
Dart: A Meta-Level Object-Oriented Framework for
Task-Specific Behavior Modeling by Domain Experts

Reza Razavi1, Jean-François Perrot2, Ralph Johnson3

1University of Luxembourg – FSTC
LUXEMBOURG

razavi@acm.org

2Université Pierre et Marie Curie – CNRS – LIP6
Paris – FRANCE

jean-francois.perrot@lip6.fr

3University of Illinois at Urbana Champaign,
Illinois – USA

johnson@cs.uiuc.edu

Abstract
We propose an object-oriented framework for complex behavior modeling by
domain experts. It is set in the context of Adaptive Object-Models and Flow-
Independent architectures. It is an evolution of Dragos Manolescu's Micro-
Workflow architecture. We add to it several abstractions needed to reify a number
of concerns common to modeling by domain experts. Our aim is to make it easier
for domain specialists to write behavior models in their own terms, using
sophisticated interfaces built on top of the framework.

1 Introduction
An increasing number of object-oriented applications that we call Adaptive Object-Models
(AOMs) [YJ02, RBYPJ05], integrate a Domain-Specific Modeling Language (DSML)
[Tolvanen05] for behavior modeling. This language is dedicated to domain experts and
available at run-time. In general AOMs deploy a DSML to cost-effectively and programmer-
independently (1) cope with rapid business changes; (2) create a family of similar software;
and (3) provide modeling and model operating functionality. More specifically, we focus on
Flow-Independent AOMs (FI-AOM). A flow-independent architecture keeps the control flow
outside the application domain, and thereby avoids intertwining process logic and application
code, which is a hindrance to the software evolutive maintenance. The DSML embedded in
an FI-AOM shares many characteristics with workflow languages and architectures [WMC99,
LR2000]. They support both defining and executing processes in terms of a coordination of
primitive tasks and their distribution between processing entities. What distinguishes such a
DSML from a classical workflow language is that the processing entities tend to often be
objects and not humans and applications. Both processing entities and primitive tasks belong
to the domain’s concept and task ontologies. The language targets domain experts. To
emphasize these important differences and avoid confusion with standard workflow
languages, we propose to call this class of DSMLs expert languages.

Both in industrial and academic settings, we have studied and also developed many
successful FI-AOMs [AJ98, DT98, Raz00, GLS02, CDRW02, YBJ01]. Unfortunately, these
applications required developing a custom expert language. In our opinion, the best approach
for creating FI-AOMs is the Micro-Workflow architecture by Dragos Manolescu
[Manolescu2000, Manolescu2002], hereafter denoted by “MWF”. Several characteristics
distinguish MWF from traditional workflow architectures, notably, a lightweight, modular
architecture, and dealing with processes in a pure object world, i.e., all workflow processing
entities are objects. This feature is crucial when developing expert languages for FI-AOMs.

However, MWF mainly targets developers. Manolescu explains the choice of the activity-
based process modeling methodology by the fact that there is resemblance between the
modeling abstractions and control structures in structural programming languages. Our goal
is to take advantage of the extensibility and modularity of the MWF architecture in order to
propose a core process modeling component which targets also business experts.

In the following subsections we explain our solution, called Dart, based on operating two
separations of concerns through refactoring [Opd92], and some other amendments. Dart
stands for Dynamic ARTifact-driven class specialization. It provides more flexibility and
more desired features for programming by domain experts than MWF, while remaining
compatible with it, but is harder to learn. We describe the design of Dart, as well as the
reasons behind our design decisions using patterns (figure in slanted fonts). We use UML as a
standard notation for presenting the meta-level abstractions that define Dart, as well their
meta-level relationships.

We postpone the description of our motivations and also achievements to section 4. Section 2
is dedicated to the presentation of an example, and section 3 to an overview of the MWF core.
Section 4 exposes our solution. Section 5 discusses our results, before concluding in section 6.

