
Foundations for a Domain Specific Modeling Language
Prototyping Environment

A compositional approach

Luis Pedro

Centre Universitaire D’Informatique,
Université de Genève, Site de Battelle,

Bat. A, Route de Drize, 7, 1227 Carouge,
Switzerland

Luis.Pedro@unige.ch

Didier Buchs

Centre Universitaire D’Informatique,
Université de Genève, Site de Battelle,

Bat. A, Route de Drize, 7, 1227 Carouge,
Switzerland

Didier.Buchs@unige.ch

Vasco Amaral

Faculdade de Ciências e Tecnologia ,
Universidade Nova de Lisboa (UNL),

Lisbon, Portugal

Vasco.Amaral@di.fct.unl.pt

Abstract

Developing in a domain specific environment introduces all the
advantages of thinking at the same abstraction level of the problem
under consideration. The gap between the real problem and the
mental model is reduced with respect to the generic approach of
using General Purpose Languages.

In this article we consider that Domain Specific Modeling Lan-
guages (DSMLs) can be prototyped using a compositional and in-
cremental approach. We reason over the fact that concepts pre-
sented in a DSML can be extended to a more precise semantics
and that might be used in different domain environments. The com-
bination of different concepts with an associated semantics allows
achieving the desired expressiveness of the DSML.

Keywords Metamodeling, Re-usability, Semantics, Composition,
Model Extension, DSML

1. CONTEXTUAL CONSIDERATIONS

The main purpose of Domain Specific Modeling languages (DSMLs)
is to allow for domain users to think in terms closer to the prob-
lem domain when specifying their systems, by providing a way to
model them at the right abstraction level. This approach is pushing
for an interesting shift from the traditional programming approach
paradigm to a model-specification based one. In fact, the software
engineering community agreed that concerning to the rise of ac-
cidental complexity of software development (Brooks 1987), the
object orientation programming technique has reached its limits
(even after the pattern based approach).

As a consequence of all that the design of modeling languages
for specific domains is pushing for systematic approaches, tech-
niques and tools to help to drop the complexity of developing
DSMLs.

We have recently watched to the rise of language metamodel-
ing as a standard design technique for the purpose of syntax spec-
ification together with transformation techniques for mapping the
model into well understood formalisms in order to provide seman-
tics.

Although interesting results and techniques have been achieved
so far, for the development of individual DSMLs, the community is
starting to realize that we are reaching the point were developing a
language is still not a trivial task. In fact they are hard to develop,
verify or even execute (Ladd and Ramming 1994).

At some point software engineering community started to make
use of patterns to help reducing the complexity of a system speci-
fication by using the object oriented paradigm. Following the same

approach, now at the DSML level, some work has already been
done in the direction of finding common language metamodeling
patterns (or language ”meta-templates”) and respective composi-
tion. However promising this approach might seem, it only tackles
the problem at the syntactic level, leaving out an important part of
the complexity of designing a language, the semantics.

Therefore, our major motivation is to deploy a consistent
methodology in conjunction with a framework that simplifies the
task of specifying semantics to a DSML. This major goal consists
in providing functionalities for the tasks of:

a) re-using existing domain concepts for defining families of
DSMLs;

b) generating executable prototypes that simulate the DSML be-
havior;

c) validating and verifying specific and general concepts of the
language;

In this paper we will present a conceptual framework that aims
to produce prototype generation of DSMLs behavior by using
metamodel and transformations’ extension and composition.

1.1 Related Work

Previous works (e.g. (Emerson and Sztipanovits 2006)) developed
in the area of metamodeling and DSML engineering show that
is possible to identify basic patterns that repeat among different
DSMLs. These patterns, also known as domain concepts, must be
composed for achieving complex structures that can represent the
behavior of a domain. The techniques available so far are either
tackling the problem purely at the syntactic level (Ledeczi et al.
2001; Vanderbilt University, Institute for Software Integrated Sys-
tems 2005), or are too abstract and complex to be used (Jackson and
Sztipanovits 2006). In the presented approach we define a method-
ology for a framework that define a set of semantic mappings, gen-
erate simulation traces, executable code, and verification results
from models trying to simultaneously use formal constructions to
profit from the advantages of having a well defined working envi-
ronment, and to have an engineering ”by construction” approach in
order to provide the methodology with a pragmatic ground.

