
Genie: a Domain-Specific Modeling Tool for the Generation of                               
Adaptive and Reflective Middleware Families 

Nelly Bencomo and Gordon Blair 

Lancaster University, Comp. Dep., InfoLab21, 
Lancaster, UK, LA1 4WA 

[nelly, gordon] @comp.lancs.ac.uk 

Abstract. At Lancaster University we are investigating about the two following challenges (i) how 
to develop new, scalable and adaptable middleware systems offering richer functionality and 
services, and (ii) how to do it in a more efficient, systematic, and if possible automatic way that 
guaranties that the ultimately configured middleware will offer the required functionality. This 
article is centered on how we face the second challenge. We describe Genie, our proposal of how to 
use Domain Specific Modeling (DSM) to support a development approach during the life cycle 
(including design, programming, testing, deployment and execution) of reflective middleware 
families. Keywords: Domain-Specific Modeling, Domain-Specific Languages, Model-Driven 
Engineering, Family Systems, Reflective Middleware. 

1. Introduction 

Middleware is a term that refers to a set of services that reside between the application 
and the operating system and its primary goal is to facilitate the development of 
distributed applications[13]. To pursue this goal many middleware technologies have 
been developed. All share the purpose of providing abstraction over the complexity and 
heterogeneity of the underlying distributed environment. With the advance of time 
other goals have been added, for example; adaptability is emerging as a crucial 
enabling capability for many applications, particularly those deployed in dynamically 
changing environments such as environment monitoring and disaster management [10, 
19]. One approach to handling this complexity at the architectural level is to augment 
middleware systems with intrinsic adaptive capabilities  [8, 18, 24]. Under these 
circumstances, the development of middleware systems is not straightforward at all. 
Application developers have to deal with a large number of complex variability 
decisions when planning middleware configurations and adaptations at various stages 
of the development cycle (design, component development, integration, deployment 
and even at runtime). These include decisions such as what kinds of components are 
required and how these components must be configured together. Tracing these 
decisions manually and using ad-hoc ways do not guarantee their validity to achieve 
the required functionality. Software engineers who work in the area of adaptive 
middleware development are consequently two-fold challenged in that they should (i) 
develop new, scalable and adaptable middleware systems offering richer functionality 
and services, and (ii) the approaches they use should be more efficient and systematic 
and should guarantee a formal foundation for verification that the ultimately configured 
middleware will offer the required functionality.  

 
At Lancaster University we are researching how to meet these challenges. We use 

reflection and system-level component technologies and the associated concept of 
component frameworks, in the construction of our open, adaptive and re-configurable 
middleware families to face the first challenge identified above. More information 
about this facet of our research can be found in [1]. This article focuses on how we face 
the second challenge. We use DSM to raise the level of abstraction beyond 



 

programming by specifying solutions using domain concepts. We advocate working 
with DSM to improve the development of middleware families, systematically and in 
many cases automatically, generating middleware configurations from high level 
specifications. In this paper we describe the prototype tool Genie, our proposal of how 
to use DSM to support a development approach during the life cycle (including design, 
programming, testing, deployment and even execution) of reflective middleware 
families. The paper is organized as follows. Section 2 introduces the Lancaster’s 
middleware platform and its basic concepts.  Section 3 presents Genie; relevant aspects 
and basic concepts of Genie are discussed. Section 4 discuses aspects related with 
different levels of abstraction in Genie and future work.  Finally section 5 gives some 
final remarks. 

2. Lancaster’s Reflective Middleware : Meeting the Family 

Our notion of middleware families is based on three key concepts: components, 
components frameworks, and reflection. Both, the middleware platform and the 
application are built from interconnected sets of components. The underlying 
component model is based on OpenCOM [9], a general-purpose and language 
independent component-based systems building technology. OpenCOM supports the 
construction of dynamic systems that may require run-time reconfiguration. It is 
straightforwardly deployable in a wide range of deployment environments ranging 
from standard PCs, resource-poor PDAs, embedded systems with no OS support, and 
high speed network processors. Components are complemented by the coarser-grained 
notion of component frameworks [22]. A component framework is a set of components 
that cooperate to address a required functionality or structure (e.g. service discovery 
and advertising, security etc). Component frameworks also accept additional ‘plug-in’ 
components that change and extend behaviour. Many interpretations of the component 
framework notion foresee only design-time or build-time plugability. In our 
interpretation run-time plugability is also included, and component frameworks 
actively police attempts to plug in new components according to well-defined policies 
and constraints. Similar to product family area’s approach, we use component 
frameworks to design the middleware families that can be adapted by reconfiguration. 
The architecture defined by the component framework basically describes the 
commonalities and we achieve variability by plugging in different component. 

