
MODELTALK: A Framework for Developing Domain Specific
Executable Models ∗

Atzmon Hen-Tov
Pontis Ltd.

Glil Yam 46905, Israel
atzmon@pontis.com

David H. Lorenz
The Open University of Israel

108 Ravutski St., Raanana 43107, Israel
lorenz@openu.ac.il

Lior Schachter
Pontis Ltd.

Glil Yam 46905, Israel
liors@pontis.com

Abstract
Developing and maintaining complex, large-scale, product line of
highly customized software systems is difficult and costly. Part of
the difficulty is due to the need to communicate business knowl-
edge between domain experts and application programmers. Do-
main specific model driven development (MDD) addresses this dif-
ficulty by providing domain experts and developers with domain
specific abstractions for communicating designs. Most MDD im-
plementations take a generative approach. In contrast, we adopt
an interpretive approach to domain specific model driven devel-
opment. We present a framework, named MODELTALK, that inte-
grates MDD, dependency injection and meta-modeling to form an
interpretive, domain specific modeling framework. The framework
is complemented by tool support that provides developers with the
same advanced level of usability for modeling as they are accus-
tomed to in programming environments. MODELTALK is used in
a commercial setting for developing a product line of Telco grade
business support systems (BSS).

Categories and Subject Descriptors D2.6 [Programming Envi-
ronments]: Programmer workbench; D3.2 [Language Classifica-
tions]: Extensible languages, Object-oriented languages

General Terms Design, Languages

Keywords Model driven development; Dependency injection;
Meta-modeling; Executable model; Domain specific languages

1. Introduction
Modern business application development is complex. It involves
several domains of expertise, dealing with both functional and
extra-functional requirements, all complicating the communication
between domain users and domain experts. Working with domain
specific models alleviates some of this complexity by communicat-
ing domain abstractions in designs.

In this work, we present a framework, named MODELTALK,
for developing domain specific executable models. An executable
model [17, 12] is a model that drives the execution of the system.
The major virtue of an executable model is that changes in the
model are automatically reflected in the system [24]. MODELTALK
is an interpretive, domain specific modeling framework: the model
is the primary source of the system; the desired behavior of the
runtime system is achieved by interpreting the model.

MODELTALK integrates the principle of domain driven devel-
opment [22, 19] with the technique of dependency injection. De-
pendency injection [15, 10] is a mechanism for defining external

∗ This research was supported in part by the Israel Science Foundation (ISF)
under grant No. 926/08 and by the office of the chief scientist of the Israel
Ministry of Industry Trade and Labor.

dependency declaratively (e.g., as an object graph configuration in
XML) that can be injected into the runtime system (e.g., into Java
objects). The major virtue of dependency injection is that it sup-
ports declarative changes. The system behavior can be modified by
composing descriptions of object graphs (in XML), thus avoiding
the long cycle of compile-pack-deploy that is required when the
changes are done in code (in Java).

The MODELTALK framework is complemented by tool sup-
port [11]. An Eclipse [8] plug-in for MODELTALK provides devel-
opers with the same advanced level of environment look-and-feel
for modeling as they are accustomed to with programming.

Outline The rest of the paper is structured as follows. Section 2
briefly reviews dependency injection by example, comparing a
code driven to a model driven approach. In Section 3 we describe
the high level architecture of MODELTALK and show how model-
ing and coding are integrated to form a model driven development
framework. In Section 4 we illustrate meta-modeling with MOD-
ELTALK. Assessment of the MODELTALK framework is brought in
Section 5.

2. Model Driven Dependency Injection
In this section, we illustrate the concept of code driven dependency
injection in the Spring [21] framework. We then contrast depen-
dency injection in Spring with the concept of model driven depen-
dency injection in MODELTALK.

2.1 Code Driven Dependency Injection in Spring
In Spring, the developer starts the development iteration cycle
by working on the Java implementation. Instances (beans, in
Spring’s terminology) are then defined to customize the imple-
mentation. As an example, consider the UML domain model for
an HTTP client system depicted in Figure 1.1 The Java class
HTTP Client (Listing 1) provides a sendReceive method for
sending HTTP requests. The class has three private instance vari-
ables: numberOfRetries and timeout are used for configuring
its communication handling policy; URL is used for configuring the
Internet address of the resource to be accessed.

