Domain-Specific M odelling L anguage for Navigation
Applications on S60 M obile Phones

Janne Merilinna

VTT Technical Research Centre of Finland
P.O. Box 1000, 02044 Espoo, Finland

janne.merilinna@vtt.fi

Abstract

Domain-Specific Modelling Languages (DSML) provide an op-
portunity to have end-users at the centre of the software devel-
opment process. Although end-users are seldom software
developers, providing a language that both the end-users and
software developers understand enables fluent communication
between the stakeholders. In this paper, work in progress in the
development of a DSML for navigation applications on position-
ing enabled S60 mobile phones is presented. The presented lan-
guage enables the end-user to instantly experience the impact of
changes in the models, by utilising a code generator that pro-
duces complete applications from the models. The architecture of
both the supporting software framework and the generated appli-
cations are al so discussed.

Categories and Subject Descriptors D.1.7 [Programming
Techniques]: Visual Programming

General Terms Languages, Experimentation, Human Factors
Keywords code generation, end-user driven development

1. Introduction

Obtaining specifications for a software product directly from the
end-users is worthwhile. In an optimal case, this enables the
transforming of the end-users' will directly to a product. How-
ever, the end-users are seldom software devel opers themselves,
thus the lack of a common language between the software devel-
opers and the end-users may become a barrier.

Domain-Specific Modelling Languages (DSML) can enable a
fluent communication between the software developers and the
end-users by providing a language easy enough to learn and un-
derstand [1]. This is achievable by providing a language that
utilizes elements existing in the problem domain, instead of ele-
ments of a solution-space, which can be a stumbling block when
using general-purpose modelling languages. By doing so, the
end-users are already familiar with the language concepts, thus
the learning curve is not too steep.

With code generation being a central process in the Domain-
Specific Modelling (DSM), the possibility of transforming the
models directly into a working application is feasible [1]. This
enables end-users to instantly see the results of the modelling,
thus enabling active participation in the requirements gathering
and prototyping phases or even devel oping the software alone.

In this paper, we approach the end-user driven devel opment
with an experiment of devel oping a navigation applications prod-
uct family [2] architecture for positioning-enabled S60 [3] mobile
phones such as Nokia N95 [4]. The products of the family are not
solely restricted to be composed of features selectable from a
predefined list since a modelling language dedicated for the
modelling of innovative navigation applications is aso provided.
The modelling language is supported by a code generator that
generates compl ete code from the models.

The language is striven to be developed in such a way that
even enables non-programmers, who would not otherwise be able
to develop applications, to do so with the provided language.
With the language, modellers are able to develop innovative
navigation applications by utilizing map data provided by the
OpenStreetMap® (OSM) [5] and are able to navigate both out-
doors with GPS and indoors with the Database Correlation
Method (DCM) [6].

This paper is structured as follows. First, the developed mod-
elling language is illustrated by presenting a simple navigation
application. Second, the implementation of the supporting soft-
ware framework and the application architecture is presented. A
discussion and conclusions close the paper.

2. lllustration of the DSML for Navigation
Applications on S60 M obile Phones

Fundamentally, navigation applications can be considered as
applications that utilise positioning sensors, such as GPS, in
order to show the location of the user on a map. Nevertheless, it
is a'so common to have at least the following features:

Zooming and panning of the map,

Navigation, i.e. routing from source to destination, by utilis-
ing various routing criteria, and

Browsing Point of Interests (POIl), e.g. searching for the
nearest bars, restaurants etc.

The other more advanced features can be considered to be com-
posed from the above mentioned features.

Next in this section, the modelling language for navigation
applications on positioning enabled S60 mobile phones (DSML
for NavApp) is introduced by presenting an example application
modelled with the devel oped language. Due to space limitations,
not all of the language concepts can be presented here, but the
example application should enable one to have an idea of the

! available under Creative Commons Attribution-ShareAlike 2.0

mailto:janne.merilinna@vtt.fi

modelling language. M etaedit+ from Metacase [7] is utilized as a
modelling environment.

2.1 Relation tothe Existing S60 L anguage

Metaedit+ provides a set of example languages such as DSML
for S60 [1, pp. 160-185]. This language includes a subset of ee-
ments provided by the Python for S60 (PyS60) [8]. The language
enables the modelling of S60 applications admost in the
WY SIWYG principle, thus providing a good starting point for
the development of the DSML for NavApp.