 
Figure 1: The OpenCOM main concepts 

 
The basic concepts of OpenCOM are depicted in  
Figure 1. Components are language-independent units of deployment that support 

interfaces and receptacles (receptacles are “required interfaces” that indicate a unit of 
service requirement). Bindings are associations between a single interface and a single 
receptacle. 

interfac

receptacle 
binding 



 

Reflection is used to support introspection and adaptation of the underlying 
component/component framework structures [7]. A pillar of our approach to reflection 
is to provide an extensible suite of orthogonal meta-models each of which is optional 
and can be dynamically loaded when required, and unloaded when no longer required. 
The reflective services then provide generic support for target system reconfiguration—
i.e. inspecting, adapting and extending the structure and behaviour of systems at 
runtime. The meta-models manage both evolution and consistency of the base-level 
system. The motivation of this approach is to provide a separation of concerns at the 
meta-level and hence reduce complexity. Three reflective meta-models1 are currently 
supported: 

- The architecture reflective meta-model to inspect (discover), adapt and extend a set 
of components.  

- The interface reflective meta-model to support the dynamic discovery of the set of 
interfaces defined on a component; support is also provided for the dynamic invocation 
of methods defined on these interfaces. 

- The interception reflective meta-model to support the dynamic interception of 
incoming method calls on interfaces and the association of pre- and post-method-call 
code. 

3. Genie 

Genie is a prototype for a development-tool that offers a Domain Specific Language for 
the specification, validation and generation of artifacts for OpenCOM-based 
middleware platforms. Genie enables the construction and validation of models that 
drive the life cycle of the reflective middleware families at Lancaster University; this 
includes design, programming, testing, deployment, and even execution [4]. From the 
models specified not only source code can be generated but configuration and 
deployment files, results associated with model checking and validations, and 
documentation. 

Genie has been developed using MetaEdit+ [20]. MetaEdit+ has proved to be a 
mature tool that offers a simple and elegant approach to develop DSLs. MetaEdit+ 
offers symbol and diagram editors that allow users to develop the same graphic 
concepts experts, designers, and programmers use. The generation of artifacts is done 
using reports. Reports access models information and transform it into various text-
based outputs; in the case of Genie these outputs can be XML configuration files, 
programming code, or test code. The new version of MetaEdit use protected blocks in 
the text-based output. It means (i) manual changes to generated files are preserved each 
time new code is generated and (ii) the programmer who adds handwritten code knows 
exactly where to add it. This way, unwanted changes in the generated code is avoided. 
It was one of the drawbacks of our approach that has been fixed. The next sections 
discuss some relevant aspects of Genie.l  

3.1. Modeling Process with Genie 

DSM provides a systematic use of Domain Specific Languages (DSLs) to express 
different facets of information systems. In many cases DSM includes the creation of 

                                                 
1 Note that there is a potentially-confusing terminological clash here between the “meta-level” and “reflective meta-levels” terms. 

These two concepts are entirely distinct; nevertheless we are forced to employ both of these terms because they are so well 
established in their respective communities. 



 

domain-specific generators that create code and other artifacts directly from models 
[16, 17]. Getting the benefits of DSM was limited as it was common to develop the 
supporting tool besides the DSLs and the generators. Nowadays we have modern 
metamodel-based DSM tools available which are used by developers to just focus on 
the development of DSLs and the generators. Using these tools, the process for 
implementing model-based development generally presents the following four phases 
[23]:  

 
- Identification of abstractions and concepts and specification of how they work 

together  
- Specification of the language concepts and their rules (metamodel). These rules 

will guide the modeling process that developers follow. 
- Creation of the visual representation of the language (notation); this is done in 

the case we have a Domain Specific Visual Language. 
- Definition of generators. These generators will produce source code, 

documentation, results related to model validation, etc.  
 

The process in Genie essentially follows these steps (see Figure 2). More details are 
shown in the next sections. 