2 A simple example
For illustration purposes we adopt from [RTJ05] a simplified version of a banking system for
handling customer accounts like checking or savings accounts. The system contains a class
called SavingsAccount which provides a field called “interestRate” that provides
the interest rate for the account, as well as other fields that are value objects, like “Money”
and “Percentage”. Each day a method called accrueDailyInterest is executed and the
interest is added to the account’s balance. The underlying algorithm is illustrated by Figure 1.
The computation comprises five steps: (1) the current saving account is explicitly designated
and named Account1; (2) and (3) the interest rate and the balance for that account are
computed (could be done in parallel), and called respectively Balance and Interest Rate; (4)
the daily interest is computed and called Daily Interest, and (5) finally, the daily interest is
deposited on the selected account. No object is produced in this last step (result called Void).

Balance:
Money

Get Balance

Account:
SavingAccount
Select Account

Balance:
Money

Get Balance

Void

Deposit

Daily Interest:
Money

Calculate Daily Interest

Interest Rate:
Percentage

Get Interest Rate

Interest Rate:
Percentage

Get Interest Rate

2 3

4

5

1

Figure 1: A visual representation of the Accrue Daily Interest computation.

The graphical notation for steps corresponds to the association of two rectangles. The lower
rectangle (in white) symbolizes the operation and the upper one (in yellow) its result (which

1 Could be what-ever else; the names are strings with no special semantics from the computation’s point of view.

is a part of a whole product). The arrows are directed from parts towards operations, and
denote the data dependency between steps. For instance, the arrow from the step 4’s part to
the step 5’s operation denotes the fact that the execution of the step 5’s operation requires the
availability of the part of the step n° 4. This graphical notation is chosen since it reflects (1)
the type of graphical interface that Dart supports (typically a spreadsheet interface), and (2)
the cognitive approach of users when modeling by a Dart-based DSML (grosso modo,
programming is done by relating together domain-specific operations and parts).

4

352

1

Accrue Daily Interest:
 Task Grid

organization

cm cm

cntcnt

cnt
cnt

cnt

cnt

cnt

cnt

cnt

cnt

cnt

Get Interest Rate: Primitive

Interest Rate: PartHolder

cm

Calculate Daily Interest:
 Primitive

cm

Select Account: Primitive

Account: PartHolder

cm

Daily Interest: PartHolder

Deposit: Primitive

Void: PartHolder

Get Balance: Primitive

Balance: PartHolder

‘cnt’ stands for contributes
‘cm’ stands for computation method
(see Section 4.1.1)

Figure 2: The Dart representation of the example in Figure 1.

The Dart representation of the same algorithm is given by the object diagram of Figure 2. The
type of objects in this diagram is Task, Grid, Part Holder, and Primitive. These are Dart
abstractions that we describe in the following sections. A secondary goal of this diagram is to
illustrate the resemblance between the internal representation of algorithms by Dart, and their
visual rendering on the screen (Figure 1). Figure 3 illustrates the same model represented
according to the MWF through abstractions such as Sequence, Ordered Collection, and
Primitive. We further describe and compare MWF and Dart abstractions in the following
sections.

Steps: OrderedCollectionAccrue Daily Interest:
 Sequence

steps

2 3 4 5

Get Interest Rate: Primitive Get Balance: Primitive Deposit: PrimitiveCalculate Daily Interest:
 Primitive

Figure 3: The MWF representation of the example in Figure 1.

3 The Micro-Workflow core
The MWF architecture leverages the object technology to bridge the gap between the type of
functionality provided by current workflow systems and the type of workflow functionality
required to implement processes within object-oriented applications. At the focal point of the
architecture, the MWF core provides functionalities for workflow definition and execution.2
This section explains the underlying design based on Manolescu’s thesis [Manolescu2000].

3.1 Representation of workflow definitions
A workflow definition specifies the activities that the workflow processing entities must
perform to achieve a certain goal. From a theoretical point of view, MWF has adopted the
activity-based process modeling methodology, where workflows are represented in terms of
activity nodes and the control flow between them. The whole constitutes a directed graph
called activity network, which captures how process activities coordinate. This representation
places activities in the network nodes and the data passed between activities on the arcs
connecting these nodes, showing the data flow between activities [GPW99].

