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Abstract 
We propose an object-oriented framework for complex behavior modeling by 
domain experts. It is set in the context of Adaptive Object-Models and Flow-
Independent architectures. It is an evolution of Dragos Manolescu's Micro-
Workflow architecture. We add to it several abstractions needed to reify a number 
of concerns common to modeling by domain experts. Our aim is to make it easier 
for domain specialists to write behavior models in their own terms, using 
sophisticated interfaces built on top of the framework. 

 

1 Introduction 
An increasing number of object-oriented applications that we call Adaptive Object-Models 
(AOMs) [YJ02, RBYPJ05], integrate a Domain-Specific Modeling Language (DSML) 
[Tolvanen05] for behavior modeling. This language is dedicated to domain experts and 
available at run-time. In general AOMs deploy a DSML to cost-effectively and programmer-
independently (1) cope with rapid business changes; (2) create a family of similar software; 
and (3) provide modeling and model operating functionality. More specifically, we focus on 
Flow-Independent AOMs (FI-AOM). A flow-independent architecture keeps the control flow 
outside the application domain, and thereby avoids intertwining process logic and application 
code, which is a hindrance to the software evolutive maintenance. The DSML embedded in 
an FI-AOM shares many characteristics with workflow languages and architectures [WMC99, 
LR2000]. They support both defining and executing processes in terms of a coordination of 
primitive tasks and their distribution between processing entities. What distinguishes such a 
DSML from a classical workflow language is that the processing entities tend to often be 
objects and not humans and applications. Both processing entities and primitive tasks belong 
to the domain’s concept and task ontologies. The language targets domain experts. To 
emphasize these important differences and avoid confusion with standard workflow 
languages, we propose to call this class of DSMLs expert languages.  
 
Both in industrial and academic settings, we have studied and also developed many 
successful FI-AOMs [AJ98, DT98, Raz00, GLS02, CDRW02, YBJ01]. Unfortunately, these 
applications required developing a custom expert language. In our opinion, the best approach 
for creating FI-AOMs is the Micro-Workflow architecture by Dragos Manolescu 
[Manolescu2000, Manolescu2002], hereafter denoted by “MWF”. Several characteristics 
distinguish MWF from traditional workflow architectures, notably, a lightweight, modular 
architecture, and dealing with processes in a pure object world, i.e., all workflow processing 
entities are objects. This feature is crucial when developing expert languages for FI-AOMs.  
 



  

   

However, MWF mainly targets developers. Manolescu explains the choice of the activity-
based process modeling methodology by the fact that there is resemblance between the 
modeling abstractions and control structures in structural programming languages. Our goal 
is to take advantage of the extensibility and modularity of the MWF architecture in order to 
propose a core process modeling component which targets also business experts.  
 
In the following subsections we explain our solution, called Dart, based on operating two 
separations of concerns through refactoring [Opd92], and some other amendments. Dart 
stands for Dynamic ARTifact-driven class specialization. It provides more flexibility and 
more desired features for programming by domain experts than MWF, while remaining 
compatible with it, but is harder to learn. We describe the design of Dart, as well as the 
reasons behind our design decisions using patterns (figure in slanted fonts). We use UML as a 
standard notation for presenting the meta-level abstractions that define Dart, as well their 
meta-level relationships.    
 
We postpone the description of our motivations and also achievements to section 4. Section 2 
is dedicated to the presentation of an example, and section 3 to an overview of the MWF core. 
Section 4 exposes our solution. Section 5 discusses our results, before concluding in section 6. 