1.1.1 Domain Concept

The fundamental idea that we want to empathize in this paper is
the notion of domain concept that underlies and influences the
approach presented: rather than a metamodel, a domain concept

is a metamodel that has attached to it transformation to a target

Meta-metamodel
 formalism

Concepts Structure and
Transformation

Composition

Domain
Concepts

Semantic World

conformsTo Domain Concept Models
conformsTo

uses

Target
Language(s)

Prototype

Code
Generation

Validation

Simulation and
 Execution

Transformation

Transformation
Templates

Figure 1. DSML Design Strategy High Level Overview

language that is precise and provides a well defined semantics. The
domain concept can be seen as a brick that represents a basic idea
that can be present in one or several DSMLs. A domain concept is
an artifact used to express a concept and that can be applied to other
domain concept (or even a pre-defined DSML) in order to extend
it.

This definition of domain concept is very expressive in the sense
that rather than only defining an abstract syntax and associating a
structural semantics, we work at a level that semantics is provided
(by transformation) for each domain concept.

2. LANGUAGE DESIGN STRATEGY

Metamodels represent an abstraction in the way of understanding a
particular scientific or engineering domain. They are also known as
the abstract syntax of a language. They provide the embodiment of
modeling paradigms such as notions, ideas, abstractions, structural
constructs, behavioral axioms and constraints. The DSML devel-
opment life cycle being described is firstly based in a library of
domain concepts that provide abstractions for supporting design of
some types of DSMLs and, in a later stage, on the composition and
parameterization of them.

The Figure 1 provides an high level overview of the methodol-
ogy presented in this article.

On the top of the Figure is represented the meta-metamodeling
formalism: the root for defining metamodels. The box Domain

Concepts represents the metamodels of each domain concept.
These metamodels are instances of the meta-metamodeling for-
malism and have an associated transformation template Trdc(m)
here represented by the vertical arrows coming out from the box.
Transformations are the operations that allow, by construction, to
provide the necessary semantics to the domain concepts. The trans-
formation of each one of the blocks is a self contained and atomic
operation.

For being able to define a DSML the metamodels from the
pre-defined library must be composed. This step is done by either
using compositional operators or by means of parameterization of
the domain concepts. The Concepts Structure and Transformation

Composition rectangle represents the act of mixing the concepts
according to the chosen strategy - Section 3 details this process.

The list of pre-defined domain concepts provided so far can be
found in (Software Modeling Verification 2008) and they include
concepts such as:

• Data Structural Patterns

Data Type

Data Structure

• Control Structure Patterns

Assignment

Conditional Statement

Iteration

• Behavioral Patterns

Finite State Machine

It should be noted that the methodology under description can
be applied to other concepts and in particular to existing DSMLs
(that must be extended in some sense). The limitation of the ap-
proach is technical and forces that transformations defined into
the target language to respect a template of transformation. This
is due to the fact that transformation process will interact with
each other at some point and this process must be controlled.
Each transformation is defined as a set of other transformations
Trmm = {Tr1mm, T r2mm, . . . , T rnmm} each one of them cor-
responding to the rule(s) of transforming certain elements of the
source model into elements of the target model. The mm index
defines to what source metamodel transformation is related to.

The domain models (that maintain a conformity relationship
between the domain concepts) are also taken as an input of the
final transformation process represented by the double lined arrow
in Figure 1.

Whenever target language(s) provide prototyping and verifica-
tion capabilities, the transformed DSML will be used for prototype
generation and verification and, some times, for automatic test case
generation.

3. PARAMETERIZATION AND

COMPOSITION

The idea of parameterizing and composing metamodels and trans-
formations relies on a language driven engineering approach. Each
DSML is built by using an incremental and modular approach.

The main goals behind the idea of composing metamodels is to
(Jackson and Sztipanovits 2006):

• Manage language complexity;

• Re-use of concepts for faster language development;

More precisely, to re-use the concepts that have been defined
in order to create more complex language structures based on
them. Some of these concepts are addressed in (Object Manage-
ment Group members 2007), (Ledeczi et al. 2001) or (Emerson and
Sztipanovits 2006) but usually only in a syntactic point of view.

Parameterizing acts as replacing an existing element in the
metamodel by another compatible one, whereas composition is
the act of ”gluing” together different metamodels. For both of the
approaches, our proposal implies that the transformations must also
be adapted.