Figure 1 represents the relation between the DSML for S60,
DSML for NavApp, PyS60 and the S60 framework. As depicted,
the DSML for NavApp dso includes concepts of the existing
language with additional concepts of its own.

Symbian S60

PyS60

DSML for NavApp

DSML for
S60

Figure 1. Relationships of the |anguages and frameworks.

2.2 A Simple Navigation Application asan Example

A simple navigation application is presented as an illustration of
using the language. Figure 2 represents what will occur when the
application starts. In this case, a pop-up dialog is shown first
with three options. The application closes by choosing “Exit with
the left sofkey, i.e. a button for accessing context-sensitive
menus appearing at the bottom left of the screen of the mobile
phone. If “About” is chosen, a note is shown and, as default be-
haviour after the note has disappeared, the application returns to
the pop-up state. If “NavApp” is chosen, a navigation application
caled “NavApp” is launched. When the “NavApp” is closed, as
default behaviour, the application returns to the pop-up state.

This is a demo for @
OOPSLA-DSM m

workshop

NavApp

Figure 2. NavApp state machine.

Figure 3 represents the sub state machine of the NavApp,
which is accessed from the NavApp entity in Figure 2 by decom-
position. First, the menus and keyboard are defined with a
“Menus’ entity that provides a sub diagram where the definitions
take place (see Figure 4). After the definitions, the application
enters a loop where it is polled if the user is at the destination
location. The destination can be defined by accessing one of the
menus defined in Figure 4. When at the destination, a note is
displayed to inform the user. The positioning ends after the note

disappears.

Menus

React when name
iz
destination_location

!

You are at the (]
destination n

Stop locator

]

Figure 3. NavApp sub state machine.

Figure 4 represents definitions of the menus and the key-
board. First, zooming is attached to the <*+> and <#> keys
followed by select menu definitions. By pressing the | eft softkey,
amenu structure can be displayed where there is one parent node
caled “Navigate’ having two child nodes, i.e. “Navigate to des-
tination”, and “ Stop navigating”. By choasing the latter, the navi-
gation ends. By choosing the first mentioned, the user can type
the name of the place where to navigate. After that, the route to
the destination is computed from the current location and the
navigation is started.

i

FE@FE =@
"+ 12][3 122
b I T e T I I
Zoom i 3 9 ii 8 9 Zoom
closer <o = =0 ¥ out
Navigate
Select \Cancel

Mavigares

h 4

T]
NaviTNavigate to destination
Stop navigating Stap
| ooty
RSkt Cancel | Navigats

TIEVIgEE 10
destingtion

b

Choose destinatign
% Abc

destination_|ocation

start_lecation Na‘vigate

Figure 4. Menu and keyboard action definitions.

- — A

Start locator

After the modelling, the code generator takes the models as
an input and generates a Python source code on top of the sup-
porting software framework. The generated application can then
be instaled into the phone. No additiona manual source code
writing is required.

3. Implementation of the NavApp

3.1 Architecture of the NavApp Framework

The basic architecture of the DSM can be considered to consist
of three layers which are the software framework, the code gen-
erator and the metamodel. As illustrated in Figure 5, the meta-
model provides all the rules on how to model applications. The
code generator is responsible for taking modelled applications as
an input and generates code from the models. It is common to
have a software framework on top of the target platform, in order
to make the code generation easier. [1]

Metamodel

Code generator

Generated code

Framework

Target
Figure 5. The basic architecture of DSM.

The primary driver for the NavApp framework is in the us-
ability and extensibility of the framework. The interface for the
framework is developed in such way that generating source code
for the applications is straightforward. The framework encapsu-
lates functions in a way that the generated applications mainly
consist of function calls to the framework, in addition to utilizing
the PyS60 framework. These requirements are materialised as a
facade that hides al unnecessary details. Figure 6 represents all
the relevant parts of the NavApp framework architecture.

cd: rchitecture
HavApp
+_init_(rvoid
1> +startrvoid
+start(yvoid +stop(yvoid
+navigate (starnode:Node,endnode: Node, compute:_progressint-void
+set_nain_menugnainmenu:int[[: void
+set_keys(keysin][void
+elraw_userQrvaid
+update_carvas(xvoid
+start_locator(onott Boolean) void
+z00ming(resizeF actorintyvoid
+et_current_position(INodef]
+get_cursor_postion():Node
+yet_P Ols{auery_param:Node) Node
Locator
Router Gps_locator DCM _locator
Comverter Hode

Figure 6. NavApp framework architecture.