2 A simple example 
For illustration purposes we adopt from [RTJ05] a simplified version of a banking system for 
handling customer accounts like checking or savings accounts. The system contains a class 
called SavingsAccount which provides a field called “interestRate” that provides 
the interest rate for the account, as well as other fields that are value objects, like “Money” 
and “Percentage”. Each day a method called accrueDailyInterest is executed and the 
interest is added to the account’s balance. The underlying algorithm is illustrated by Figure 1. 
The computation comprises five steps: (1) the current saving account is explicitly designated 
and named Account1; (2) and (3) the interest rate and the balance for that account are 
computed (could be done in parallel), and called respectively Balance and Interest Rate; (4) 
the daily interest is computed and called Daily Interest, and (5) finally, the daily interest is 
deposited on the selected account. No object is produced in this last step (result called Void).  
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Figure 1: A visual representation of the Accrue Daily Interest computation. 
 

The graphical notation for steps corresponds to the association of two rectangles. The lower 
rectangle (in white) symbolizes the operation and the upper one (in yellow) its result (which 
                                                 
1 Could be what-ever else; the names are strings with no special semantics from the computation’s point of view. 



  

   

is a part of a whole product). The arrows are directed from parts towards operations, and 
denote the data dependency between steps. For instance, the arrow from the step 4’s part to 
the step 5’s operation denotes the fact that the execution of the step 5’s operation requires the 
availability of the part of the step n° 4. This graphical notation is chosen since it reflects (1) 
the type of graphical interface that Dart supports (typically a spreadsheet interface), and (2) 
the cognitive approach of users when modeling by a Dart-based DSML (grosso modo, 
programming is done by relating together domain-specific operations and parts).  
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Figure 2: The Dart representation of the example in Figure 1.  
 
The Dart representation of the same algorithm is given by the object diagram of Figure 2. The 
type of objects in this diagram is Task, Grid, Part Holder, and Primitive. These are Dart 
abstractions that we describe in the following sections. A secondary goal of this diagram is to 
illustrate the resemblance between the internal representation of algorithms by Dart, and their 
visual rendering on the screen (Figure 1). Figure 3 illustrates the same model represented 
according to the MWF through abstractions such as Sequence, Ordered Collection, and 
Primitive. We further describe and compare MWF and Dart abstractions in the following 
sections.  
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Figure 3: The MWF representation of the example in Figure 1.  



  

   

3 The Micro-Workflow core 
The MWF architecture leverages the object technology to bridge the gap between the type of 
functionality provided by current workflow systems and the type of workflow functionality 
required to implement processes within object-oriented applications. At the focal point of the 
architecture, the MWF core provides functionalities for workflow definition and execution.2 
This section explains the underlying design based on Manolescu’s thesis [Manolescu2000].  

3.1 Representation of workflow definitions 
A workflow definition specifies the activities that the workflow processing entities must 
perform to achieve a certain goal. From a theoretical point of view, MWF has adopted the 
activity-based process modeling methodology, where workflows are represented in terms of 
activity nodes and the control flow between them. The whole constitutes a directed graph 
called activity network, which captures how process activities coordinate. This representation 
places activities in the network nodes and the data passed between activities on the arcs 
connecting these nodes, showing the data flow between activities [GPW99].  
 
From the framework design point of view, MWF represents the nodes of the activity map 
corresponding to the process definition with a set of Procedures (e.g. Figure 3). The MWF 
employs several procedure subclasses that together provide a range of procedure types. Our 
focus here is on core abstractions, i.e., Procedure, PrimitiveProcedure, and Sequence 
(Figure 4). PrimitiveProcedure enables domain objects to perform application-specific 
work outside the workflow domain.  

Procedure

ProcedureWithSubjectSequenceProcedure

PrimitiveProcedureIterativeProcedure ProcedureWithGuard

ConditionalProcedure RepetitionProcedure

0..1

-steps

1..*
1..1

0..1

-body

1..1

0..1

 
Figure 4: The MWF process component (comprises also Fork and Joint abstractions) 
[Manolescu2000, page 187] 
 