3.1 Parameterization

Parameterization is the action of enriching a metamodel by means
of another metamodel. A parameterization is defined as follows.

DEFINITION 1. Metamodel parameterization: At the metamodel

level a parameterization is defined as,

mm′ = mm[fp
ϕ←− ep, Ffp]

where

• mm, mm′, fp, ep are metamodels;

• ep ⊃ ϕ(fp) re-defines, at least, the elements in ep
• ϕ is a total function that creates a map between elements of fp

and ep

ϕ : fp→ ep

in order to establish the replacement of nodes (classes) and

references (associations, aggregations and generalizations);

• Ffp is a set of formulas representing constraints over fp that

must be respected..

The fp metamodel defines a template of what can be replaced
in the metamodel mm. It is obviously a subset of the metamodel
mm which, in the case of the metamodeling formalism used for
this article, is a set of ECore (Eclipse 2007) classes (UML Class
Diagram like metamodelling language) and their relations.

The formal parameter fp is then replaced by an effective pa-
rameter ep.

A simplified diagram of the metamodel parameterization is pre-
sented in Figure2, which shows that a DSML metamodel is ex-
tended by defining its formal parameter and by substituting it with
an effective parameter.

Substitutes
fp

DSML Metamodel
ep Metamodel

ep

DSML Metamodel
after parameterization

Figure 2. Metamodel extension by parameterization

As an example of a parameterization of metamodels lets con-
sider the Finite State Machine and Data Structure domain
concepts.

Let’s consider that a DSML must have a kind of finite state ma-
chine that can be captured by the metamodel in the Figure 4. This
metamodel does not specify anything concerning the StateType’s
exact meaning. In order to provide this element with a richer
semantics it is possible to extend it with the concept of Data
Structure defined in Figure 3.

In terms of a parameterization this can be expressed by defining:

• mm the FSM metamodel;

• fp the metamodel subset of mm that, in this case, is the
StateType element - the element to be parameterized;

• ep being the Data Structure metamodel in Figure 3.

• ϕ = {〈StateType,DCDataStructure〉}

The effective parameter ep is, in fact, a metamodel that defines
more elements that the ones defined by fp. This is what makes the

Figure 3. Data Structure Domain Concept

difference between fp and ep: fp defines the minimum template
and ep provides the real metamodel to serve as concrete parameter
used for instantiation. In this case no conditions are provided.

With this parameterization and applying the transformation it is
possible to simulate a final state machine in which their states can
have an associated data structure. The result of applying parame-
terization of a Data Structure over a Finite State Machine
is presented in Figure 5.

The definition and composition, in what regards to transforma-
tions, are presented in Section 4.2.

3.2 Composition

Besides parameterization of metamodels the methodology under
development defines a set of composition operators. These oper-
ators work at a more syntactic level than the parameterization.
Nevertheless, depending on the operator used, transformations are
adapted to cope with operator’s semantics.

Figure 6 shows a schematic overview of transformation compo-
sition of domain concepts. In addition to the transformation tem-
plate defined for each domain concept, the transformation for the
target language also uses the definition of each operator and the
semantics defined for each one of them.

Taking into account that the Λ is the set of operators available
for composing domain concepts, a composition is generically de-
fined by:

• mml is a metamodel domain concept acting as left-side meta-
model;

• mmr is a metamodel domain concept acting as right-side meta-
model;

Figure 4. FSM Domain Concept

Figure 5. Metamodel Parameterization Result between FSM and
Data Structure

• op ∈ Λ the operator used in the composition;

A composition is thus defined as

mm′ = mml op mmr

The composition operators available are listed as follows:

Union: This operator takes two metamodels and produces a new
one with the contents of both. In the case of elements with the same
name duplication is performed: mm′ = mml ∪mmr

Merge: Same as Union with the specificity that classes, attributes
and other constructions in the metamodel with same name are
merged together. This operator can be defined as: mml\(mml ∩
mmr) ∪mmr\(mml ∩mmr) ∪ (mml ∩mmr).

Using these last two operators implies to create a merge of the
left and right-side specifications in the target language.