An XML bean in Spring is a description of an object graph. It
is instantiated into Java objects at runtime. The XML excerpt in
Listing 2 shows how one might use beans in Spring to customize
the HTTP Client class:

1. RobustHTTP Client defines an abstract instance [21] of
HTTP Client with high numerical values for timeout and
for numberOfRetries.

1 The UML diagrams are for illustration only. Models in MODELTALK are
expressed in XML.

FastHTTP _Client :
HTTP_Client

numberOfRetries = 2
timeout = 2

RobustHTTP_Client :
HTTP_Client

numberOfRetries = 8
timeout = 15

HTTP_Client

- numberOfRetries: long
- timeout: long
- URL: String

+ sendReceive() : HttpResponse

PontisLogoRetriever :HTTP_Client
URL = “www.pontis.com/logo.bmp”

«parent»

«instanceOf»«instanceOf»

Figure 1. Domain model

public class HTTP_Client {
private long numberOfRetries = 0;
private long timeout = 0;
private String URL = null;

public void setNumberOfRetries(long number) {
this.numberOfRetries = number;

}
public void setTimeout(long timeout) {

this.timeout = timeout;
}
public void setURL(String URL) {

this.URL = URL;
}
public HttpResponse sendRecieve() {
HttpResponse result = null;
//business logic
return result;

}
}

Listing 1. Class implementation in Java

<bean id="RobustHTTP_Client" class="HTTP_Client"
abstract="true">

<property name="numberOfRetries" value="8"/>
<property name="timeout" value="15"/>

</bean>
<bean id="FastHTTP_Client" class="HTTP_Client"

abstract="true">
<property name="numberOfRetries" value="2"/>
<property name="timeout" value="2"/>

</bean>
<bean id="PontisLogoRetriever" class="HTTP_Client"

parent="FastHTTP_Client">
<property name="URL"

value="www.pontis.com/logo.bmp"/>
</bean>

Listing 2. XML beans in Spring

public static void main(String[] args)
throws MalformedURLException {

GenericApplicationContext context=getSpring();
HTTP_Client httpClient =

(HTTP_Client)context.getBean(”PontisLogoRetriever”);
HttpResponse response = httpClient.sendReceive();
// . . .

}
Listing 3. Client code in Java

2. FastHTTP Client defines an abstract instance of HTTP Client
with low numerical values for timeout and for numberOf-
Retries.

3. PontisLogoRetriever defines a concrete instance of HTTP -
Client by specializing FastHTTP Client with the location
for the logo bitmap.

This form of customization works for simple as well as for arbi-
trary complex object graphs. For simplicity, the example illustrates
the use of Spring for configuring properties of primitive types. Gen-
erally, however, the injected values may also be instances of user
defined classes.

Lastly, the Java excerpt in Listing 3 shows how a client code
uses the Spring factory to instantiate an HTTP Client with the
desired configuration.

2.2 Model Driven Dependency Injection in MODELTALK

In MODELTALK, the developer starts the development iteration cy-
cle by working on the model. MODELTALK uses the notion of a
class definition in the model. Model class definitions are the pri-
mary source in which the constraints for the XML beans and for the
structure of the implementation code are defined. These constraints
are reflected in the development tool immediately, providing the de-
veloper with full support for auto-completion, consistency check-
ing, and so on.

The XML excerpt in Listing 4 is the model class definition of
HTTP Client (and its three model instances) in MODELTALK.2

The definition informs the modeling tool about the existence of
this class. This is in contrast to Spring, where one must have the
Java class itself available. MODELTALK uses property name tags
to provide domain specific syntax.

Model driven dependency injection enhances the safety of the
declarative change process. Class definitions in the model constrain
the model objects, leading to early detection of errors. Changes
to the model can be applied to the runtime system with a higher
degree of confidence than in Spring, since they undergo consistency
checking.

In the next section we explain our model driven approach in
more detail.