As illustrated by Figure 5 using the Smalltalk language syntax, the implementation language 
of both the MWF and Dart, a primitive procedure is specified by providing the name of the 
method to invoke at runtime, the name of the receiver of the message, the name of the 
arguments, if any, and the name of the result. Names correspond to keys for storing the 
resulting objects and storing the arguments in the current execution context (a hash table). In 
this example, the message sent is called calcDailyInterest:with:, and the names are 
respectively called: balance, interestRate, myAccount, and interest. 
SequenceProcedure allows developers specifying sequences of activities by aggregating 
successive procedures. It is a Procedure subclass that has a number of steps, each of which 
is another procedure. Conditional and Repetition provide a means to alter the control 
flow. Iterative works on composite objects. Finally, Fork and Join spawn and 
synchronize multiple threads of control in the workflow domain. 
                                                 
2 Other components are added by extension to support history, persistence, monitoring, manual intervention, 
worklists, and federated workflow. 



  

   

 

 PrimitiveProcedure 
   sends: #calcDailyInterest:with: 
   with: #(balance interestRate) 
   to: #myAccount 
   result: #interest. 

Figure 5: Instantiation of a primitive procedure in MWF. 
 

The (simple) activity graph in Figure 3 is defined by creating a SequenceProcedure which 
holds an ordered collection of four primitive objects.  

3.2 Representation of workflow executions 
Procedure execution relies on the interplay between a Procedure instance and a 
ProcedureActivation instance. There are two ways to trigger the execution of a 
procedure object. The execute message allows clients from the application domain to fire 
off a procedure. Typically they send this message to the root node of the activity map 
representing the process definition. The second entry point continueExecutionOf: serves 
the workflow domain. Composite procedures send this message to execute their components. 
A procedure reacts to the execute message by sending itself the 
continueExecutionOf: message. The control reaches the internal entry point. Next the 
procedure checks its Precondition by sending the waitUntilFulfilledIn: message 
with the current activation as the argument. In effect, this message transfers control to the 
synchronization component. The waitUntilFulfilledIn: message returns when the 
precondition manager determines that the precondition associated with the procedure is 
fulfilled. Next the procedure creates a new instance of ProcedureActivation. Then it 
transfers control to the new activation by sending the prepareToSucceed: message. On 
the workflow instance side, the activation handles the data flow. First it initializes the local 
variables from the initial context of its type. The first forwardDataFlowFrom: message 
moves data from the procedure initial context to the activation. Then the new activation 
extends its context with the contents of the current activation. Finally, it returns control to its 
Procedure object, on the workflow type side. The ProcedureActivation is here 
responsible for managing data flows. At this point, the procedure has all the runtime 
information and sends the executeProcedure: message to complete execution. However, 
Procedure is an abstract class and doesn’t implement computeStateFor: and 
executeProcedure:. Execution within the Procedure class ends here, and each of its 
concrete subclasses implements these messages in its own way. Thus inheritance allows all 
procedure types to share the same execution mechanism, while polymorphism enables them 
to augment this mechanism with the behavior specific to each type. 

4 Refactoring the Micro-Workflow core 
In the following subsections we explain our solution based on operating two separations of 
concerns, and also some other amendments. 

4.1 Separation of structural and semantic aspects 
MWF procedures combine simultaneously two important roles. First, they serve as building 
blocks for constructing the activity graph. Second, they hold information about the semantics 
of the operation. For instance, the procedure in Figure 3 is constructed by interconnecting 
primitive and sequence objects. The operational semantics of each step of the procedure is 
also held by each of these objects. We propose to separate these two roles by applying the 
Bridge [GHJV95] pattern. The result is that each step in the workflow is specified using two 
distinct abstractions as follows.  



  

   

4.1.1 Representation of part holders 
 

Part Holder
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1..1
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Figure 6: Design of steps in Dart. 
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Figure 7: How procedures and part holders 
relate to the ontology. 