Inherit: The inheritance operator allows to compose metamodels
with UML-like inheritance concept. The parameters for this opera-
tor are:

specializedClass as ecl and specializationClass as
ecr: allows to specify if the class that is specialized (in the left
metamodel) and the class that performs the specialization (in the
right metamodel);

This operator creates a specialization relationship between ecl
and ecr in the target formalism.

Implementation Inheritance: With this operator the children in-
herits all of the parents attributes, but only the containment associ-
ations where the parent acts as the container. No other associations
are inherited (Ledeczi et al. 2001).

Domain Concepts

Target Language

Domain Concept Models

Transformation
Template

Transformation

Conforms to

Composition
Operators

uses

Transformation
Template

+

Tr(op)

Figure 6. Transformation Composition

Interface Inheritance: This operator means that the inheritance
allows no attribute inheritance, but does allow full association in-
heritance, with one exception: containment relations where the par-
ent functions as the container are not inherited (Ledeczi et al. 2001).

Associate: This operator creates an association relationship be-
tween a class of one metamodel and another. This operator is pa-
rameterized as follows:

a) ecl and ecr for the name of the classes that are going to be
associated;

b) leftCardinality{0..*, 1, 1..*} and rightCardinality{0..*,
1, 1..*} for defining the cardinality of the relationship.

The resulting transformation of applying this operator creates
another Class that manages references of left and right sides ac-
cordingly to the multiplicity. This Class can be seen as a generic

way of defining n− n relations with n ∈ N+
0 ;

Containment This operator allows to create containment rela-
tions in order to provide hierarchical constructs. The hierarchical
relation is given from one construction of the left metamodel to a
set of constructs in the right metamodel. The parameters for this
operator are the following:

a) ecl as the name of the class in the left metamodel that acts as
container;

b) 〈ecr, cardinality〉 being a list of pairs class name (in the right
metamodel) and cardinality of the containment relation.

4. TRANSFORMATIONS AS COMPOSITE

SEMANTICAL BLOCKS

For a given DSML or domain concept there are associated transfor-
mations that provides the necessary semantics.

DEFINITION 2. Transformation is a function Tr : im, ctx →
im′, ctx′, where im is a model in the source DSML, im′ a model

in the target formalism, ctx and ctx′ the system’s execution state

before and after transformation.

Π : t → ctx a function that returns the context of the system

after applying transformation t.

DEFINITION 3. Set of Transformations:

Having im ∈ IM|mm where IM|mm is the universe of models

that are in conformity with the metamodelmm ∈MMtheuniverseofmetamodels.
A transformation is defined as a set of other transformations:

Trmm = {Tr1mm, T r2mm, . . . , T rnmm}

The application of the of transformation to a given im ∈
IM|mm is:

DEFINITION 4. Having a transformation Trmm(im) a set of

transformations t(im) ∪ Tmm(im) it is the equivalent to apply:

(t ∪ T)(im) = t(im, ø) ∪ Tmm(im,Π(t))

4.1 DSML Definition

Having formalized a transformation let us continue by stating the
definition of a DSML and a parameterized DSML.

DEFINITION 5. A DSML is as a 3-tupple

DSML = 〈mm,F, Trmm〉

DEFINITION 6. A parameterized DSML as a 4-tupple:

DSMLp = 〈mm, fp, Ffp, T rmm〉
where Ffp is the set of constraints over fp.

DSML instance models

Transformation
Templates

Transformations

Conforms to

DSML Metamodel

ep'

Target Language(s) Metamodel

Conforms to

Target Language(s) Models

ep

iep

iep'

Trep

Trep′

Trep′(iep′)

Trep(iep)

Figure 7. Transformation Parameterization

4.2 Integrating Transformations

We have focused so far in this article on the domain concepts
and on the fact that a transformation template exists for each one
of them, describing how to compose their allowing to produce
a resulting metamodels. However, this preliminary result is still
tackling the problem at a syntactic level: the result lacks of semantic
information.

The next two steps are to produce models that are conform to
the newly generated metamodel and to be able to re-use the pre-
defined transformations for each one of the domain concepts. To
accomplish this last objective two conditions must be fulfilled:

1. each transformation must be able to recognize parameteriza-
tions or compositions defined over domain concepts. In other
words, each transformation has a structured attribute containing
the information of the parameterization or composition defined;

2. a higher level transformation manager handles the execution
of the transformation according to the parameterization and
composition defined;

4.2.1 Parameterized Transformations

In order to be able to compose the DSML semantics the transforma-
tions are also composed according to the defined parameterization.