From the framework design point of view, MWF represents the nodes of the activity map
corresponding to the process definition with a set of Procedures (e.g. Figure 3). The MWF
employs several procedure subclasses that together provide a range of procedure types. Our
focus here is on core abstractions, i.e., Procedure, PrimitiveProcedure, and Sequence
(Figure 4). PrimitiveProcedure enables domain objects to perform application-specific
work outside the workflow domain.

Procedure

ProcedureWithSubjectSequenceProcedure

PrimitiveProcedureIterativeProcedure ProcedureWithGuard

ConditionalProcedure RepetitionProcedure

0..1

-steps

1..*
1..1

0..1

-body

1..1

0..1

Figure 4: The MWF process component (comprises also Fork and Joint abstractions)
[Manolescu2000, page 187]

As illustrated by Figure 5 using the Smalltalk language syntax, the implementation language
of both the MWF and Dart, a primitive procedure is specified by providing the name of the
method to invoke at runtime, the name of the receiver of the message, the name of the
arguments, if any, and the name of the result. Names correspond to keys for storing the
resulting objects and storing the arguments in the current execution context (a hash table). In
this example, the message sent is called calcDailyInterest:with:, and the names are
respectively called: balance, interestRate, myAccount, and interest.
SequenceProcedure allows developers specifying sequences of activities by aggregating
successive procedures. It is a Procedure subclass that has a number of steps, each of which
is another procedure. Conditional and Repetition provide a means to alter the control
flow. Iterative works on composite objects. Finally, Fork and Join spawn and
synchronize multiple threads of control in the workflow domain.

2 Other components are added by extension to support history, persistence, monitoring, manual intervention,
worklists, and federated workflow.

 PrimitiveProcedure
 sends: #calcDailyInterest:with:
 with: #(balance interestRate)
 to: #myAccount
 result: #interest.

Figure 5: Instantiation of a primitive procedure in MWF.

The (simple) activity graph in Figure 3 is defined by creating a SequenceProcedure which
holds an ordered collection of four primitive objects.

3.2 Representation of workflow executions
Procedure execution relies on the interplay between a Procedure instance and a
ProcedureActivation instance. There are two ways to trigger the execution of a
procedure object. The execute message allows clients from the application domain to fire
off a procedure. Typically they send this message to the root node of the activity map
representing the process definition. The second entry point continueExecutionOf: serves
the workflow domain. Composite procedures send this message to execute their components.
A procedure reacts to the execute message by sending itself the
continueExecutionOf: message. The control reaches the internal entry point. Next the
procedure checks its Precondition by sending the waitUntilFulfilledIn: message
with the current activation as the argument. In effect, this message transfers control to the
synchronization component. The waitUntilFulfilledIn: message returns when the
precondition manager determines that the precondition associated with the procedure is
fulfilled. Next the procedure creates a new instance of ProcedureActivation. Then it
transfers control to the new activation by sending the prepareToSucceed: message. On
the workflow instance side, the activation handles the data flow. First it initializes the local
variables from the initial context of its type. The first forwardDataFlowFrom: message
moves data from the procedure initial context to the activation. Then the new activation
extends its context with the contents of the current activation. Finally, it returns control to its
Procedure object, on the workflow type side. The ProcedureActivation is here
responsible for managing data flows. At this point, the procedure has all the runtime
information and sends the executeProcedure: message to complete execution. However,
Procedure is an abstract class and doesn’t implement computeStateFor: and
executeProcedure:. Execution within the Procedure class ends here, and each of its
concrete subclasses implements these messages in its own way. Thus inheritance allows all
procedure types to share the same execution mechanism, while polymorphism enables them
to augment this mechanism with the behavior specific to each type.

4 Refactoring the Micro-Workflow core
In the following subsections we explain our solution based on operating two separations of
concerns, and also some other amendments.

