
it implies a modification in the representation of existing
information and is handled further below. On certain occa-
sions, elements may be removed completely, if that informa-
tion is no longer relevant in the domain. In this case, their
representations in the instance models must be removed.
The removal of an element is specified by using a “NULL-
Class” primitive in MCL, as shown in Fig. 1(b). This rule
states that all instances of ClassA in the model are to be

(a) MCL rule for subclasses

(b) Changing containment hierarchy

Figure 2: MCL Rules for Subclasses and Hierarchy

removed. Removal of an object may also result in the loss
of some other associations or contained objects.

3.3 Modifying Elements
The most common change to a metamodel is the modifica-
tion of certain entities, such as the names of classes or their
attributes. The basic MapsTo relation suffices to specify this
change. The mapping of related objects is not affected by
this rule. If other related items have also changed in the
metamodel, their migration must be specified using addi-
tional rules.

Another type of modification in the metamodel is adding
new sub-types to a class. In this case, we may want to
migrate the class’s instances to an instance of one of its
sub-types. Fig. 2(a) shows an MCL rule that specifies this
migration. The subtype to be instantiated may depend on
certain conditions, such as the value of certain attributes
in the instance (this is encoded within the migration rule
using a Boolean condition for each possible mapping). The
rule in Fig. 2(a) states that an instance of srcClass in the
original model is replaced by an instance of dstSubclass1 or
dstSubclass2 in the migrated model, or deleted altogether.

3.4 Local Structural Modifications
Some more complex evolution cases occur when changes in
the metamodel require a change in the structure of the old
models to make them conformant to the new metamodel.
Consider a metamodel with a three level containment hier-
archy, with a type Class contained in Parent, and Parent
contained in ParentParent. Suppose that this metamodel
is changed by moving Class to be directly contained under
ParentParent. The intent of the migration may be to move
all instances of Class up the hierarchy. The MCL rule to ac-
complish this is shown in Fig. 2(b) (the WasMappedTo link
is used to identify a previously mapped parent instance).

Note that this rule only affects Class instances. The other
entities remain as they are in the model. Any Parent in-

stances within ParentParent remain unaffected. If Class
contained other entities, they continue to remain within
Class, unless modified by other MCL rules.

(a) Rerouting associations

(b) Migrating attributes

Figure 3: MCL Rules for Associations and At-
tributes

3.5 Idioms and Complex Rules
Based on the descriptions given above, we created a set of
idioms that capture the most commonly encountered migra-
tion cases. Fig. 3(a) shows a more complex idiom for rerout-
ing associations. The specific case shown here is rerout-
ing associations through ports that are contained model
elements under some container. In the old language we
had inAssociationClass-es between inSrcModel-s and inD-
stModel-s, and the new language the same association is
present between the Port-s of the outSrcModel and outD-
stModel classes that were derived from the corresponding
classes in the old model. The WasMappedTo link is used to
find the node corresponding to the old association end. For
the correct results, the new association ends must be created
before the MapsTo can be processed for the association, and
this is enforced by the use of the WasMappedTo link.

The MCL also provides primitives to specify the migration
of attributes of classes in the metamodel. Attributes may
be mapped just like classes, and the mapping can perform
type conversions or other operations to obtain the new value
of the attribute in the migrated model. Fig. 3(b) shows an
MCL rule for migrating attributes.

In addition to the idioms listed so far, the tool suite for
model migration supports additional idioms to handle other
common migration cases. Fig. 4 shows the idiom for adding
a new attribute to some class in the metamodel. If the newly
added attribute is mandatory, then it must be set in old
models that did not have the attribute. A default value can
be added for the attribute in the idiom, or a function may
be added to calculate a value for the new attribute based on
the values of other attributes in the instances. The idiom for
deleting an attribute is similar to the case of deleting classes
and is not shown due to space constraints. Fig. 5(a) shows
an idiom for the case when an inheritance relationship has
been removed from the metamodel (the portion above the

dashed line is not part of the rule, but shown for clarity).
If the derived class had an inherited attribute, this will no
longer be present in the migrated model, and must therefore
be deleted.

Fig. 5(b) shows an idiom for changing a containment rela-
tionship in the metamodel. This is a variation of the idiom
shown earlier in Fig. 2(b), for a more generic case. This
idiom also introduces a generic primitive called “Navigate”.
It can be used to locate objects in the instance model by
following a navigation condition, which is an iterator over
the graph. Starting from the object on the left end of the
Navigate link, this object is used to determine the new par-
ent in the migrated model. Fig. 6(a) shows an idiom for
merging two classes in the metamodel into a single class,
possibly adding an attribute to record its old type. This
is effected using two migration rules (shown separated by
a dashed line). The migration rule can encode a command
that will set the value of the attribute based on its original
type. Fig. 6(b) shows an idiom for the case where an asso-
ciation in the metamodel is replaced by an attribute on the
source side of the metamodel. This is accomplished by map-
ping the association to a “null” class (similar to the ‘delete
class’ case) and adding a new attribute on the destination
side.