DEFINITION 7. A parameterized transformation is:

∀im ∈ IM|mm, ∀im′ ∈ IM|mm′

Trmm′ [Trfp
ϕ,ψ←−− Trep] : im, ctx→ im′, ctx′

where:

• mm′ is the metamodel result from the parameterization;

• Trfp the template transformation defined for the metamodel

fp;

• Trep the template transformation defined for the ep;

• ϕ the source mapping function: Dom(Trfp)→ Dom(Trep);

• ψ the target mapping function : Cod(Trfp)→ Cod(Trep);

This means that the formal parameter fp relates with ep by ϕ
in the source DSML domain. The transformations Trfp(ifp) and
Trep(iep) are related with each other by ψ in the target language
domain.

By following these rules it is possible to obtain models in the
target language without having to modify existing transformations
or to re-define new ones providing a high level of re-usability.

The Figure 7 shows how parameterization works in a graphical
representation of it. This ilustration details one of two processes
present in white ellipse labeled Concepts Structure and Transfor-

mation Composition in Figure 1.
As depicted from this figure each domain concepts has a trans-

formation template associated. In conjunction with the models that

conform to the domain concept it allows to have specifications in
the target language. Each domain concept might be parameterized
by another domain concept or by a structure that also has a trans-
formation defined. This transformation is represented by the arrow
that goes from the smaller box on the top to the smaller box on the
left bottom side.

In other words, if the formal parameter fp relates to ep by
ϕ in the source DSML domain, and if we apply the transforma-
tions Trfp and Trep to instances ifp and iep of their respective
metamodels, then ψ expresses the relation between Trfp(ifp) and
Trep(iep) in the target language domain. From the operational
point of view, ψ defines what transformations in fp are replaced
by what transformation in ep.

Figure 7 resumes how the mm, fp, ep and mm′ metamodels
and their transformations relate to each other. The arrows marked
with π represent projection of metamodels: the mm′ metamodel,
for example, if projected bymm (i.e. πmm), gives the grey part of
mm, i.e. the part that does not include fp.

4.2.2 Transformations in Composition

The composition of transformations when a DSML metamodel is
defined by means of composition operators is a more syntactic
operation.

DEFINITION 8. A transformation using compositional operators

is:

Tr(TrmlopTrmr) = Tr(op)(Trml, T rmr)

where Tr(op) represents the transformation template for an oper-

ator op ∈ Λ.

In what concerns composition of domain concepts by using
one of the pre-defined operators the transformations are treated as
follows:

5. MODELS IN THE TARGET FORMALISM

For the target language we chose Concurrent Object Oriented Petri-
Nets (CO-OPN) (Buchs and Guelfi 1991, 2000; Biberstein 1997).
This formalism has been chosen because it is a formal language
that allows to generate executable specifications and its Integrated
Development Environment (IDE) provides a set of tools for simu-
lation, verification and test generation (Lucio et al. 2006).

CO-OPN can be considered a General Purpose Language (GPL)
encompassing very abstract and generic concepts. It is an object-
oriented formal specification language based on synchronized alge-
braic Petri nets. Originally designed to support the specification of
large distributed systems, it allows the definition of active concur-
rent objects and includes facilities for sub-typing, sub-classing, and
genericity. There are various reasons why we argue that COOPN is
suitable to be chosen as an intermediate format. Some of the more
relevant are:

• It is a modular specification language allowing to specify dif-
ferent DSML components and their relationships;

• The specifications are described in a completely abstract axiom-
atized fashion;

• The system states can be completely defined and explored;

Basically, CO-OPN has three types of modules: ADT(algebraic

Abstract Data Types), class, and context:

• ADT represents data and its associated operations;

• Class is an encapsulation of algebraic Petri nets that allows to
describe both structure and component’s behavior. A CO-OPN
class is generally composed by methods, gates (that can be seen
as the return values for methods) and places that can by typed;

Figure 8. Generic Moving Entities DSML Metamodel
mmDSMLgen

• Context is a higher level of encapsulation which defines the
contextual coordination between components.

In addition, having CO-OPN has a target language for the im-
plementation of this methodology allows to use several language
features that, in the context of language prototyping, would had to
be transformed into a more concrete language. These features in-
clude, for example, the notion of concurrency and transactions that
are part of the CO-OPN language. They are transformed into an
equivalent semantics in Java by COOPNBuilders’ prototype gener-
ator.

