
Comparison Between Different Abstraction Level Programming: Experiment
Definition and Initial Results

Janne Merilinna and Juha Pärssinen

VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 Espoo, Finland
{Janne.Merilinna, Juha.Parssinen}@vtt.fi

Abstract. Domain-specific languages and especially domain-specific modeling languages (DSML) are
mentioned to achieve 5-10 times performance gains compared to traditional software development prac-
tices due to raising the level of abstraction. The data for the cases where these gains have been witnessed
is usually not available. Therefore, in this paper, we introduce a simple but comprehensive and affordable
experiment framework which can be utilized for measuring the benefits and drawbacks of DSMLs in an
open fashion, i.e. publishing the data and the results and enabling a possibility to repeat the experiment
by others. In this paper, we also present our own experiences and initial results about the benefits and
drawbacks. We found the benefits of DSML to be clear if the applications have to be implemented daily
and especially if the platform continues to evolve and the existing applications have to be updated to cor-
respond to the changes. The benefits of utilizing DSML in a domain where the platform continues to
evolve came as a surprise and needs further study.

1 Introduction

Quite often domain-specific languages (DSL) and domain-specific modeling languages (DSML)
are mentioned to attain 5-10 times performance gains compared to traditional software development
practices [1]. Usually, the gains witnessed in industrial cases have to be trusted blindly as no data is
available for further study. In addition, in order to achieve a fair and reliable comparison, the cases
have to be performed by utilizing both approaches, i.e. implementing the system manually and by
utilizing DSML, which may not be so in true industrial cases. Therefore, this paper strives to set an
initial starting point for investigating and comparing the benefits of traditional software develop-
ment and DSML in a reliable fashion by introducing a simple but comprehensive enough experi-
ment framework that can be utilized for the comparison.

The selected environment for the programming experiment is the Lego Mindstorms NXT Kit
which enables the creation of thousands of different kinds of automatons consisting of LEGO ele-
ments, a 32-bit programmable microcontroller, a set of sensors and servo motors, and Bluetooth and
USB connections [2]. In this experiment, we created a warehouse keeper (WaKe) tripod which
moves by utilizing its servo motors and monitors and senses its environment through its sensors.
The purpose of the WaKe automaton is to deliver packages by following routes painted on the
warehouse floor. The route which the automaton takes is programmable by the application devel-
oper.

This paper also presents the researchers’ experiences in implementing software for the WaKe
automaton by applying traditional means, i.e. manually coding, and by utilizing custom made
DSML for the automaton. Experiences gathered in implementing the automaton forms the founda-
tion for comparing the development approaches.

This paper is structured as follows. First, a selected programming experiment is introduced by
discussing the elements existing in the warehouse domain, in addition to what the automaton should
do and how the automaton is built. Second, implementation of the automaton including presentation
of the DSML for the automaton is presented. Third, an evaluation framework for comparing the
approaches in developing the automaton is presented. After that, the approaches are briefly com-
pared followed by discussion about the experiment. Final remarks close the paper.

2 Lego Mindstorms as an Experiment

2.1 Domain Analysis

 In this experiment, a simplified WaKe automaton was created which delivers packages from
point A to point Z via zero to n (where n is zero or more) waypoints. The starting point, end point
and waypoints are connected to each other with a route which is painted on the floor of a ware-
house. The route must be followed strictly, i.e. no waypoints should be skipped and no curves
straightened. A small variation in tracing the route is allowed but in general, the route should be
followed as precisely as possible in order to avoid collisions with the environment or other automa-
tons in the warehouse.

As discussed, the main objective of the automaton is to take a package from point A (points are
later referred to as points of interest, POIs) to POI Z by following a route. The main scenario for
the automaton may contain several (independent) sub package delivery scenarios, called tasks,
which as a whole may consist of tens of POIs. These independent tasks are usually combined to-
gether in order to form a complete scenario for that day. Next in this section, concepts of the do-
main are described more precisely.

Scenarios and Tasks

The delivery duties are called scenarios which consist of sub scenarios called tasks. Let's take an
example of a scenario and its tasks. Consider tasks A and B. The objective for task A is to take a
package and deliver it to somewhere in the warehouse. The purpose of task B is to drive the
automaton back to the same place (not necessarily following the same route) where task A started.
Scenario AB then encapsulates these two tasks.