 

As it is illustrated by Figure 6, we propose to delegate the structural role of the procedures to 
an abstraction called Part Holder. The specification of a step in a workflow, called task in our 
context (cf. the next subsection), is now achieved by associating a part holder (‘what’) to a 
procedure (‘how’). The association is twofold. On the one hand, part holders are related to 
the (new) procedures by a relation called computation method. A part holder is associated to 
at most one procedure. For instance, as illustrated by Figure 2, step 2 in Figure 1 is 
represented by associating a part holder named Interest Rate with a primitive called Get 
Interest Rate. On the other hand, part holders are related to procedures by a relation called 
contributes. Primitive procedures may in fact require arguments. A part holder may 
contribute to the computation of a primitive by providing ‘its’ part. The inverse relation is 
called argument. A part holder may in effect serve as argument to the definition of zero or 
more procedures. An argument for such a procedure is selected amongst the part holders 
associated to other steps in the task. For instance, the part holders called Balance and Interest 
Rate in Figure 2 contribute to the computation of the primitive called Calculate Daily Interest 
(that computes the value of a part holder of type Money, called Daily Interest).  
 
Further, for practical reasons it is important to be able to associate to the primitive nodes of a 
task definition to the object that results from their execution. This can for instance serve when 
fine-tuning the workflow definition by simulation. Or, when the workflow engine is used like 
a spreadsheet with two modes: showing the formula associated to a cell or the result of its 
execution. We therefore add a new abstraction, called ontology concept. Figure 7 illustrates 
how part holders and procedures relate to the ontology. Ontology concepts are instantiated by 
primitive procedures, and held by part holders. The domain ontology provides a specification 
of the target business product and its parts and their relationships. We assume here that the 
target system is provided with an explicit representation of the domain ontology, which is 
crucial for DSMLs in general. Dart allows expressing how a full product can be 
computationally obtained through partial computation of its parts. 
 
Now, we can explain in more detail the abstractions that underlay the object diagram in 
Figure 2. Each part holder (yellow rectangle) is connected to a primitive by a link called ‘cm’ 
that is an abbreviation for the ‘computation method’. Part holders are also connected to the 
primitives with the ‘contributes’ link. The association of a part holder and a (primitive) 
procedure creates a step. Furthermore, a grid structure contains the part holder of each step 
(link called ‘cnt’ for content). As explained in the next subsection, the grid is an example of 
organization and visual layout media for the steps of a task.  



  

   

4.1.2 Representation of tasks    
The notion of task refers to a logical grouping of steps, defining a meaningful, but often 
partial, business procedure. Part holders and procedures already maintain two relationships 
called computation method and contributes (see the previous subsection).  These relationships 
interconnect steps together. For instance step 4 in Figure 2 is connected to step 5 of the same 
figure, since the part holder of the former contributes to the procedure of the latter. This 
implicit organization de facto represents a task. However, it is not sufficient for a neat 
representation of tasks. This issue is addressed by the notion of a task, which allows 
explicitly organizing steps. 
 
To represent tasks, we first apply a variant of the Composite pattern [GHJV95] to the design 
presented in Figure 6. The result is two new abstractions (see Figure 8). The common 
abstraction is called Process-Conscious Product, and the composite is called Task. A task 
aggregates one or more steps by pointing to their part holders. In this design, steps are 
sequentially ordered (like in MWF). The relationships of part holders with ontology concepts 
and procedures remain as in Figure 7.  
 

Process Conscious Product

Task Part Holder
1 *

1 *

1*
Association

Generalization

Aggregation

 
Figure 8: Preliminary representation of Tasks in Dart. 
 
This design imposes an overspecification of tasks by sequentially ordering and executing 
their steps. For optimization and business-related motivations, steps may be organized in 
different structures. For instance, the steps of the task in the example of Figure 2 can 
indifferently, from the operational semantics point of view, be visually organized in a list, 
grid or free shape. Therefore, we modify the design of tasks to separate the two step-
organization and step-grouping aspects (see Figure 9). Now, a task aggregates one or more 
steps by pointing, indirectly, through its organization link, to their part holders. The order of 
steps in a task is by default irrelevant. The full definition of a business procedure is obtained 
by aggregating a set of task definitions into a Behavior definition (see also Figure 9). 
 