6. EXAMPLE

Let us define a example for this paper in order to support our line of
thought. The space limitation forces us to use a very simple system
but that illustrates the methodology’s application. Suppose we want
to define a modeling language for the purpose of specifying the
simulation of moving entities. Although we might understand the
general principle that suits several domains demanding for DSMLs
to implement their concepts (like train systems control, street traffic
control, etc.), we do not have yet the full details to completely
describe a DSML.

The general concepts involved, that might influence the syntax
description of a DSML, could be described as having both World
Structure information, and the mentioned moving Entities (i.e.
trains, cars, etc).

The World Structure could be composed by Junction Points
and Way Segments (i.e. cross-roads, etc) that are responsible to
connect Way Segments (that depending on the domain could be
particularized to rails, streets, channels, etc). Each Way Segment
is composed by two end points, each of them could be connected
to one Junction Point. However how many Segments are plugged
to junction points, we define as rule that we can not plug both end
points of a given to the same Junction Point.

The corresponding metamodel of the general concepts de-
scribed previously are depicted in Figure 8.

In the next subsections we will have examples of Specific Lan-
guages for particular domains of Train Systems and Robot Systems.

Lets define mmDSMLgen as the metamodel in Figure 8. This
metamodel has an associated transformation:

TrmmDSMLgen = TrWorldStructure ∪ TrMovingEntity

Figure 9. The Train Entity Metamodel mmTrain

and

TrWorldStructure = TrWaySegment ∪ TrJunction
These transformations characterize the sequence of transformations
performed to the CO-OPN language:

TrWorldStructure creates a CO-OPN context representing the
interface and the world in which the segments, moving entities
and junction points are managed;

TrWaySegment generates a CO-OPN Class with CO-OPN places
representing the end points. An object of this class is also
generated in the WorldStructure context;

TrJunction a CO-OPN class that allows to map EndPoint1 to End-
Point2 and an object of this class type in the WorldStructure
context;

TrMovingEntity implies the creation of a another CO-OPN class
for each one of the moving entities in the model.

By applying the definition of parameterized DSML:

DSMLgen = 〈mmDSMLgen, fp, Ffp, T rmmDSMLgen〉

6.1 A DSML for describing a Train System

Now that we want to define a modeling language for the purpose
of specifying the simulation of a very simplified railway system.
The particularization of our previously defined Entity in the general
metamodel to the concept of train is depicted in Figure 9.

Basically, we define the concept Train as having a Structure
with an attribute Name, and the behavior as an Action Plan.

A possible particularization of the concept Junction Point
could be to the concept of Railway Station.

The referred Action Plan is a sequence of possible GoTo ac-
tions. Informally the behavior of a GoTo action is to send the a
particular train to a given Railway Station.

Having mmTraintrain the metamodel corresponding to the
Train System, we define it as follows:

• fp the metamodel corresponding to the MovingEntity and
JunctionPoint elements of mmDSMLgen;

• mmTrain effective parameter as the metamodel in Figure 9;

• ϕ = {〈MovingEntity, T rainEntity〉,
〈JunctionPoint,RailwayStation〉}

The result of the metamodel parameterization is presented in
Figure 10 with the new and affected elements prior to transforma-
tion with a grey background. As it was previously introduced, the
new metamodel is obtained by applying:

mmDSMLtrain = mmDSMLgen[fp
ϕ←− mmTrain, Ffp]

Figure 10. Railway System Metamodel

Ffp constraints are not applied in this example.
Followed to the composition of the DSML structure, existing

models for bothmmDSMLgen andmmTrain are regenerated in
conformity with the new metamodel. The next step is to transform
the mmDSMLtrain by re-using the existing transformations.