3. The MODELTALK Concept
The high-level architecture of MODELTALK (Figure 2) is simi-
lar to the general architecture of integrated development environ-
ments (IDEs). The source code processors (Figure 2B) are repli-
cated to provide similar processors for modeling (Figure 2A). The
architecture is implemented in an extensible IDE (Eclipse [8]) to
yield an integrative model driven development environment.

3.1 Model Sources
In MODELTALK, model source files are textual and they are man-
aged by the IDE just as other source files. The model sources com-

2 We use a simplified dialect of MODELTALK concrete syntax.

Runtime platform

Model VM

Code VM

Model
sources

Consistent model

Problems view
Auto completion
Navigation views
Re-factor tools

Model
processors

Compiled codeProblems view
Auto completion
Navigation views
Re-factor tools

Code
processors

co
nf

or
m

s

A

B
co

ns
tra

in
s

Source
code

Figure 2. High level architecture of MODELTALK: (A) model processors; (B) code processors

<bean id="HTTP_Client" class="Class">
<properties>
<property>
<name>numberOfRetries</name>
<type>Long</type>
<description>Number of retries</description>

</property>
<property>
<name>timeout</name>
<type>Long</type>
<description>Timeout in seconds</description>

</property>
<property>
<name>URL</name>
<type>String</type>
<description>The target URL</description>

</property>
</properties>

</bean>
<bean id="RobustHTTP_Client" class="HTTP_Client"

abstract="true">
<numberOfRetries>8</timeout>
<timeout>15</timeout>

</bean>
<bean id="FastHTTP_Client" class="HTTP_Client"

abstract="true">
<numberOfRetries>2</timeout>
<timeout>2</timeout>

</bean>
<bean id="PontisLogoRetriever" class="HTTP_Client"

parent="FastHTTP_Client">
<URL>www.pontis.com/logo.bmp</URL>

</bean>

Listing 4. Domain model in MODELTALK

prise instances, classes and metaclasses. A domain specific model-
ing language (DSML) [20] is formed by defining metaclasses and
classes. In a typical scenario, the domain expert in the development
team defines a DSML. Domain users then define models in this
DSML. Since the modeling tools rely on class defined in the model
rather than in the code, the modeling activity does not depend on
the existence of implementation code.

3.2 Model Compiler
The model compiler is one of the model processors in the MOD-
ELTALK framework (Figure 2). It is implemented as an Eclipse
builder plug-in. The compiler implements a dependency analysis
algorithm to support incremental compilation.

Upon a change to the model, the compiler is invoked to per-
form cross-model validation. Object graphs in the model are val-
idated against the corresponding model class definitions. This ac-
tivity is analogous to how a compiler reports syntactical and cer-
tain semantical errors. Since MODELTALK is a meta-level system,
classes, too, undergo similar validation checks. Cross-checks are
necessary because a change in one model element might invalidate
other model elements (possibly in other model files).

The model compiler also checks the conformance of the Java
sources to the model [18]. When developing the code classes, the
tool verifies conformance of the code structure to the model class
definitions. Mismatches are reported as errors in the IDE standard
problems view.

3.3 Model VM
The model VM is the runtime component of MODELTALK, which
is analogous to the JVM. Its primary responsibility is to manage
the relationships between model elements and Java elements. This
includes object graph instantiation and a reflection API [14].

The model VM implements a dependency injection mechanism.
When a client requests a model instance, the Model VM finds the
corresponding Java class, instantiates it, and injects the model prop-
erty values into the Java instance variables. This is applied recur-
sively for injected value of a complex type. The Model VM algo-

rithm for mapping model classes to Java classes permits “holes,”
i.e., a model class without a Java counterpart. In such a case, the
class is called declarative and mapped instead to the superclass in
the Java model. This adaptability enables to make changes to the
model at runtime without needing to also change the Java model.

When a client requests a model class, the Model VM follows
the same routine, thus enabling runtime modifications to the model.
This is possible because MODELTALK’s meta-meta-model itself is
implemented in MODELTALK.

3.4 The User Experience in Modeling
The modeling user experience is similar to the user experience in
programming. We use a commercial third-party XML editor as our
model editor. The model editor provides auto-completion based
on XML schema (XSD) generated from the model by the model
compiler. Model elements are maintained in multiple source files
arranged in folders by XML namespaces.