Process Conscious Product

Task Part Holder

1

*

1
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Grid List

Behavior
1

*

Set  
Figure 9: Design of tasks in Dart. 
 



  

   

 

4.2 Separation of the computation description from the execution strategy 
As explained in Section 3.2, MWF procedures are deeply involved in both (1) the description 
of the expected computation; and (2) the implementation of the execution technique for that 
procedure. For instance, the primitive in Figure 5 (1) holds the information about its purpose 
which is calculating the daily interest; and (2) also implements the rules that govern the 
realization of that computation (a method invocation). By applying the Strategy [GHJV95] 
patterns, we propose to further split the semantic role of the procedures into two distinct roles.  

Execution Strategy

Part Holder

Procedure

Ontology Concept

-holds 0..1
0..*

-instantiates0..1

0..1 -policy

1..10..*

1..1

-computation method0..1
-arguments 0..*

0..*

 
Figure 10: Design of execution strategies in Dart. 
 
A new abstraction called execution strategy is added to Dart (see Figure 10). Procedures have 
now only the role of representing the computation. The operational semantics of the 
executeProcedure: method from the MWF changes now to give the control to the 
execution strategy which is currently associated to the procedure (and can dynamically 
change). The execution strategies that we have currently identified and implemented are 
summarized in Table 1. Execution strategies are also associated to tasks. The default behavior 
consists in launching the execution of task steps taking into account their organization.   
 
Table 1: Different execution strategies currently identified in Dart. 
 

Construct  Execution strategy  
Primitive Invocation of a method with its arguments.   
Factory Invocation of a static method.  
Getter / Setter Invocation of a getter/setter method.  
Control 
Structure 

Execution of the pre-condition behavior and accordingly the action 
behavior.     

In-Pin Fetching the ontology instance (business object) which should be hold 
by the associated part in the execution environment.   

Constant Returning the cached constant value. 
Component Invocation of the associated behavior definition. 
 

4.3 Contracts  
We further suggest associating to procedures, and especially to primitives, a new abstraction 
called Contract (see Figure 11). The idea consists in enriching the modeling system with a set 
of metadata about the modeling primitives. Contracts hold in particular information about the 
signature of the primitives (default name, and when pertinent, name and type of parameters 
and the result). For instance, the fact that our DSML for a banking system has a primitive 
called Calculate Daily Interest that needs two arguments of type Percentage and Money is 



  

   

stored in a contract. Table 2 provides the list of all contracts associated to the operations used 
in this example. Each line corresponds to a contract for a construct of type primitive. 
Contracts can further hold metadata about the medium and execution mode (the type and 
amount of hardware required, the name of the runtime library, etc.). The exact type of 
metadata hold by contracts is however application specific. 
 
Table 2: Description of the contracts used in specifying the Accrue DailyIinterest task.  

Name Method Inputs Outputs 
Calculate Daily Interest calcDailyInterest Money, Percentage Money 
Get Balance getBalance N/A Money 
Get Interest Rate  getInterestRate N/A Percentage 
Deposit  deposit  Money N/A 
Select Account selectAccount N/A Account 
 
 

We consequently apply the Mediator pattern [GHJV95] to the design in Figure 9 to link the 
procedures to their execution strategy by the mediation of the contracts (see Figure 11). A 
specific type of contract should be designed for each specific type of procedure, execution 
context and strategy. 
 

 

Procedure Contract

1..1

-spec

1..1

Execution Strategy

-policy

0..10..*

 
Figure 11: Associating procedures to execution strategies by mediation of contracts. 
 
Table 3: Description of the different constructs of Dart. 
Construct Description 
Primitive Allows specifying a step whose value is computed by calling a 

‘primitive’ function, e.g., a method, a function in a library, even a task.  
Factory Allows specifying a step whose value is computed by 

instantiating/selecting a specific business object.  
Getter Allows specifying a step whose value is computed by fetching the value 

of an attribute of a given business object.  
Setter Allows specifying a step that sets the value of an attribute of a given 

business object. 
Control 
Structure 

Allows specifying a step that carries an iteration or a conditional.     

