
Das SCCH ist eine Initiative der Das SCCH befindet sich im

A Comparison of Tool Support for
Textual Domain-Specific Languages

Michael Pfeiffer and Josef Pichler

Dr. Josef Pichler

+43 7236 3343 867
josef.pichler@scch.at
www.scch.at

2© Software Competence Center Hagenberg GmbH

Motivation

Domain-specific languages are languages tailored to a specific
application domain
Notation (textual, graphical, tabular) depends on the application
domain
Focus on textual languages following source-to-source transformation;
host languages are Java or C#

Successful application of DSL depends on provided tool support
Tool support by language workbenches (Fowler)

oAW, MPS, MontiCore, IMP, TCS, TEF, CodeWorker, ...
Feature model for expressing variations on DSL and DSL tools in
general (not only textual languages) (Langlois et. al 2007)
Reuse of an existing criteria catalog facilitates comparison of results

3© Software Competence Center Hagenberg GmbH

Overview of Tools

openArchitectureWare (oAW, 4.3)
Eclipse, modular MDA/MDD generator framework, xText

Meta Programming System (MPS, early access)
JetBrains

MontiCore (1.1.5)
Academic, TU Braunschweig

IDE Meta-Tooling Platform (IMP, 0.1.74)
Eclipse

Textual Concrete Syntax (TCS, 0.0.1)
Eclipse, very similar to oAW

Textual Editing Framework (TEF, 1.0.3)
Academic, Humboldt-Universität zu Berlin, very similar to oAW

CodeWorker (3.5)
parsing tool and source code generator, no editor

4© Software Competence Center Hagenberg GmbH

Example

Example (finite state machine) implemented with 4 tools
Grammar productions for textual FSM

Example: determine if a binary number has an odd or even number of
zero digits

FSM = "inputAlphabet" string "outputAlphabet" string {State}.
State = ["start"] "state" id {Transition}.
Transition = "transition" char ["/" char] "->" id.

inputAlphabet "01" // Digits of a binary number
outputAlphabet "eo" // Char 'e' for even and 'o' for odd

start state Even
transition 0 / o -> Odd
transition 1 / e -> Even
state Odd
transition 0 / e -> Even
transition 1 / o -> Odd

5© Software Competence Center Hagenberg GmbH

openArchitectureWare (xText)

Open source project
Model Driven Development
Eclipse, EMF
Subcomponent xText for textual DSL

Grammar defines ASG in form of
dynamic EMF model
Validation language
Template language for xPand

xText Grammar
fsm.xtxt

Workflow
generate.oaw

generate.properties

Grammar & Model

Editor Generator

Run workflow

ASG
fsm.ecore

ANTLR generated
Scanner & Parser

CS
fsm.xmi

Developer
modifyable files:

Style.ext
Outline.ext

*.java

Workflow
generator.oaw

xPand Templates
FSM.xpt

Workflow
generated files:
GenStyle.ext

GenOutline.ext
*.java

6© Software Competence Center Hagenberg GmbH

openArchitectureWare (xText)2

Full featured editors

• syntax highlighting

• code completion

• folding, error decoration

7© Software Competence Center Hagenberg GmbH

Meta Programming System

JetBrains (IntelliJ), no release yet, early
access program
Cell-based editing model (no free text!)
Powerful but complex

Abstract syntax is specified by concepts
(instead of production rules)
All concepts are the structure of the language

Concrete syntax is static text (editor layout)
for every concept (AS)

AST
(Structure)

Grammar & Model

Generator

Generate

Templates

CS
(Editor)

8© Software Competence Center Hagenberg GmbH

Meta Programming System2

Aggregation of concepts

Static text

Editable cell

9© Software Competence Center Hagenberg GmbH

MontiCore

Academic project, TU Braunschweig
Eclipse based

Grammar for concrete syntax and
abstract syntax (similar to input format
of ANTLR)

Generated AST
Generated compiler-frontend (ANTLR)

Transformation
Visitors on AST
Template engine

Grammar + Editor
Configuration

fsm.mc

Grammar & Model

Editor

Generator

Generate Project
(MontiCore)

AST
Generated

Java Source

ANTLR generated
Scanner & Parser

Generator Java
Source Java Templates

Generated
Java Source

10© Software Competence Center Hagenberg GmbH

MontiCore2

Editors

• syntax highlighting

• folding

• error decoration

11© Software Competence Center Hagenberg GmbH

IDE Meta-Tooling Platform

Open source, IBM Watson Research
Eclipse
Wizard to generate code skeletons for
a large range of IDE features

Grammar for concrete syntax
LPG generates scanner, parser, and
data structures for AST

Transformation by visitors, no template
engine

12© Software Competence Center Hagenberg GmbH

IDE Meta-Tooling Platform2

Editors

• syntax highlighting

• folding, formatting

• code completion

13© Software Competence Center Hagenberg GmbH

Criteria

Criteria for our comparison are a subset derived from feature model
Groups: language (LA), transformation (TR), and tools (TO)