Point of Interest and Route

A task consists of a few POIs all of which have to be visited in some specific order to complete
the task. When the automaton reaches the POI, it performs its actions set for the POI and continues
(or ends) the task. No physical POI should be skipped.

There are 1 to 4 routes for each POI. The routes enter the POI from orthogonal directions, i.e.
from the north, east, south and west. No half-cardinal points exist. Considering the route, a POI
must exist at every cross-road. During the route a few events may occur which must be reacted to
correctly.

Events and Actions

Next, all the actions and triggers that can occur in tasks are discussed:
• There are three actions that can be performed at the POI:

o taking the package,
o releasing the package, and
o no action.

• In order for the automaton to start moving from the POI, the automaton waits for three kinds
of signals:
o two 'beep' sound signals,
o an obstacle being closer than some certain specified distance, e.g. an external supervisor

waving hand on front of the automaton, and
o a period of time.

• While on the move, i.e. on route, two kinds of signals trigger the automaton to stop immedi-
ately:
o a single 'beep' sound signal, and
o an obstacle being closer than some certain specified distance.

• If the automaton is halted on route two signals trigger the automaton to start moving again:
o if the automaton is stopped by encountering an obstacle, removing the object enables

the automaton to start moving again, and
o if sound signals have stopped the automaton, two 'beep' sound signals enable the

automaton to start moving again.

2.2 The Automaton

The automaton is a two-wheel driven tripod with a third wheel at the back for stabilizing the
automaton. Yaw and speed are controlled by two independently driven servo motors which are at
the left and right sides of the automaton. The automaton also has a jaw controlled by a servo motor
at the front which is utilized for grasping objects.

The automaton is equipped with four sensors [2]:
• A touch sensor, which is located and pointed to the front of the automaton between the jaws,

giving the automaton a sense of touch.
• A light sensor, which is located beneath the touch sensor and is pointed downwards to the

ground, enabling the automation to distinguish between light and dark, i.e. it reads light in-
tensity, not the actual colour.

• An ultrasonic sensor, which is located on top of the touch sensor and is pointed forwards,
enabling the automaton to measure distances between itself and obstacles ahead.

• A sound sensor, located on top of the NXT brick, enabling the measurement of sound pres-
sure, i.e. enabling the automaton to hear.

In addition to these sensors, the automaton is equipped with a timer. The following bullets sum-
marize the events triggered by the sensors and the timer and actions to be taken during different
phases of tasks, and the responsibilities of the servo motors.

• Wheels
o Two servo motors attached to the wheels of the automaton are responsible for control-

ling speed and yaw.
• Jaw

o The jaw can be opened and closed by controlling the attached servo motor.
• Touch sensor

o If pushed while the robot is waiting for a package, it closes its jaws and grasps the pack-
age.

• Sound sensor
o If a single 'beep' sound signal is detected, the automaton stops its current action imme-

diately.
o The automaton continues its actions if two 'beep' sound signals are detected.

• Light sensor
o The automaton utilizes its light sensor in order to track the route.
o The light sensor is utilized to notice POIs on the ground.

• Ultrasonic sensor
o The automaton senses objects in its path while travelling. If its path is blocked, the

automaton comes to a standstill until the object is removed.
o When at a POI, the ultrasonic sensor is utilized to trigger the automaton to leave the

POI and continue the task.
• Timer

o When at a POI, after a certain specified time, the automaton is triggered to leave the
POI.

2.3 An Application for the Automaton

The example application consists of tasks A and B where both tasks consist of three POIs. Figure
1 depicts the geometrical layout of the scenario. In figure 1, the visiting order of the POIs are A, B
and C in task A. In task B, the order is C, B and A. Next, tasks are discussed more precisely.

Figure 1. Scenario for the experiment.

Task A

The automaton faces to the west at the starting position. In the beginning, the automaton takes
the package and waits for either 2000 milliseconds or specific sound signals, i.e. two 'beep' sound
signals. When the trigger arrives, the automaton exits the POI to the west and begins its journey to
the next POI. While on route, the automaton monitors the environment with its ultrasonic sensor in
order to notice obstacles. Next, the automaton enters the second POI from the east. At the second
POI the automaton takes a turn to the north (turns right, as it entered this POI from east) and then
waits for an exit signal. In this POI, exiting the POI is triggered by waving a hand as an "everything
ok" signal in front of the automaton from an external supervisor. On route to the final POI in this
task, the automaton can be stopped by encountering an obstacle similarly as it was in the first leg of
this task. The automaton enters the final POI from the south and releases its package, ends this task
and moves to the next one automatically.