4.1 Separation of structural and semantic aspects
MWF procedures combine simultaneously two important roles. First, they serve as building
blocks for constructing the activity graph. Second, they hold information about the semantics
of the operation. For instance, the procedure in Figure 3 is constructed by interconnecting
primitive and sequence objects. The operational semantics of each step of the procedure is
also held by each of these objects. We propose to separate these two roles by applying the
Bridge [GHJV95] pattern. The result is that each step in the workflow is specified using two
distinct abstractions as follows.

4.1.1 Representation of part holders

Part Holder

Procedure

1..1

-computation method0..1

-contributes

0..*

-argument 0..*

Figure 6: Design of steps in Dart.

-contributes

-argument
Part Holder

Procedure

Ontology Concept

-holds 0..1
0..*

-instantiates0..1

0..1

1..1

-computation method0..1
0..*

0..*

Figure 7: How procedures and part holders
relate to the ontology.

As it is illustrated by Figure 6, we propose to delegate the structural role of the procedures to
an abstraction called Part Holder. The specification of a step in a workflow, called task in our
context (cf. the next subsection), is now achieved by associating a part holder (‘what’) to a
procedure (‘how’). The association is twofold. On the one hand, part holders are related to
the (new) procedures by a relation called computation method. A part holder is associated to
at most one procedure. For instance, as illustrated by Figure 2, step 2 in Figure 1 is
represented by associating a part holder named Interest Rate with a primitive called Get
Interest Rate. On the other hand, part holders are related to procedures by a relation called
contributes. Primitive procedures may in fact require arguments. A part holder may
contribute to the computation of a primitive by providing ‘its’ part. The inverse relation is
called argument. A part holder may in effect serve as argument to the definition of zero or
more procedures. An argument for such a procedure is selected amongst the part holders
associated to other steps in the task. For instance, the part holders called Balance and Interest
Rate in Figure 2 contribute to the computation of the primitive called Calculate Daily Interest
(that computes the value of a part holder of type Money, called Daily Interest).

Further, for practical reasons it is important to be able to associate to the primitive nodes of a
task definition to the object that results from their execution. This can for instance serve when
fine-tuning the workflow definition by simulation. Or, when the workflow engine is used like
a spreadsheet with two modes: showing the formula associated to a cell or the result of its
execution. We therefore add a new abstraction, called ontology concept. Figure 7 illustrates
how part holders and procedures relate to the ontology. Ontology concepts are instantiated by
primitive procedures, and held by part holders. The domain ontology provides a specification
of the target business product and its parts and their relationships. We assume here that the
target system is provided with an explicit representation of the domain ontology, which is
crucial for DSMLs in general. Dart allows expressing how a full product can be
computationally obtained through partial computation of its parts.

Now, we can explain in more detail the abstractions that underlay the object diagram in
Figure 2. Each part holder (yellow rectangle) is connected to a primitive by a link called ‘cm’
that is an abbreviation for the ‘computation method’. Part holders are also connected to the
primitives with the ‘contributes’ link. The association of a part holder and a (primitive)
procedure creates a step. Furthermore, a grid structure contains the part holder of each step
(link called ‘cnt’ for content). As explained in the next subsection, the grid is an example of
organization and visual layout media for the steps of a task.

4.1.2 Representation of tasks
The notion of task refers to a logical grouping of steps, defining a meaningful, but often
partial, business procedure. Part holders and procedures already maintain two relationships
called computation method and contributes (see the previous subsection). These relationships
interconnect steps together. For instance step 4 in Figure 2 is connected to step 5 of the same
figure, since the part holder of the former contributes to the procedure of the latter. This
implicit organization de facto represents a task. However, it is not sufficient for a neat
representation of tasks. This issue is addressed by the notion of a task, which allows
explicitly organizing steps.

To represent tasks, we first apply a variant of the Composite pattern [GHJV95] to the design
presented in Figure 6. The result is two new abstractions (see Figure 8). The common
abstraction is called Process-Conscious Product, and the composite is called Task. A task
aggregates one or more steps by pointing to their part holders. In this design, steps are
sequentially ordered (like in MWF). The relationships of part holders with ontology concepts
and procedures remain as in Figure 7.