Model compilation is incremental, providing the user with short
response time. Model compilation is done across all model files. Er-
rors are reported to the developer using the standard IDE problems
view. The developer can navigate to the erroneous model element
by double clicking on the error [1].

The Eclipse plug-in provides numerous views of the model
(e.g., type hierarchy) and provides navigation capabilities both be-
tween model elements themselves and between the model elements
and corresponding Java elements. In addition, the plug-in provides
refactoring facilities (e.g., rename) that propagate the changes to
the Java source as well. Model source files are managed in a cen-
tral repository (CVS) as other source files.

4. Meta-modeling with MODELTALK
In this section we illustrate the domain specific modeling capabil-
ities of MODELTALK by extending the HTTP client example pre-
sented in Section 2. Suppose we would like to cache data in order
to reduce network traffic and to improve the overall response time.
Lets assume the application uses HTTP Client to retrieve different
kinds of data: pictures, news, stock quotes, etc. Obviously, vari-
ous kinds of data require different caching policies. For example,
pictures can be cached for longer periods than news, while stock
quotes shouldn’t be cached at all.

4.1 Declarative Classes
Implementing the caching code in Java in each of these classes
would require the expertise of a Java developer. Instead, we can
define a metaclass MetaCache with a cache property of type
CacheManager (Figure 3 and Listing 5). The CacheManager
provides cache management services at runtime. The methods
getFromCache and putInCache are defined in the CacheManager
class in Java. For brevity, the CacheManager and StandardCache
classes are not shown in the listing.

We now make the HTTP Client class an instance of MetaCache.
The sendReceive method in HTTP Client may then use the
MetaCache metaclass to access the cache (Listing 6). We can
further define specific HTTP client classes, PictureRetriever,
NewsRetriever, and StockQuoteRetriever (Figure 4 and
Listing 7), by subclassing HTTP Client. Note that Picture-
Retriever, NewsRetriever, and StockQuoteRetriever are
declarative (without a counterpart in Java).

4.2 Customizing a Metaclass
Next, we enhance the example to demonstrate how architec-
tural definitions are enforced by MODELTALK. Suppose our ap-
plication needs to display bank account balances that are also
retrieved using HTTP. Since bank account information is pri-
vate, its confidentiality should be kept. We therefore have to

-
-

+
+ -

StandardCache

timeToLive: int
maxElementsInMemory: int

CacheManager

getFromCache(Object) : Object
putInCache(Object, Object) : void

«MetaCache »
HTTP_Client

- numberOfRetries: long
- timeout: long
- URL: String

+ sendReceive() : httpResponse

:StandardCache

maxElementsInMemory = 500
timeToLive = 60

MetaCache

cache: CacheManager

«instanceOf»

cache
«link»

cache

«instanceOf»

Figure 3. Domain model with a custom metaclass

<bean id="MetaCache" class="Class" parent="Class">
<properties>
<property>
<name>cache</name>
<type>CacheManager</type>
<description>Caches the result</description>
</property>

</properties>
</bean>
<bean id="HTTP_Client" class="MetaCache">
<cache class="StandardCache">
<timeToLive>60</timeToLive>
<maxElementsInMemory>500</maxElementsInMemory>

</cache>
<properties>
...
</properties>

</bean>

Listing 5. MODELTALK sources with a custom metaclass

public HttpResponse sendRecieve() {
MetaCache myMetaclass =

(MetaCache)Kernel.instance().getClass(this);
HttpResponse result =

myMetaclass.getCache().getFromCache(getURL());
if (result == null) {

// do the business logic using timeout & numberOfRetries
myMetaclass.getCache().putInCache(getURL(), result);

}
return result;

}
Listing 6. Accessing a metaclass in Java

-
-
-

+

PictureRetriever NewsRetriever

StockQuoteRetriever

StandardCache

-
timeToLive: int-
maxElementsInMemory: int

+ getFromCache(Object) : Object
+ putInCache(Object, Object) : void

:StandardCache
maxElementsInMemory = 1000
timeToLive = 600

:StandardCache
maxElementsInMemory = 10000
timeToLive = 10

:StandardCache
maxElementsInMemory = 0
timeToLive = 0

CNN_NewsRetriever :
NewsRetriever

URL = “www.cnn.com”