Figure 4: MCL Rule for Attribute Addition

(a) Delete inheritance relationship

(b) Change containment relationship

Figure 5: MCL Rules for Inheritance and Contain-
ment

These idioms may also be composed together to accomplish
more complex evolutions. The following section presents the
details of the MCL implementation.

4. IMPLEMENTATION OF MCL
Our model migration approach consists of three aspects.
The first is a complete tree rewrite based on the depth-first
traversal of the input model. The second aspect consists of a

(a) Merge classes

(b) Replace association with attribute

Figure 6: MCL Rules for Merging Classes and Re-
placing Associations

Depth-first traversal algorithm
ModelMigrate(oldModel)

call TraverseTree(oldModel.RootFolder)
if delayQueue.length != 0 then call ProcessQueue

TraverseTree(node)
call MigrateNode(node)
foreach childnode in node.children do
call TraverseTree(childnode)

set of migration rules that specify the rewriting of the model
elements (nodes) whose type has changed in the metamodel.
The third aspect is a delayed rewrite approach that uses lazy
evaluation for the rewriting of nodes that cannot be imme-
diately processed. These are explained in detail below. The
migration algorithm maintains a map of the node instances
migrated so far (mapping a node in the old version model
to its corresponding node in the migrated model), which we
call the ImageTable, allowing the use of previously mapped
nodes in other migration rules. We found that this approach
best suited our needs for model evolution, as it simplified the
specification and execution of the migration rules. The pat-
tern matching effort required by these rules is limited, while
allowing the co-existence of different versions of the model.

Depth-first traversal and rewrite. The tree rewrite
starts at the root node (RootFolder) of the input model, cre-
ating a corresponding root node for the migrated (output)
model. It follows a depth-first traversal of the input model
based on its containment relationships, while creating the
output model in the same order. Each node is migrated ei-
ther by (1) a default migration which creates a ‘copy’ in the
output model, or by (2) executing the migration rule speci-
fied for its type. Some migration rules may not be executed
immediately and are queued and handled later.

Migration Rules. Typically, when a metamodel evolves,
only a small number of the types and relations defined in
the metamodel are changed. For the unchanged types, the

default ‘copy’ operation suffices in the tree rewrite described
above. For the cases where the type has changed, a migra-
tion rule is used to specify the actions necessary to migrate
an instance of that type into the output model.

Migration rules are specified using MCL as described above
in section 3. An MCL rule is specified for a particular (node)
type in the metamodel, and consists of a pattern which may
involve other node types, a MapsTo relation that specifies
how the node type is migrated, optional WasMappedTo re-
lation(s), and additional imperative commands and condi-
tions to control node creation. The commands are impera-
tive actions executed during node creation, and conditions
are Boolean expressions that control whether the migration
is allowed to happen. The WasMappedTo relation specifies
a node instance in the output model that was previously
migrated corresponding to a certain node instance in the in-
put model (maintained in the ImageTable). The migration
of a node begins by finding a migration rule for that node
type. With the node instance as context, the rest of the rule
elements are matched by matching the appropriate nodes
in the input model. If the match is not successful because
the WasMappedTo relation is not satisfied (yet), the node
is added to a queue to be processed later. Otherwise, the
specified node is created in the migrated (output) model,
and the depth-first traversal continues.

Migration algorithm for a Node
MigrateNode(node)

let rule = FindMigrationRule(node.type)
if rule == null then call DefaultMigrate(node)
else call ExecuteRule(rule, node)

FindMigrationRule(nodetype)
find rule in ruleSet where mapsTo.LHS.type = nodetype
if found return rule else return null

DefaultMigrate(node)
let newtype = node.type
if newtype not in newMeta.types
then throw TypeNotFoundError

let oldParent = node.parent
let newParent = ImageTable.findNewNode(oldParent)
if newParent == null then
call delayQueue.addNode(node)
return

let newnode = CreateNode(newtype, newParent)
call CopyAttributes(node, newnode)
call ImageTable.addImage(node, newnode)

ExecuteRule(rule, node)
let matchResult = MatchRulePattern(rule, node)
if matchResult == true then //Match succeeded
if Eval(rule.condition) == false then return //Can’t apply
let newtype = rule.mapsTo.RHS.type
if rule.newParent == null then
let oldParent = node.parent
let newParent = ImageTable.findNewNode(oldParent)

let newnode = CreateNode(newtype, newParent)
call CopyAttributes(node, newnode)
call Eval(rule.command)
call ImageTable.addImage(node, newnode)

else // Match failed, queue node
call delayQueue.addNode(node)