Task B

The task begins from the same POI where task A ended. In this task, the main objective is to go
back to the starting POI of task A but using a different route. The automaton waits for 1000ms and
then exits to the west (turns left, as it entered this POI from the south) and begins its journey to the
next POI. While on route, the automaton monitors the environment similarly as before but also lis-
tens for sound signals. The automaton enters the POI from the west and exits after waiting for
1000ms to the east towards the final POI. In the final leg of this task, the automaton rushes to the
starting point of task A and finishes the scenario.

3 Implementation of the Automaton

The purpose is to implement software which makes possible to program different scenarios for
the automaton. The idea is that the application developer could program the automaton in an easy
way without knowing every detail of the underlying platform, i.e. Lego Mindstorms NXT.

Two approaches in developing WaKe automaton were tested: use of
• Open-source language Not eXactly C [3] and IDE as a traditional counter-part in this ex-

periment. NXC is textual DSL for the Lego Mindstorms environment, and is close to C pro-
gramming language.

• DSML programming environment applying MetaEdit+ instead of utilizing Mindstorms's in-
cluded LabVIEW programming environment which is a graphical language where the pro-
gramming is performed by connecting boxes together like Lego bricks. LabVIEW can be
considered as a general purpose graphical language for the Lego Mindstorms whereas this
custom-made DSML is tailored for one particular domain of our automaton, and in this
sense it is more abstract than LabVIEW and NXC.

As is common in the realm of DSMLs, the purpose is not to generate all the native source code
but rather generate code on top of a pre-implemented framework or library [4]. Therefore, in this
experiment, this approach is also taken. Figure 2 depicts the layering structure of the aspects that
will be implemented manually or with the help of a DSML and a code generator. As shown, NXC is
lying at the bottom of the stack being common to both development approaches. The WaKe library
is also common to both approaches but unlike NXC it has to be implemented first. It is clear that
much of this experiment depends on this library as the application developer is expected to imple-
ment his or her own scenario code on top of this layer.

Figure 2. Layering structure for the source code of the automaton.

3.1 Application Programming Interface for the Automaton

As there was no previous experience with the Lego Mindstorms or with NXC, a familiarization
period of a couple of days was conducted. In this period, experimenting and observing the automa-
ton was conducted in order to gain an idea of its capabilities. Next, specifications for the automaton
were iteratively and incrementally formed whilst the basic functionality for the automaton was de-
veloped. No up-front design and analysis for the library was performed, therefore the library was
implemented more in a learn-as-you-go mode rather than carefully considering what aspects would
be generated and how.

The resulting library consists of two parts:
• a runtime platform responsible for monitoring the sensors and moving the automaton, and
• an interface exposed for application developers.
The runtime platform consists of a few simultaneously running tasks, i.e. threads, each responsi-

ble for e.g. monitoring the sound sensor, detecting obstacles and controlling movement. The run-
time makes the data available for the application programming interface (API) through global vari-
ables rather than actively throwing data to the API.

The API abstracts all low-level details making development of scenarios very easy. For instance,
in order to make the automaton move and follow the route, the application developer writes a single
line, startWalking(). Turning left, right and around is also simple. For instance, turnRight() function
turn the automaton circa 90 degrees right and then finds the nearest route. The application devel-
oper does not need to worry about the fact that the automaton may not be directly on top of the
route after taking a turn. The following code snippet (Figure 3) exemplifies the scenario code.

takePackage();
setObstacleDistance(10);
until(obstacleAhead()==true);
straight();
startWalking();
setObstacleDistance(10);
while(onPOI()==false)
{
 if(obstacleAhead()==true && onPOI()==false)
 {
 stopWalking();
 until(obstacleAhead()==false);
 startWalking();
 }
}
stopWalking();

Figure 3. An example of the scenario code.