«MetaCache »
HTTP_Client

numberOfRetries: long
timeout: long
URL: String

sendReceive() : httpResponse

FastHTTP_Client :
HTTP_Client

numberOfRetries = 2
timeout = 2

«instanceOf»

«parent»

«instanceOf»

«instanceOf»«instanceOf»

«instanceOf»

cache
«link»

cache
«link»

cache
«link»

«MetaCache »
«MetaCache »

«MetaCache »

Figure 4. Expanding the domain model with different types of resources

<bean id="PictureRetriever" class="MetaCache" parent="HTTP_Client" declarative="true">
<cache class="StandardCache">
<timeToLive>600</timeToLive>
<maxElementsInMemory>1000</maxElementsInMemory>

</cache>
</bean>
<bean id="NewsRetriever" class="MetaCache" parent="HTTP_Client" declarative="true">
<cache class="StandardCache">
<timeToLive>10</timeToLive>
<maxElementsInMemory>10000</maxElementsInMemory>

</cache>
</bean>
<bean id="StockQuoteRetriever" class="MetaCache" parent="HTTP_Client" declarative="true">
<cache class="StandardCache">
<timeToLive>0</timeToLive>
<maxElementsInMemory>0</maxElementsInMemory>

</cache>
</bean>
<bean id="CNN_NewsRetriever" class="NewsRetriever" parent="FastHTTP_Client">
<URL>www.cnn.com</URL>

</bean>

Listing 7. The resource retrieving model in MODELTALK

Class

- declarative : boolean

MetaCache

- cache : CacheManager

CacheManager

+ getFromCache (Object) : Object
+ putInCache (Object , Object) : void

MetaSecuredCache
- cache : SecuredCacheManager SecuredCacheManager

-
timeToLive : String-
maxElementsInMemory : String

«MetaSecuredCache
BankBalanceRetriever :SecuredCacheManager

maxElementsInMemory = 20
timeToLive = 10

«instanceOf»
«instanceOf»

cache
«link»

cache

cache

»

«instanceOf»

«instanceOf»

declarative =true
tags

tags
declarative =true

Figure 5. Expanding the domain model with secured cache

<bean id="MetaSecuredCache" class="Class"
parent="MetaCache" declarative="true">

<properties>
<property>
<name>cache</name>
<type>SecuredCacheManager</type>
<description>Provides secured caching

capabilities</description>
</property>

</properties>
</bean>
<bean id="BankBalanceRetriever"

class="MetaSecuredCache"
parent="HTTP_Client" declarative="true">

<cache class="SecuredCacheManager">
<timeToLive>10</timeToLive>
<maxElementsInMemory>20</maxElementsInMemory>

</cache>
</bean>

Listing 8. The secured cache model in MODELTALK

make sure that only a secured cache manager is used in such
cases. To achieve this we define MetaSecuredCache that ex-
tends MetaCache and overrides the type of the cache property
to SecuredCacheManager, which is a subclass of CacheManager
(Figure 5 and Listing 8). BankBalanceRetriever is defined as
instance of MetaSecuredCache and is therefore required to sup-
ply an instance of a SecuredCacheManager for its cache property;
otherwise, a model compilation error will be issued. For the sake
of brevity, we do not show the corresponding changes in the Java
code.

Custom metaclasses [5, 6] define class level properties, which
constrain the domain classes using domain terminology. Unlike
class level members in Java (static members), metaclass properties
allow subclasses to have different values for the metaclass proper-
ties.

The model contains objects, classes and metaclasses in a single
type system. The same injection mechanism that works on objects
is applied to classes as objects of their metaclasses. Since Java does
not support metaclass extensibility, the metaclasses in the model
are mapped to regular Java classes and the model VM manages the
instance-of relation in the runtime system.

5. Assessment
The MODELTALK development platform has been used at Pontis
by a team of over 20 developers for the last two years. Numerous
customer projects were developed, delivered and deployed success-
fully, satisfying requirements for hundreds of transactions per sec-
ond. In this section we describe our subjective observations from
using MODELTALK in a commercial product development environ-
ment.