In-Pin Allows creating a step whose value is received as argument. In-Pins are 
used in conjunction with components, in the sense that the behavior 
associated to a component contains steps of type In-Pin whenever some 
values should be passed to it at run-time. For instance, in the example 
illustrated in Figure 1, step 1 could be an In-Pin, allowing to the 
workflow to operate on any account received at run-time as argument. 
Such a behavior could then be wrapped as a reusable component and 
called by any part willing to ‘accrue the daily interest’ for a given 
account.  

Constant Allows creating a step whose value, a string, date, number or any other 
business object, is provided at definition time and will not change at 
runtime. 

Component Allows creating a step whose value is computed by executing a behavior 
specification. 



  

   

4.4 Constructs  
Now that we have modified the design of MWF procedures, we must face the challenge of 
adapting other MWF modeling constructs, such as the control structures, to the new design 
philosophy, and also adding new constructs such as parameterized tasks. Recall that our 
ultimate goal is a system which targets both developers and domain experts. Adapting and 
adding new constructs should therefore keep the system easy to reuse and extend by 
programmers, and also easy to learn and to use by domain experts. 
 
We have achieved this goal by adopting ideas from the formula languages investigated by 
[Nardi93], where notably control structures are used seamlessly like primitives (an iteration 
or conditional is defined in the same way as an addition or an average). For space reasons we 
cannot describe the details of our design. Table 3 roughly describes the constructs that we 
have added. Figure 12 puts them in the context of our class diagram. As an example, the step 
1 in the example in Figure 2 uses a factory construct. Other steps use a primitive one.  
 
From the design point of view these constructs are added by specializing Procedure by a 
new abstraction called Construct. All modeling constructs of Dart correspond then to 
specializations of Construct. Figure 12 provides an abstract view of the final design.  
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Figure 12: The Dart process meta-model. 
 

5 Putting It All Together  
The two separations of concerns that we operated by refactoring the MWF core are 
essentially motivated by the necessity to extend it to support End-user Programming 
[Nardi93]. These refactorings, together with the addition of contracts and constructs lead to a 
design (Figure 12) that is more consequent in terms of number of abstractions and their 
relationships than the MWF core (Figure 4). It is consequently harder to learn. The 
counterpart is that Dart provides more flexibility and more desired features for programming 
by domain experts, as follows. 



  

   

5.1 End-user programming and adaptivity 
Contracts allow an explicit description of the language constructs and primitives in a human-
readable format. Conforming to the analysis of B. A. Nardi concerning task-specific 
languages, it becomes possible to package business knowledge in a set of well-described 
primitives and then present them to experts in a neat and structured manner (cf. e.g. [GLS02]). 
Contracts can also serve for guiding experts at modeling and model fine-tuning at execution 
time. For instance, it becomes possible to automatically identify that the Calculate Daily 
Interest primitive requires two arguments of types Money and Percentage. By coupling a 
type system to Dart, it becomes possible to filter choices and to avoid type mismatches when 
selecting arguments. Contracts allow further automating the generation of graphical 
interfaces for editing primitive instances. Material for online help can also be associated to 
contracts. At runtime, contracts help automating type checking on effective arguments and 
produced results. They can also automate the selection of better execution strategies 
according to the primitive’s resource consumptions and the actual execution environment. 
We currently take advantage of this feature in developing ambient systems [RMSAP06]. 
 
Modeling steps by combining part holders with procedures (instead of uniquely procedures) 
brings several new possibilities. It allows developing modeling environments with a 
spreadsheet look & feel, well-known for their accessibility to domain experts [Nardi93]. 
Domain experts can model complex behavior by simply (1) selecting amongst the contracts, 
the primitive to instantiate, (2) selecting the grid cell to which the instance of the primitive 
should be attached, and (3) selecting the arguments for the primitive amongst other cells in 
the sheet. We have successfully tested this idea by developing a Web-based and Dart-
compliant graphical interface for a research prototype called AmItalk [CRZ05].  
 