Queuing and Delayed Rewrite. In certain cases, such
as a migration rule that depends on a mapping for another
node which has not yet been migrated, the migration for
that node cannot be executed. But it may be possible to
execute the migration after some other migration rules have
been executed. We use a delayed rewrite approach to handle
these cases, by queuing the nodes for which the migration

Delayed rewrite algorithm
ProcessQueue()

let qLength = delayQueue.length
if qLength == 0 return
for index = 1 to qLength
let node = delayQueue.removeTopNode
call MigrateNode(node)

if delayQueue.length < qLength then call ProcessQueue

cannot be immediately effected. The listing below describes
this algorithm. After completing the first pass of the depth-
first traversal, the queued nodes are processed by calling
ProcessQueue. Nodes are removed from the queue (in FIFO
order), and migration is attempted again. If MigrateNode
fails, the node is added back at the end of the queue. If
the length of the queue has changed after one pass, Pro-
cessQueue is called again. The algorithm terminates when
the queue is empty, or when a complete pass of the queue
has not changed the queue.

5. RELATED WORK
Our work on model-migration has its origins in techniques
for database schema evolution. More recently, though, even
traditional programming language evolution has been shown
to share many features with model migration. Drawing from
experience in very large scale software evolution, [6] uses
several examples to draw analogies between tradition pro-
gramming language evolution and meta-model and model
co-evolution. [3] also outlines parallels between meta-model
and model co-evolution with several other research areas,
including API versioning.

Using two industrial meta-models to analyze the types of
common changes that occur during meta-model evolution,
[9] gives a list of four major requirements that a model mi-
gration tool must fulfill in order to be considered effective:
(1) Reuse of migration knowledge, (2) Expressive, custom
migrations, (3) Modularity, and (4) Maintaining migration
history. The first, reusing migration knowledge, is accom-
plished by the main MCL algorithm: meta-model indepen-
dent changes are automatically deduced and migration code
is automatically generated. Expressive, custom migrations
are accomplished in MCL by (1) using the meta-models di-
rectly to describe the changes, and (2) allowing the user
to write domain-specific code with a well-defined API. Our
MCL tool also meets the last two requirements of [9]: MCL
is modular in the sense that the specification of one migra-
tion rule does not affect other migration rules, and the his-
tory of the meta-model changes in persistent and available
to migrate models at any point in time.

[5] performs model migration by first examining a differ-
ence model that records the evolution of the meta-model,
and then producing ATL code that performs the model mi-
gration. Their tool uses the difference model to derive two
model transformations in ATL: one for automatically resolv-
able changes, and one for unresolvable changes. MCL uses
a difference model explicitly defined by the user, and uses
its core algorithm to automatically deduce and resolve the
breaking resolvable changes. Changes classified as break-
ing and unresolvable are also specified directly in the differ-
ence model, which makes dealing with unresolvable changes
straightforward: the user defines a migration rule using a
graphical notation that incorporates the two versions of the
meta-model and uses a domain-specific C++ API for tasks
such as querying and setting attribute values. In [5], the user

has to refine ATL transformation rules directly in order to
deal with unresolvable changes.

[7] describes the benefits of using a comparison algorithm for
automatically detecting the changes between two versions of
a meta-model, but says they cannot use this approach be-
cause they use Ecore-based meta-models, which do not sup-
port unique identifiers, a feature needed by their approach.
Rather than have the changes between meta-model versions
defined explicitly by the user, they slightly modify the Chan-
geRecorder facility in the EMF tool set and use this to cap-
ture the changes as the user edits the meta-model. Their
migration tool then generates a model migration in the Ep-
silon Transformation Language (ETL). In the case that there
are meta-model changes other than renamings, user written
code in ETL to facilitate these changes cannot currently be
linked with the ETL code generated by their migration tool.
In contrast to this, MCL allows the user to define complex
migration rules with a straightforward graphical syntax, and
then generates migration code to handle these rules and links
it with the code produced by the main MCL algorithm.

[8] presents a language called COPE that allows a model mi-
gration to be decomposed into modular pieces. They note
that because meta-model changes are often small, using en-
dogenous model transformation techniques (i.e., the meta-
models of the input and output models of the transforma-
tion are exactly the same) can be beneficial, even though
the two meta-models are not identical in the general model
migration problem. This use of endogenous techniques to
provide a default migration rule for elements that do not
change between meta-model versions is exactly what is done
in the core MCL algorithm. However, in [8], the meta-model
changes must be specified programmatically, as opposed to
MCL, in which the meta-model changes are defined using a
straightforward graphical syntax.