Since the inception of the platform, we have been continuously
running code measurements in order to indicate the platform’s level
of adoption within the R&D organization. Currently, the model
contains approximately 4800 classes, of which 200 are metaclasses.
There are tens of thousands of instances and 275K lines-of-code in
XML. The average Depth of Inheritance (DIT) of model classes
is 4.75. The XML schema of the application model (generated
XSD) is 200K lines-of-code. 90% of the application Java source
code is governed by the model (i.e., the classes are defined in the
model). 82% of the source lines-of-code in customization projects
are declarative.

5.1 Developer Perspective
Developers give very positive feedback, mostly concerning the dra-
matic improvement in cycle times. An incremental model change
takes no more than a few seconds on large models, compared to
minutes, at best, in generative MDD (e.g., [23, p. 256] and [23, p.
261]).

Users appreciate the Java-like usability of MODELTALK and
the fact that modeling and programming are done in a single, inte-
grated environment. Specifically, the developers mention the ability
to work on “broken models.” For example, when changing a prop-
erty name in a class, instances of the class become invalid. The
MODELTALK environment allows the developer to continue mod-
eling although part of the model is temporarily in an inconsistent
state.

Users get accustomed to formal modeling very quickly and rely
on the model compiler to enforce architectural constraints. Users
complained about the tedious, manual work in writing the struc-
tural part of the Java code, especially getters/setters. To address
this, we extended MODELTALK with some code generation capa-
bilities, which is outside the scope of this paper. The generation of
getters and setters provides Java type-safety, but is strictly optional,
because the model is fully reflective.

Users also complain about the lack of diagramming capabilities
and interoperability with UML modeling tools. This is a topic we
plan to address in future work.

5.2 Organization Perspective
An organization considering adopting a similar approach should
take into account a substantial initial investment for building the
infrastructure and tools. In our case, the investment was more
than 10 man years. In addition, the ongoing maintenance of the
development environment must be considered. Another barrier is
the inherent complexity of such an approach. Most developers
are not familiar with meta-modeling and need extensive training.
Moreover, application implementation tends to be highly abstract
and generic, which requires highly talented individuals.

However, once such a development environment is in place,
there are tangible benefits for the organization. First and foremost,

all the advantages of MDD and DSML apply [23, 22]. Especially,
time-to-market and the cost of producing customized products drop
significantly. Second, the ability to deploy a compiled model di-
rectly to a running system (when changes in Java are not required)
creates a much shorter delivery route.

6. Conclusion and Future Work
Software solutions in the telecommunications industry typically re-
quire massive customization. In order to reduce the cost and time-
to-market of creating customized products, we developed MOD-
ELTALK, a domain specific model driven framework, and used the
framework in product development.

An early implementation of MODELTALK was based on a gen-
erative architecture centric MDSD approach [23]. The advantages
of the model centric approach were evident. However, when the
model evolved to thousands of classes, developers started to com-
plain about the long development cycles (several minutes for each
incremental change). This stemmed from the large amounts of gen-
erated Java code that had to undergo compilation, packaging and
deployment to the J2EE application server.

In this paper we presented the new version of MODELTALK,
which is based on an executable model, dependency injection,
and meta-modeling; and complemented by a model compiler and
tooling. Together these provide an enhanced user experience for
the modeling process, similar to the programming user experience
in modern IDEs.

The meta-level capabilities of MODELTALK are used by devel-
opers to create custom types of classes, fields and methods resulting
in a domain specific modeling language. There is also support for
resolving crosscutting concerns at the model level [3, 2, 4, 7, 13].

We are currently working on enhancing MODELTALK with run-
time adaptability, i.e., the ability of non-programmers to change the
model of a production system [9, 16]. The interpretive nature of the
MODELTALK platform provides a sound basis for achieving this
by combining an interpretive approach with metaclass extensibil-
ity [5].