Language (abstract and concrete syntax)
LA-AS1. abstract syntax tree or abstract syntax graph
LA-AS2. grammar or meta-model
LA-AS3. can be composed

LA-CS1. technique to map abstract syntax to concrete syntax
LA-CS2. representation (text, graphic, ...) for the concrete syntax
LA-CS3. declarative or imperative style

14© Software Competence Center Hagenberg GmbH

Comparison - Language

TextText/XMLTextTextLA-CS2

Implicit. (3)Explicit. (2)Explicit. (1)Explicit. (1)LA-CS1

No built-in supportCompositionCompositionCompositionLA-AS3

Java ClassesMeta-modelJava ClassesMeta-model (ECore)LA-AS2

TreeGraphTreeGraphLA-AS1

IMPMPSMontiCoreoAW

Abstract syntax: graph and trees; generated Java classes or models
Mapping between abstract syntax and concrete syntax

Def. of concrete syntax is mixed with def. of abstract syntax (1)
Explicit definition of editor layout (CS) for each AS elements (2)
Implicit definition of abstract syntax by concrete syntax (3)

Textual representation (XML only in MPS)

15© Software Competence Center Hagenberg GmbH

Criteria

Transformation (target asset and operational translation)
TR-TA1. target asset (model, text, graphic, binary)
TR-TA2. destructive or incremental update
TR-TA3. kind of support for integration of target assets

TR-OT1. transformation techniques (M→M, M→T, T→T, T→M)
TR-OT2. transformation by compilation or interpretation
TR-OT3. internal or external environment for transformation
TR-OT4. implicit or explicit scheduling
TR-OT5. internal or external location
TR-OT6. automation level (manual or automated)

16© Software Competence Center Hagenberg GmbH

Comparison - Transformation

No support for integration with target assets available.TR-TA3

No built-in supportDestructiveDestructiveDestructiveTR-TA2

No built-in support.Model or TextTextTextTR-TA1

IMPMPSMontiCoreoAW

Different levels of tool support for generating target assets (TA)
Template engines for model-to-text transformation

outstanding (oAW), rudimentary (MontiCore)
MPS requires generation of target model that is transformed to text

All tools (except IMP) provide destructive update (overwrites target
assets)
No support for integration of generated target assents

17© Software Competence Center Hagenberg GmbH

Comparison - Transformation2

Automatically after
change.

Manual. Triggered by user.TR-OT6

Internal. Runs in runtime workbench (Eclipse) or in MPSTR-OT5

Implicit. Eclipse
builder runs
after change.

Explicit. Triggered
by user.

Explicit. Triggered by
user.

Explicit. Workflow
triggered by
user.

TR-OT4

External. Runtime
workbench must
be launched.

Internal. Editor and
Transformation
in MPS.

External. Runtime
workbench must
be launched.

External. Runtime
workbench must
be launched.

TR-OT3

Compilation.Interpretation. Templates filled at runtime.TR-OT2

No built-in support.M2M (generator)
M2T (indirect)

M2M (visitor)
M2T (visitor/template

engine)

M2T (xPand)TR-OT1

IMPMPSMontiCoreoAW

Concerning operational translation, tools are very similar

18© Software Competence Center Hagenberg GmbH

Criteria

Tool (respect of abstraction, assistance)
TO-RA1. respect of abstraction (intrusive or seamless)
TO-AS1. kind of assistance (static or adaptive)
TO-AS2. process guidance (step or workflow)
TO-AS3. checking (completeness or consistency)

Omitted
Quality factors
Process features

19© Software Competence Center Hagenberg GmbH

Comparison - Tool

Completeness.
Needs
implementation.

Consistency.
Ensured by
grammar
validation.

Completeness.
Using constraint
language.

Consistency.
Grammar
validation.

Completeness.
Needs
implementation.

Consistency.
Ensured by
grammar
validation.

Completeness.
Using constraint
language.

Consistency.
Ensured by
grammar
validation.

TO-AS3

Neither step nor workflow process guidance is supported.TO-AS2

Adaptive. Validation.Adaptive. Code
completion.
Validation.

Adaptive. Validation.Adaptive. Code
completion.
Validation.

TO-AS1

Depends on DSL. Our example DSL is seamless.TO-RA1

IMPMPSMontiCoreoAW

High variance ranging from
plain text editor for CS definition (IMP)
to an editor with syntax coloring (MontiCore)
code completion and validation while typing (oAW and MPS)

20© Software Competence Center Hagenberg GmbH

Conclusion

Language workbenches are driven by existing IDE
JetBrains (IntelliJ) for MPS
Eclipse Platform (JDT) for all others

Eclipse technology (platform, EMF, ...) predominant for textual DSLs
Free text editing including features like code completion but missing
refactoring, searching, references, ...
MPS with unique cell based editing model
Reuse of compiler generators (ANTLR, LGP) to generate
scanner/parser for text-to-model transformation
Template engine or visitor pattern for model-to-text