Taking into account that TrmmDSMLtrain is defined as a se-
quence of transformations:

TrmmTrain = TrTrainEntity ∪ TrRailWayStation

where:

TrRailWayStation a CO-OPN class that allows to map EndPoint1
to EndPoint2 with another CO-OPN place acting as the name
attribute. An object of this class type is also generated in the
WorldStructure context;

TrTrainEntity creates in the target language a CO-OPN class
with a place for its name, another one for storing the in-
formation corresponding to the train status (e.g. in which
RailwayStation it is, and a method to implement the GoToAction
behavior.

by using the definition in Section 4.2.1:

TrmmDSMLtrain = [Trfp
ϕ,ψ←−− TrmmTrain]

meaning the the final sequence of transformations is, by apply-
ing ϕ:

TrDSMLtrain = TrWaySegment∪TrRailwayStation∪TrTrainEntity
The train DSML is thus given by:

DSMLtrain = 〈mmDSMLtrain, F, T rDSMLtrain〉
The application of the transformation to a im ∈ IM|mmDSMLtrain

is:

im′ = TrWaySegment(im, ø) ∪
TrRailwayStation(im,Π(TrWaySegment)) ∪

TrTrainEntity(im,Π(TrRailwayStation))

6.2 A DSML for describing a Robot System

Suppose now that we want a DSML to describe the domain of robot
systems. Let us define a very simplified robot system. The Robot
has no particular way segment to follow, nevertheless the Junction
Points can be seen as intermediate Pickable Object.

The sequence of possible actions for our Robot as defined in
Figure 11 is: Start, Stop and Pick Object. The informal semantics
associated to these three actions can be described in natural lan-
guage in the following way:

Figure 11. The Robot Entity Metamodel Robotmm

• Start - to start moving the robot forward in order to reach the
Pickable Object and make it disappear once reached. The robot
stops immediatly after waiting for the next target. If no goal is
set the robot does not move;

• Stop - to stop moving the robot;

• Pick Object - this action sets the target (Pickable Object) where
the robot should move. In other words the robot gets the refer-
ence to the object to pick, rotating a certain angle in order to be
facing the object and be able to mode forward in a straight line
to find the object when the Start action is called.

HavingmmDSMLrobot the DSML metamodel corresponding
to the Robot System, we define it as follows:

• fp the metamodel corresponding to the MovingEntity and
JunctionPoint elements of mmDSMLgen;

• ep the metamodel in Figure 11;

• ϕ = {〈MovingEntity,RobotEntity〉,
〈JunctionPoint,Object〉}
The result of the metamodel parameterization is presented in

Figure 12. The Robot System metamodel is obtained by applying:

mmDSMLrobot = mmDSMLgen[fp
ϕ←− Robotmm, Ffp]

In this case, TrmmRobot is defined as a sequence of transforma-
tions:

TrmmRobot = TrRobotEntity ∪ TrObject
where:

TrObject a CO-OPN class that allows to map EndPoint1 to End-
Point2 with a CO-OPN place acting as the attribute and an-
other one holding the availability of the object. An object of
this class type is also generated in the WorldStructure con-
text;

TrRobotEntity creates in the target language a CO-OPN class with
a place for its name, another one for storing the information
corresponding to the robot status (Running, Stopped), and three
methods, each one for the different types of actions.

Applying the same definitions as for the Train System DSML,
the transformation for DSMLrobot is give by:

TrDSMLrobot = TrWaySegment ∪ TrObject ∪ TrRobotEntity
and the Robot DSML is thus given by:

DSMLrobot = 〈mmDSMLrobot, F, T rDSMLrobot〉

Figure 12. Robot System Metamodel

The application of the transformation to a im ∈ IM|mmDSMLrobot

is:

im′ = TrWaySegment(im, ø) ∪
TrObject(im,Π(TrWaySegment)) ∪

TrRobotEntity(im,Π(TrObject))

6.3 Models in the Target Language

The generated specification in CO-OPN language allows to create
a Java executable prototype that allows to simulate the behavior
trains in their world. Depending on how much semantics is added
to the transformation it is also possible to generate an executable
specification that manages the creation of new trains/robots, new
segments and railway stations/objects.

7. CONCLUSIONS AND FUTURE WORK

In the context of this article we presented a conceptual framework
and methodology that allows creation of DSMLs for prototyping
and verification. It provides syntactic and semantics composition of
concepts allowing to define a specific DSML behavior by starting
with a more abstract view of the language and then by particular-
izing some of its concepts to fit a more precise semantics. We are
currently working in the integration of constraint definition and res-
olution in order to better control the substitution/parameterization
mechanism.

This methodology goes in the line of the extentionOf concept
presented in (Barbero et al. 2007) but not only considering the syn-
tactical part of the language but also taking into account its seman-
tical aspects. This allows to have a framework that is suitable for
testing and verification purposes and that allows re-use of semanti-
cal components.