Acknowledgments
We thank Zvi Ravia and Shai Koenig for their valuable comments.
We thank our colleagues in Pontis and partners in developing the
MODELTALK platform: Shachar Segev, Moshe Moses and Assaf
Pinhasi. Pontis Ltd. is a developer of online marketing automation
solutions for the telecommunications market.

References
[1] J. Bezivin and F. Jouault. Using ATL for checking models. In

Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT), 2005.

[2] N. Bouraqadi. Efficient support for mixin-based inheritance using
metaclasses. In GPCE’03 Workshop on Reflectively Extensible
Programming Languages and Systems, 2003.

[3] N. Bouraqadi. Safe metaclass composition using mixin-based
inheritance. Journal of Computer Languages and Structures, 30(1-
2):49–61, 2004.

[4] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings
of ECOOP/Object-Oriented Programming Systems, Languages,
and Applications, pages 303–311, Ottawa, Canada, 1990. ACM
SIGPLAN Notices 25(10) Oct. 1990.

[5] J. P. Briot and P. Cointe. Programming with explicit metaclasses
in Smalltalk-80. In Proceedings of the 4th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’89), pages 419–431, New Orleans, Louisiana, 1989. ACM
SIGPLAN Notices 24(10) Oct. 1989.

[6] S. Danforth and I. R. Forman. Reflections on metaclass programming
in SOM. In Proceedings of the 9th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications
(OOPSLA’94), pages 440–452, Portland, Oregon, USA, 1994. ACM
SIGPLAN Notices 29(10) Oct. 1994.

[7] S. Ducasse, N. Schärli, and R. Wuyts. Uniform and safe metaclass
composition. Journal of Computer Languages and Structures, 31(3-
4):143–164, 2005.

[8] Eclipse development platform. http://www.eclipse.org/.

[9] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjorven. Using architecture models for runtime adaptability.
IEEE Software, 23(2):62–70, 2006.

[10] M. Fowler. Inversion of control containers and the dependency
injection pattern. http://martinfowler.com/articles/
injection.html.

[11] M. Fowler. Language workbenches: The killer-app for domain
specific languages? http://martinfowler.com/articles/
languageWorkbench.html.

[12] Business process execution language for web services. http:
//www.ibm.com/developerworks/library/specification/
ws-bpel/.

[13] S. Kojarski and D. H. Lorenz. Identifying feature interactions in
aspect-oriented frameworks. In Proceedings of the 29th International
Conference on Software Engineering (ICSE’07), Minneapolis, MN,
May 20-26 2007. IEEE Computer Society.

[14] D. H. Lorenz and J. Vlissides. Pluggable reflection: Decoupling
meta-interface and implementation. In Proceedings of the 25th

International Conference on Software Engineering (ICSE’03), pages
3–13, Portland, Oregon, May 1-10 2003. IEEE Computer Society.

[15] D. R. Prasanna. Dependency Injection. Manning, 2008.

[16] R. Razavi, N. Bouraqadi, J. W. Yoder, J.-F. Perrot, and R. Johnson.
Language support for adaptive object-models using metaclasses.
Computer Languages, Systems and Structures, 31(3-4):188–218,
October-December 2005.

[17] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe. The
architecture of a UML virtual machine. In Proceedings of the
16th Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’01), pages 327–341, Tampa
Bay, Florida, Oct. 14-18 2001. ACM SIGPLAN Notices 36(11) Nov.
2001.

[18] E. Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003.

[19] B. Selic. The pragmatics of model-driven development. IEEE
Software, 20(5):19–25, 2003.

[20] B. Selic. A systematic approach to domain-specific language design
using uml. In Proceedings of the 10th IEEE International Sym-
posium on Object and Component-Oriented Real-Time Distributed
Computing. IEEE Computer Society, 2007.

[21] Spring framework. http://www.springframework.org/.

[22] A. Uhl. Model-driven development in the enterprise. IEEE Software,
24(1):46–49, 2008.

[23] M. Völter and T. Stahl. Model-Driven Software Development:
Technology, Engineering, Management. Wiley, 2006.

[24] J. W. Yoder and R. E. Johnson. The adaptive object-model
architectural style. In WICSA3 ’02: Proceeding of The 3rd IEEE/IFIP
Conference on Software Architecture, pages 3–27, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B.V.