3.2 A DSML for the Automaton

Implementing the DSML, named WaKe DSML, was conducted mainly after the implementation
of the API and the runtime. Considering domain analysis, a domain expert's concepts [5] approach
was a natural choice for defining scenarios for the automaton. Therefore, the WaKe DSML is com-
posed of POIs, in this case a start POI, a stop POI and waypoint POIs, a route which connects the
POIs, and actions and events that can occur while on POI or route. The resulting language imple-
menting the scenario defined in Section 2.3 is depicted in figures 4, 5 and 6.

Figure 4. Defining a deliver package task for the automaton.

Figure 5. Defining a return home task for the automaton.

In the WaKe DSML, the application developer creates a start POI (green rectangle in figures 4

and 5) and a stop POI (checked rectangle) and a sufficient amount of waypoint POIs (the cross-
shaped symbol), and then connects POIs with one-way arrows. In this language, POIs and arrows,
i.e. the route, are relative in the sense that the location of the POIs in the diagram is not taken into
account nor is the curvature of the arrows. However, ports (small rectangles at the edge of POIs)
describe the direction in which the automaton heads from the POI and the direction from which the
POI is entered. Actions taken at the POIs are described with small rectangles on the POIs. Events
that trigger the automaton to exit the POIs are described at the start point of the arrows and events
that trigger the automaton to stop while moving are described somewhat in the middle of the route.

Figure 6. Defining a scenario that encapsulates the tasks.

Figure 6 describes a scenario structure. The scenario begins with a start symbol (filled circle)

and ends with a stop symbol (bull's-eye) and in between there are the tasks.

4 Comparison of the Development Approaches

4.1 Framework for Comparing the Development Approaches

In the context of this experiment, there are two aspects that can be divided further into a number
of sub aspects (Table 1). These can be assessed for comparing the development approaches when
the platform already exists. This in addition to comparing the time to develop the DSML and im-
plement scenarios with it compared to implementing scenarios manually.

Table 1. Aspects to consider when comparing the development approaches

Experiment Framework
Application Scenario Task

Task order
Task POI

Event
Platform Constraints

Elements
Features
New platform

As depicted, at the application level one can manipulate scenarios by adding, removing and ar-

ranging the tasks, and at the task level POIs and routes can be modified. One can measure and ex-
periment with multiple aspects including at least:

• Time spent to learn the DSML vs. API,
• Time spent to develop a new scenario (of various sizes),
• Time spent to modify existing scenarios including reusing pre-implemented tasks, and
• Reliability and intelligibility of the scenario code.
Where things get more complicated is when the underlying platform, i.e. WaKe in figure 2, starts

to evolve and existing scenario code has to be adapted to the changed situation. In the context of
WaKe, there are four aspects that can change:

• New constraints, e.g. POI can be exited if and only if the external supervisor waves a hand
in front of the automaton,

• New elements, e.g. new types of POIs,
• New features, e.g. new sensors, and
• A new platform, i.e. replacing the existing WaKe API and runtime with another.
Now, one can measure at least:
• The time spent to implement new constraints, elements, and features into the code generator

and DSML and the time spent to adapt (with a code generator) existing scenarios to the
evolved platform vs. time spent to adapt existing scenarios manually.

• Reliability that the new constraints are actually implemented in the scenario code,
• Time spent to implement a new code generator for the new platform and adapt existing sce-

narios vs. teach the new platform to application developers and adapt existing scenarios.

4.2 Initial Experiment Results

The total time spent for implementing the library for the automaton was not calculated precisely
as learning the NXC, making specifications for the automaton, experimenting with it and imple-
menting the API and the runtime were performed simultaneously. However, relative workload can
be defined where the total time spent was about two weeks. Most of the time spent (50%) was re-
lated somehow to the light sensor which is applied for following the route and for noticing POIs on
the route. The logic for both of these is very simple but adjusting thresholds, i.e. defining the color
of the route, POI and the environment, was time consuming. Implementation of the API and the
runtime was fairly simple and thus took circa 20% of the time. The rest of the time (30%) was spent
defining specifications and, especially, experimenting with the automaton.

As Metaedit+ was not previously known, the total time spent for developing WaKe DSML and
the code generator for it also includes the learning phase of the tool. Developing the WaKe DSML
was guided and coached by an experienced modeler who was familiar with the Metaedit+. Devel-
opment took circa 10h while implementing the code generator took 15h.