 

Identification of 
abstractions:
OpenCOM concepts:
Components, Interfaces, 
Receptacles

Specification of rules:
Example: 
Interfaces/Receptacles 
should have the same 
interface type 

Creation of the 
visual 
representation of 
the language 
(notation)

Definition of 
generators:
Examples:
- Generation of the 
skeleton of a component
- Generation of the XML 
file associated with a CF

 
Figure 2: Steps for implementing a Domain Specific Modeling Language 

(DSML): Case study Lancaster Middleware Platform 

3.2. Genie: basic Concepts 

As in other program family techniques, our approach uses component frameworks to 
manage and accomplish variability and development of systems that can be adapted by 
re-configuration. A component framework enforces architectural principles 
(constraints) on the components it supports; this is especially important in reflective 
architectures that dynamically change. Reconfiguring a running system using our 
approach implies the insertion, deletion and modification of the structural elements 
represented in the component frameworks: components, interfaces, receptacles, binding 
components and constraints. Models associated with component frameworks are used 



 

to represent the possible variants (configurations) of the different families. Models can 
be effective and valuable in this sense as they can be verified and validated a priori 
(before the execution of the reconfiguration). 

Existing models of OpenCOM-based middleware families use a wide variety of 
notations that depend on the domain that is being modeled. However, the basic 
concepts of any OpenCOM-based model use the basic notions that OpenCOM dictates 
(i.e. components, interfaces and component frameworks). Genie offers a common 
modeling notation for all the models called the OpenCOM DSL. The specification of 
how these concepts work together is described in the graphs associated with the 
components and component frameworks. An example of a model associated to a 
component framework is shown in  

Figure 3. The component framework specified is the Publisher [15]. In the figure we 
can see that components offer and require interfaces and interfaces can be bound 
together to connect components. Component frameworks can export interfaces from 
internal components. In the same way, component frameworks can require interfaces to 
satisfy the requirements of some of their internal components.   

 

 
 

Figure 3: A Component Framework (Publisher) modeled in Genie 
 
Many artifacts can be generated from component-framework models.  Some 

examples of artifacts that can be generated from these models are: 
- the XML files associated to policies that rule the configuration and 

reconfigurations of the component frameworks. 
- test code that use hardcode connections of the components in the component 

framework. These test code is executed as isolated experiments before 
performing the tests that use reflective capabilities and do not use hardcode 
connections. 

- reports of validations and checkings; for example, a report can show 
notifications of interface mismatches meaning that interfaces of different types 
are mistakenly connected. More details and examples are in Section 3.3. 

- documentation 
 



 

Figure 4 shows other examples and details of models, relations between models, and 
generation of different artifacts. Arrow (a) shows how from the graph of a component 
framework a component can be chosen to get more details. From the model (graph) 
associated to a component more details associated with required and offered interfaces, 
author, version, etc can be found . If the user wants to explore the interfaces associated 
with a component; she could open a window with the data associated with the 
interfaces (signature, parameters, etc.). In the same way, the user could open a window 
with the data associated with the author/responsible of the component. Arrow (b) 
shows how from the graph of a component, the skeleton code of the component can be 
generated and/or accessed. Finally, arrow (c) shows a policy (XML file) associated 
with the configuration of components shown in the graph of the component framework. 
These policies are stored in a Knowledge Repository that will be accessed by the 
middleware configurators at run-time. The configurators will read the policies to 
perform the re-configurations connecting and disconnecting components to perform 
adaptations [5].  
 
 

Generation of XML 
file Configurations 

(validated)
Generation 

Source Code  
(in this case 
Java code)

 
 

Figure 4: Generation of different artifacts 
 

3.3. Validation of Models 

In MetaEdit+, the validation of models can be performed while the modeler is editing a 
model or once the edition has been completed. The second option is faster and is the 
option we prefer to use. Any generation of artifacts (source code, XML file, etc.) does 



 

require validation and checking. To understand the important role of validation in 
Genie let us focus on the case of component frameworks.  

As noted above, a component framework imposes constraints on the components it 
supports. Consequently the basic checking is related to these architectural constraints. 
When designing the validations of the component frameworks we exploit known 
variabilities in architectural structures so that common checking infrastructure can be 
built once and then used by any user of Genie in the corresponding component 
framework. Not only does this approach decrease the cost of models validation, but it 
makes it easier the technology since the modeler needs just to be concern about the 
domain-specific aspects of the problem; in this case the behavior of components and 
specific domain-related constrains (architectural styles and new constraints). 

An example of basic validation is the verification that all the connections between 
required interfaces and offered interfaces conform to the same type (therefore the 
configurator does not need to check these conditions at run-time). Examples of more 
specific validations are related to the specific constraints enforced by the component 
frameworks: a specific component may appear only once at the most, a connection 
between two components must exist, etc. These validations should be written for all the 
component-framework models. 