Additionally, following the Observer pattern [GHJV95], Dart couples a dependency 
mechanisms with the reification of arguments (cf. the dependents link in Figure 12). If the 
part holder P1 serves as argument to the primitive that computes the value of the part holder 
P2, then P2 is automatically made dependent of P1 so as it computes its value upon to any 
significant change in the definition of the primitive associated to P1. This feature, also 
present in spreadsheets such as Excel, is also very appreciated by domain experts. It prevents 
them from manually keeping track of the consequences of a change in a primitive definition 
or value. 
 
Adding execution strategies which are used through the mediation of contracts, allows 
changing the execution policy at runtime, which is no more structurally attached to the task 
definition. It also allows deploying task definitions on non-object execution platforms. We 
are also exploiting this possibility in implementing ambient systems that feature runtime 
adaptivity to a changing execution context. From the domain experts’ point of view, this 
feature is appreciated, since Dart dissociates the operational semantics of the task from their 
definitions. In conformance with the DSM approach, it becomes possible for the domain 
experts to focus on the expression of the business logic in terms of an (object) workflow or 
task. The platform then transforms the definition and deploys it, based on the contextual data.  
 
Our industrial experience with FI-AOMs shows that experts use both artifact and activity-
based modeling. It is often a question of perspective for them, and they need to be able to 
switch between these two perspectives. In effect, experts need to analyze both the products 
and the actions, for instance from cost and resource-effectiveness point of view. Thanks to 
the contracts, the reification of parameters, the management of dependencies and business 
objects types, it becomes also possible to recursively guide experts for finding the write 



  

   

sequence of actions for achieving a specific product. Dart supports then the two activity 
modeling methodologies. 
 
Last but not least, Dart provides a full reification of behavior modeling abstractions. Even 
complex control structures are fully reified. This allows domain experts defining complex 
procedures without low-level programming.   

5.2 Ities: expressivity, modularity, reusability and extendability  
The MWF primitives model also the formal arguments. However, an argument is represented 
as a symbol and not a full-fledged object. In Dart, arguments are represented by the part 
holders. This allows in particular designating as argument virtually any complex interpretable 
structure (Interpreter pattern) that implements the value protocol. We have used this feature 
in a successful metrology application [Raz00] to allow experts embedding mathematical 
expressions as arguments to other primitive calls.  
 
Consequently, it becomes possible to hierarchically structure a computation, while keeping 
the same spreadsheet-like programming look & feel. For instance, an IfElse conditional 
can be represented as a “primitive” that takes two arguments which are themselves 
workflows. At runtime, the predicate-workflow is executed first, and the action-predicate is 
executed only if it returns true. Programmers can relatively easily extend Dart to add specific 
control structures, adapted to the business domains and domain experts. The Mobidyc system 
[GLS02], which reuses an implementation of Dart, has taken advantage of this possibility to 
implement a variety of control structures.  
 
From the framework design point of view, having separated the different roles in the design 
of procedures makes the architecture more flexible by allowing the evolution of one aspect 
without being limited by the constraints imposed by the other aspect. In other terms, Dart 
decomposes the process model component of the MFW into several reusable, extensible and 
finer-grained components.  

6 Conclusions and perspectives 
An extension to the MWF core component dedicated to workflow definition and execution is 
proposed. We show that the goals of a workflow architecture that targets both developers and 
domain experts is achievable. Many enhancements and more flexibility (including new hooks 
for dynamic adaptivity) are possible. 
 
To experimentally validate Dart, we have developed an object-oriented framework using 
VisualWorks Smalltalk, which we first used in an ecology simulation system [GLS02]. This 
prototype is being reused in a project related to the Ambient Intelligence and Ubiquitous 
Computing, where we are further deploying this architectural style for developing a macro-
programming environment for Wireless Sensor-Actuator Networks [RMSAP06]. 
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