Rather than manually changing meta-models, the work in
[13] proposes the use of QVT relations for evolving meta-
models and raises the issue of combining this with a method
for co-adapting models. While this is an interesting idea, our
MCL language uses an explicit change language to describe
meta-model changes rather than model transformations.

Although not focused on meta-model or model evolution, the
work in [12] is similar to our approach. The authors perform
the automatic generation of a semantic analysis model from
a domain-specific visual language using a special “correspon-
dence” model called a meta-model triple. The connections
provided by the meta-model triple perform a similar role as
the MapsTo and WasMappedTo links in MCL.

6. CONCLUSIONS
We have presented the Model Change Language (MCL), our
language for specifying metamodel evolution and automat-
ically generating the corresponding model migration. MCL
requires the specification of only the evolved parts of a meta-
model and automatically handles the persistent parts. The
specification is done using the metamodels of the original
and evolved language, which allows domain experts to use
the same abstractions for specifying both metamodels and
their evolution. Our implementation produces executable
code to perform model migration from the evolution speci-

fication and has been integrated with our Model-Integrated
Computing (MIC) metaprogrammable toolsuite and tested
on a number DSML evolution examples of medium complex-
ity. These test metamodels typically consisted of 50-100 ele-
ments, and the number of migration rules were on the order
of 5-10. The examples were used in proof-of-concept demon-
strations where savings in development effort were measured
with promising results.

The model migration problem is an essential one for model-
driven development and tooling, and there are several chal-
lenging problems remaining in this area. Efficiency of the
migration code is of paramount importance, especially on
large-scale models. The migration idioms that we have tar-
geted were based on our past experience, but it appears that
this should be an evolving set, to be extended and refined by
other developers. Thus, a continuation of this work would
need to address the problem of supporting such an extensible
migration idiom set.

Acknowledgment. This work was sponsored by DARPA,
under its Software Producibility Program. The views and
conclusions presented are those of the authors and should
not be interpreted as representing official policies or endorse-
ments of DARPA or the US government.

7. REFERENCES
[1] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, and

G. Karsai. Generative programming via graph
transformations in the model-driven architecture. In
OOPSLA, 2002: Workshop on Generative Techniques
in the Context of Model Driven Architecture, 2002.

[2] D. Balasubramanian, C. vanBuskirk, G. Karsai,
A. Narayanan, S. Neema, B. Ness, and F. Shi.
Evolving paradigms and models in multi-paradigm
modeling. Technical report, Institute for Software
Integrated Systems, 2008.

[3] P. Bell. Automated transformation of statements
within evolving domain specific languages. In 7th
OOPSLA Workshop on Domain-Specific Modeling,
2007.

[4] P. A. Bernstein and S. Melnik. Model Management
2.0: Manipulating Richer Mappings. In SIGMOD 07,
2007.

[5] A. Cicchetti, D. D. Ruscio, R. Eramo, and
A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In 12th International
IEEE Enterprise Distributed Object Computing
Conference, ECOC, pages 222–231, 2008.

[6] J.-M. Favre. Meta-models and Models Co-Evolution in
the 3D Software Space. In Proceedings of the
International Workshop on Evolution of Large-scale
Industrial Software Applications (ELISA) at ICSM,
2003.

[7] B. Gruschko, D. S. Kolovos, and R. F. Paige. Towards
Synchronizing Models with Evolving Metamodels. In
Proceedings of the International Workshop on
Model-Driven Software Evolution (MODSE), 2007.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens.
COPE: A Language for the Coupled Evolution of
Metamodels and Models. In MCCM Workshop at
MoDELS, 2009.

[9] M. Herrmannsdoerfer, S. Benz, and E. Jürgens.

Automatability of Coupled Evolution of Metamodels
and Models in Practice. In Model Driven Engineering
Languages and Systems, 11th International
Conference, MoDELS, pages 645–659, 2008.

[10] MOF. Meta-Object Facility: Standards available from
Object Management Group.

[11] J. Sprinkle and G. Karsai. A domain-specific visual
language for domain model evolution. Journal of
Visual Languages and Computing, 15(3-4):291 – 307,
2004. Domain-Specific Modeling with Visual
Languages.

[12] H. Vangheluwe and J. de Lara. Automatic generation
of model-to-model transformations from rule-based
specifications of operational semantics. In 7th
OOPSLA Workshop on Domain-Specific Modeling,
2007.

[13] G. Wachsmuth. Metamodel Adaptation and Model
Co-adaptation. In ECOOP 2007 - Object-Oriented
Programming, 21st European Conference, pages
600–624, 2007.