4. Different levels of abstraction in Genie 

OpenCOM DSL models in Genie are defined essentially in terms of configurations of 
OpenCOM components and individual components. These concepts are not about code 
but about much higher-level abstractions as shown in the previous sections. Genie 
offers the OpenCOM-based DSL but also allows the specification of models using 
UML [12]. Every OpenCOM component is specified using a UML class that inherits 
from the superclass called OpenCOM Component [3, 6]. In Figure 5, arrow (a) shows 
how a component is inspected and shows a partial view of the corresponding UML 
specification. The component Subscriber is specified by the class Subscriber that 
inherits from the superclass OpenCOMComponent. Arrow (b) shows how, from the 
graph of a component, the skeleton code of the component is generated and/or 
accessed. Genie will traverse the UML models related to the component to generate 
this source code. The code generated in the example is Java code. More detail can be 
found in [6] 

 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: OpenCOM DSL and UML 
 

Figure 6 shows the different levels of modeling corresponding to different levels of 
abstraction. At the bottom level we have the models corresponding to the underlying 
code framework. This code framework offers modules (i.e. components) that will be 
used from the DSL environment at higher levels. At a high level of abstraction, models 
defined using the DSLs, are used to generate the code that relies on the code 
framework. Higher levels are at a more coarse level of granularity and it is here that we 
deal with concepts that are closer to the problem domain. Lower-level modeling 
entities are about source code and implementation details. In general, programmers will 
work at the lower level (programming level) or generating the underlying framework 
code. This fits well with the vision MetaCase has for domain-specific modeling where 
applications are built on top of a software platform and possibly a code generation 
framework [2]. 

 
 

Future Work 
 
It is on this specific aspect of Genie that we would like to focus our future work. We 
aim to introduce higher levels of abstraction in Genie to focus on different domains like 
grid computing [14, 21] (using more specific notions like overlay network frameworks, 
or resource management framework) and service discovery protocols. For example, we 
envisage having pre-designed and specialized components frameworks with 
characteristics and constraints focused on specific requirements of a class of 
applications (family). We are already working on the specification of models for 
families of service discovery protocols with a common architecture [11]. This way, we 
can minimize resource usage through not just component code re-use, but architecture 
too. 

 

(a) 

(b) 



 

 
Figure 6: Level of modeling corresponding to different levels of abstraction 

5. Final Remarks 

Reflective and adaptive middleware platforms require the creation of multiple 
dynamically deployed variations of reconfigurable systems. A systematic approach is 
needed to model, generate and finally validate these variations. Genie represents the 
way in which we have met this challenge. Genie is a DSM environment prototype to 
support the development during the life cycle of reflective middleware families. The 
environment simplifies the development of middleware families offering a platform 
that guides the development process. Genie is proven to generate the policies for 
configuration of  our Gridkit middleware platform [5]. 

In this paper, we have described the OpenCOM DSL offered by Genie, a domain 
specific language for the specification, validation and generation of artifacts for 
OpenCOM-based middleware platforms. Among the benefits of Genie are reusability 
of code and knowledge. Genie promotes valid code and artifacts offering a less error-
prone approach. 

Genie has been developed using MetaEdit+. DSM-based metamodeling tools like 
MetaEdit+ make it easier to construct DSL-based environments to automate software 
development. However, while DSL approaches raise the levels of abstraction and allow 
the development of systems considerably faster than UML-based approaches, UML has 
the advantage of visualizing code using the well understood UML models. We 
advocate combining both approaches [6]. DSLs and UML can give benefits by 
providing an intermediate representation that is validated and translated into well 
understood UML-based models. Following this philosophy, Genie offers tool support 
for different levels of abstraction using common semantics. It offers supports from the 
source code level up to domain-specific and higher levels, and consequently for 
different users. Our future work focuses on adding support for higher levels of 
abstractions including more specific domains and adaptability requirements [21]. We 

UML Models 

OpenCOM 
Components 
 
(underlying code framework) 

Component 
Frameworks 
Middleware 
Platforms 

Lower Levels 
of Abstraction 

Concepts related to even more 
specific domains like Grid Computing, 
Discovery Protocols 

Domain 1 Domain 2 Domain 3 

Higher Levels 
of Abstraction 



 

think this offers the additional advantage of better communication between participants 
in development projects and therefore generating potential for more successful projects. 
 
Acknowledgments 

Grateful acknowledgment is made to MetaCase for permission to use their tool 
MetaEdit+. 
 