Considering the model extension by package merge (Object
Management Group members 2005) in UML2 specification defined
to modularize the UML2 metamodel, we choose to use a different
approach mainly because this technique is very UML dependent
and lacks of a precise definition.

The conceptual framework presented here is currently under
development by using Ecore as source formalism, CO-OPN as
the target and by implementing transformation management and
composition with ATL (ATLAS Group 2008). We also expect to
extend this methodology in order to support graphical aspects of
the DSMLs using, whenever possible, the same compositional and
parameterization approach.

References

ATLAS Group. Atlas transformation language, 2008. http://www.
eclipse.org/m2m/atl/.

Mikaël Barbero, Frédéric Jouault, Jeff Gray, and Jean Bézivin. A practical

approach to model extension. In David H. Akehurst, Régis Vogel, and

Richard F. Paige, editors, ECMDA-FA, volume 4530 of Lecture Notes

in Computer Science, pages 32–42. Springer, 2007. ISBN 978-3-540-

72900-6. URL http://dblp.uni-trier.de/db/conf/ecmdafa/
ecmdafa2007.html#BarberoJGB07.

Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for the

Specification of Concurrent Systems. PhD thesis, University of Geneva,

1997.

Frederick P. Brooks. No silver bullet - essence and accidents of software

engineering. IEEE Computer, 20(4):10–19, 1987.

Didier Buchs and Nicolas Guelfi. A formal specification framework for

object-oriented distributed systems. IEEE Transactions on Software

Engineering, 26(7):635–652, july 2000.

Didier Buchs and Nicolasi Guelfi. A concurrent object oriented petri nets

approach for system specification. In 12th International Conference on

Application and Theory of Petri Nets, pages 432–454, 1991.

Eclipse. Eclipse modeling framework, 2007. http://www.eclipse.
org/modeling/emf/?project=emf.

Matthew Emerson and Janos Sztipanovits. Techniques for metamodel

composition. In OOPSLA - 6th Workshop on Domain Specific Modeling,

pages 123–139, Portland, Oregon, October 2006. ACM Press. URL

http://chess.eecs.berkeley.edu/pubs/289.html.

Ethan Jackson and Janos Sztipanovits. Towards a formal foundation for

domain specific modeling languages. In Wang Yi Sang Lyul Min, editor,

Proceedings of the Sixth ACM International Conference on Embedded

Software (EMSOFT 06), pages 53–63. ACM, October 2006. URL

http://chess.eecs.berkeley.edu/pubs/286.html.

D. A. Ladd and J. C. Ramming. Two application languages in software

production. In Proc. of the 19994 USENIX Symposium on Very High

Level Languages(VHLL), pages 169–177, Santa Fe, NM, 1994.

Akos Ledeczi, Greg Nordstrom Gabor Karsai, Peter Volgyesi, and Miklos

Maroti. On metamodel composition. In Control Applications, 2001.

(CCA ’01). Proceedings of the 2001 IEEE International Conference on,

pages 756–760, Mexico City, Mexico, September 2001. IEEE Computer

Society. doi: 10.1109/CCA.2001.973959. URL http://dx.doi.org/
10.1109\%2FCCA.2001.973959.

Levi Lucio, Luis Pedro, and Didier Buchs. Semi-automatic test case gen-

eration from co-opn specifications. In Proceedings of the Workshop on

Model-Based Testing and Object-Oriented Systems, pages 19–26. Mi-

crosoft Research, 2006.

Object Management Group members. Meta-Object Facility 2.0 core spec-

ification. Technical report, OMG, January 2007. URL http://www.
omg.org/cgi-bin/doc?formal/2006-01-01. http://www.omg.
org/cgi-bin/doc?formal/2006-01-01.

Object Management Group members. Uml 2.0 superstructure specifica-

tion. Technical report, OMG, August 2005. http://www.omg.org/cgi-

bin/doc?formal/05-07-04.

Group Software Modeling Verification. Library of domain con-

cepts, 2008. http://smv.unige.ch/tiki-index.php?page=
MTVLibraryDomainConcepts.

Vanderbilt University, Institute for Software Integrated Systems. GME 5

User’s Manual. Vanderbilt University, 2005.