The NavApp framework architecture is divided into four fun-
damental components:

NavApplnners functions as a facade for the rest of the
framework. It is the only NavApp-specific class that is
accessed from the generated code.

MapHandler is responsible for creating and handling
the map, showing a route when navigating, and the
other relevant visualization actions related to the map.
In addition, MapHandler provides a set of callback
functions to be used by the other components for dis-
playing info on the map. Currently, pre-rendered im-
ages provided by the OSM sub-project, Tiles@home

[9], are utilized as a map instead of rendering the map
from the OSM data.

NavAppDBHandler is responsible for handling the
navigation data, computing route and aso conducting
queries directly to the OSM data for POls etc. In addi-
tion, NavAppDBHandler provides facilities for storing
additional datato the database.

Locator is responsible for positioning. Positioning is
performed by utilizing two of the most widely used po-
sitioning technologies, GPS and WLAN. WLAN posi-
tioning is based on an inbuilt DCM [6].

3.2 Architecture of the NavApp Applications

The code generator for the DSML for S60 [1, pp. 160-185] gen-
erates applications running on a state machine. Each entity is
generated as a state realized by a function, where the states
maintain a reference to the next state. In order to incorporate
code generated from the DSML for NavApp, the generated code
has to conform to that state machine. Therefore, the entity that
initializes NavApp is generated similarly as any other state in the
state machine generated from the DSML for S60. Thus, the in-
troduction of the NavApp entity into the existing code generator
and the language does not have any particular impact on the
other entities.

The actua implementation entity of the NavApp which the
initialization function calls is generated as a class that inherits
the NavApplnners (see Figure 6). The NavApp maintains its own
internal state. Similar to the code generated from DSML for S60
models, NavApp internal states are generated as states that are
realized as functions, where all the functions maintain a refer-
ence to the next state.

Sub state machine and keyboard and menu definitions are
generated differently. Whilst the sub state machine is generated
as states running on the state machine, keyboard and menu defi-
nitions are generated as an encapsulated state in the sub state
machine.

4. Discussion

The current version of the language is still immature and not as
polished as possible, thus it requires one to become familiar with
it. Therefore, the consideration of end-user driven devel opment
is gtill amatter of debate.

Currently, the language and framework are in active devel-
opment. We are adding, among others, a possibility of utilizing
an externa poditioning server in order to enable multi-person
positioning and to enabl e the development of multi-user position-
based games and to bring a social media dimension to the navi-
gation applications.

5. Conclusions

In this paper, the work in progress in the development of the
DSML for NavApp and its supporting framework is presented.
The language is developed in a way that could enable non-
programmer end-users to actively participate in the devel opment
of navigation applications or to develop applications completely
by themselves. By utilizing the presented language, end-users
can instantly experience the impact of changes in the model as
the provided code generator enables complete code generation
from the models.

[1] Kaelly, S. and Tolvanen, J-P, “Domain-Specific Modding: Enabling full
code generation”, John Wiley & Sons, ISBN 978-0-0470-03666, 2008,
427 p.

(2

(3l
(4

(5]

J. Bosch, “Dedgn & Use of Software Architectures: Adopting and
Evolving a Product-Line Approach”, Addison-Wedey, 2000.

S60.com, URL: http://Aww.s60.conVlife [Vidted at 9.7.2008]

Nokia.com, Nokia NO95, URL:
http://www.nseriescom/products/n95/#=productsn95 [Visited at
9.7.2008]

OpenSreetMap, The Free Wiki World Map, URL:

http://www.openstrestmap.org/ [Visited at 9.7.2008]

6l

(1

(8l

(9

Kemppi, P. Nousainen, S, “Database Corrdation Method for GSM
Location”, Vehicular Technology Conference, VTC 2000, IEEE VTS
539 2001.

Metaedit+ WorkBench, URL: http://www.metacase.com/mwb/ [Vis
ited at 9.7.2008]

Nokia Research Centre,
http://opensource.nokia.com/projects/pythonfors60/
9.7.2008].

Tiles@home, URL: http://tah.opengtreetmap.org/ [Visited at 9.7.2008]

Python for S60, URL:
[Visited a

http://www.s60.com/life
http://www.nseries.com/products/n95/#l
http://www.openstreetmap.org/
http://www.metacase.com/mwb/
http://opensource.nokia.com/projects/pythonfors60/
http://tah.openstreetmap.org/