References  
1. Next Generation Middleware @ Lancaster University. 

http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/index.php. 
2. Ambler, S.W. Unified or Domain-Specific Modeling Languages? Sofware Developmet's Agile 

Modeling Newsletter 2006. 
3. Bencomo, N., Blair, G., Coulson, G. and Batista, T. Towards a MetaModelling Approach to 

Configurable Middleware 2nd ECOOP'2005 Workshop on Reflection, AOP and MetaData for 
Software Evolution RAM-SE Glasgow, Scotland, 2005. 

4. Bencomo, N., Blair, G. and France, R. Models@runt.time. Workshop in conjunction with 
MoDELS / UML 2006, 2006. 

5. Bencomo, N., Grace, P. and Blair, G. Models, Runtime Reflective Mechanisms and Family-
based Systems to support Adaptation submitted to Workshop on MOdel Driven Development 
for Middleware (MODDM), 2006. 

6. Bencomo, N., Sawyer, P. and Blair, G. Viva Pluralism!: on using Domain-Specific Languages 
and UML Submitted to Multi-Paradigm Modeling: Concepts and Tools (MPM'06), Genova, 
2006. 

7. Blair, G., Coulson, G. and Grace, P., Research Directions in Reflective Middleware: the 
Lancaster Experience. in 3rd Workshop on Reflective and Adaptive Middleware, (2004), 262-
267. 

8. Blair, G., Coulson, G., Robin, P. and Papathomas, M., “An Architecture for Next Generation 
Middleware. in IFIP International Conference on Distributed Systems Platforms and Open 
Distributed Processing (Middleware'98), , (The Lake District, UK, 1998), 91-206. 

9. Blair, G., Coulson, G., Ueyama, J., Lee, K. and Joolia, A., OpenCOM v2: A Component Model 
for Building Systems Software. in IASTED Software Engineering and Applications, (USA, 
2004). 

10. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K. and Gjorven, E. Using Architecture 
Models for Runtime Adaptability. Software IEEE, 23 (2). 62-70. 

11. Flores, C., Blair, G. and Grace, P., Service Discovery in Highly Heterogeneous Environments. 
in 4th Minema Workshop, (Lisbon, Portugal, 2006). 

12. Fowler, M. and Scott, K. UML Distilled, 1999. 
13. Geoff, C. “What is Reflective Middleware?” IEEE Distributed Systems Online. 
14. Grace, P., Coulson, G., Blair, G., Mathy, L., Duce, D., Cooper, C., Yeung, W.K. and Cai, W., 

GRIDKIT: Pluggable Overlay Networks for Grid Computing. in Symposium on Distributed 
Objects and Applications (DOA), (Cyprus, 2004). 

15. Grace, P., Coulson, G., Blair, G. and Porter, B., Deep Middleware for the Divergent Grid. in 
IFIP/ACM/USENIX Middleware, (Grenoble, France, 2005). 

16. Greenfield, J., Short, K., Cook, S. and Kent, S. Software Factories: Assembling Applications 
with Patterns, Models, Frameworks, and Tools Wiley, 2004. 

17. Kelly, S. and Tolvanen, J.-P., Kelly, S., Tolvanen, J-P, "Visual domain-specific modelling: 
Benefits and experiences of using metaCASE tools", . in International workshop on Model 
Engineering in ECOOP 2000, (France, 2000). 

18. Kon, F., Costa, F., Blair, G. and Campbell, R. The case for reflective middleware. 
Communications of the ACM, 45 (6). 33-38. 

19. McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.C. Composing Adaptive Software. 
IEEE Computer, 37 (7). 56-64. 

20. MetaCase. Domain-Specific Modeling with MetaEdit+ (http://www.metacase.com/). 
21. Sawyer, P., Bencomo, N., Grace, P. and Blair, G., Ubiquitous Computing: Adaptability 

Requirements Supported by Middleware Platforms. in Workshop on Software Engineering 
Challenges for Ubiquitous Computing, (Lancaster, UK, 2006). 

22. Szyperski, C. Component Software - Beyond Object-Oriented Programming. Addison-Wesley / 
ACM Press, 2002. 



 

23. Tolvanen, J.-P. Domain-Specific Modeling: How to Start Defining Your Own Language, 
DevX.com, 2006. 

24. Wang, N., Schmidt, D.C., Parameswaran, K. and Kircher, M. Towards a Reflective Middleware 
Framework for QoS-enabled CORBA Component Model Applications. EEE Distributed 
Systems Online special issue on ReflectiveMiddleware. 

 
 