The scenario code of various sizes (3-10 POIs, 1-4 tasks) was implemented in both approaches
several times while developing the automaton and after three months from the development. In this
three-month period, both the API and the WaKe DSML were partially forgotten. It was signifi-
cantly easier to re-familiarize ourselves with the WaKe DSML and implement scenario code with it

compared to implementing the code manually albeit that both are extremely easy to utilize. The
advantages of WaKe DSML when reusing existing tasks in rather large scenarios was clear as one
didn't have to think how to combine the tasks, i.e. didn't have to think in which direction the
automaton entered the last POI and what was the next heading. Overall, WaKe DSML was the
natural choice when implementing any code.

Considering platform evolution, adding new constraints, elements and features were experi-
mented with while implementing the WaKe DSML. The code generator being template-based, it
was straightforward to add some e.g. documentation into the scenario code instead of updating ex-
isting scenarios manually. Overall, modifying the WaKe DSML and its code generator was consid-
ered worthwhile as after the updates, it was clear that all the new constraints etc. were actually fol-
lowed. It was clear that spending some time in modifying aspects in one (or two) places and gener-
ating changes to 100 places is more worthwhile than implementing the changes manually.

The results presented so far were backed up by letting another person implement the API and
runtime of her own without guidance thus resulting in a different implementation. Unfortunately, in
this experiment, there was no time to re-implement the code generator and re-generate the scenario
code with it. However, we can posit that this would also be worthwhile compared to porting the
existing scenarios manually.

5 Discussion

Implementing scenario code for the automaton was conducted by manually coding and by means
of DSML on top of a pre-implemented WaKe library. The WaKe library provides an opportunity
for implementing the scenario code in a script-like fashion thus there is little need for other than
direct function calls to the library. One could even say that the library on its own provides a DSL
for the automaton. From this one could argue that what has been compared in this paper is not the
traditional means vs. DSML but rather DSL vs. DSML. Ultimately, however, this is not true as with
this DSL one could do a lot more than just implement scenario code since it does not restrict the
application developer. In addition, DSML for this DSL would not look like the WaKe DSML if the
abstraction level remains the same. DSML for this DSL would probably look more like a UML
state machine diagram, i.e. a graphical representation of the scenario code. Wake DSML sees "do-
main as the real world" rather than "domain as a set of systems" [6].

Considering the Lego Mindstorms NXT Kit as an experimentation platform for comparing
DSMLs (or UML) and traditional software development can be seen as worthwhile. It provides an
open and especially affordable platform for experimentation thus enabling repetition of experi-
ments, which is usually not the case in industrial scenarios. Thus, we encourage readers of this pa-
per to repeat our experiment with a large number of attendees and report the results.

6 Conclusions

In this experiment, we built a warehouse keeper automaton from Lego Mindstorms NXT Kit and
developed DSML for it in order to set a framework for comparing a traditional software develop-
ment approach to that of DSML. We found that DSML provides a lot more opportunities and bene-
fits than it does downsides even when the platform on which the code is generated was evolving.
The traditional means for developing software for the automaton only proved to be better if it was
intended to implement a limited number of applications and the platform remains unchanged. The
benefits of the DSML approach were clear if the applications were to be implemented daily and
especially if the platform kept evolving and the existing applications had to be updated to corre-
spond to the changes.

References

[1] MetaCase website, URL: http://www.metacase.com [Visited at 2.5.2007]
[2] Lego, NXT Technology Overview, URL: http://mindstorms.lego.com/Overview [Visited at 2.5.2007]
[3] Next Byte Codes & Not eXactly C, URL: http://bricxcc.sourceforge.net/nbc/ [Visited at 2.5.2007]
[4] Roberts, D., Johnson, R., Evolving Frameworks: A Pattern Language for Developing Object-Oriented Frameworks, Pro-

ceedings of Pattern Languages of Programs, 1996
[5] Luoma, J., Kelly, S. and Tolvanen, J., Defining Domain-Specific Modeling Languages: Collected Experiences, 4th Do-

main-Specific Modeling Workshop (DSM'04), 10p.
[6] van Deursen, A., Klint, P. and Visser, J., Domain-specific languages: An annotated bibliography, ACM SIGPLAN No-

tices, 35(6):26–36, June 2000.