Process Conscious Product

Task Part Holder
1 *

1 *

1*
Association

Generalization

Aggregation

Figure 8: Preliminary representation of Tasks in Dart.

This design imposes an overspecification of tasks by sequentially ordering and executing
their steps. For optimization and business-related motivations, steps may be organized in
different structures. For instance, the steps of the task in the example of Figure 2 can
indifferently, from the operational semantics point of view, be visually organized in a list,
grid or free shape. Therefore, we modify the design of tasks to separate the two step-
organization and step-grouping aspects (see Figure 9). Now, a task aggregates one or more
steps by pointing, indirectly, through its organization link, to their part holders. The order of
steps in a task is by default irrelevant. The full definition of a business procedure is obtained
by aggregating a set of task definitions into a Behavior definition (see also Figure 9).

Process Conscious Product

Task Part Holder

1

*

1

-dependents0..*

Structure

-organization 0..* 1..1

Grid List

Behavior
1

*

Set
Figure 9: Design of tasks in Dart.

4.2 Separation of the computation description from the execution strategy
As explained in Section 3.2, MWF procedures are deeply involved in both (1) the description
of the expected computation; and (2) the implementation of the execution technique for that
procedure. For instance, the primitive in Figure 5 (1) holds the information about its purpose
which is calculating the daily interest; and (2) also implements the rules that govern the
realization of that computation (a method invocation). By applying the Strategy [GHJV95]
patterns, we propose to further split the semantic role of the procedures into two distinct roles.

Execution Strategy

Part Holder

Procedure

Ontology Concept

-holds 0..1
0..*

-instantiates0..1

0..1 -policy

1..10..*

1..1

-computation method0..1
-arguments 0..*

0..*

Figure 10: Design of execution strategies in Dart.

A new abstraction called execution strategy is added to Dart (see Figure 10). Procedures have
now only the role of representing the computation. The operational semantics of the
executeProcedure: method from the MWF changes now to give the control to the
execution strategy which is currently associated to the procedure (and can dynamically
change). The execution strategies that we have currently identified and implemented are
summarized in Table 1. Execution strategies are also associated to tasks. The default behavior
consists in launching the execution of task steps taking into account their organization.

Table 1: Different execution strategies currently identified in Dart.

Construct Execution strategy
Primitive Invocation of a method with its arguments.
Factory Invocation of a static method.
Getter / Setter Invocation of a getter/setter method.
Control
Structure

Execution of the pre-condition behavior and accordingly the action
behavior.

In-Pin Fetching the ontology instance (business object) which should be hold
by the associated part in the execution environment.

Constant Returning the cached constant value.
Component Invocation of the associated behavior definition.

4.3 Contracts
We further suggest associating to procedures, and especially to primitives, a new abstraction
called Contract (see Figure 11). The idea consists in enriching the modeling system with a set
of metadata about the modeling primitives. Contracts hold in particular information about the
signature of the primitives (default name, and when pertinent, name and type of parameters
and the result). For instance, the fact that our DSML for a banking system has a primitive
called Calculate Daily Interest that needs two arguments of type Percentage and Money is

stored in a contract. Table 2 provides the list of all contracts associated to the operations used
in this example. Each line corresponds to a contract for a construct of type primitive.
Contracts can further hold metadata about the medium and execution mode (the type and
amount of hardware required, the name of the runtime library, etc.). The exact type of
metadata hold by contracts is however application specific.

Table 2: Description of the contracts used in specifying the Accrue DailyIinterest task.

Name Method Inputs Outputs
Calculate Daily Interest calcDailyInterest Money, Percentage Money
Get Balance getBalance N/A Money
Get Interest Rate getInterestRate N/A Percentage
Deposit deposit Money N/A
Select Account selectAccount N/A Account

We consequently apply the Mediator pattern [GHJV95] to the design in Figure 9 to link the
procedures to their execution strategy by the mediation of the contracts (see Figure 11). A
specific type of contract should be designed for each specific type of procedure, execution
context and strategy.

Procedure Contract

1..1

-spec

1..1

Execution Strategy

-policy

0..10..*

Figure 11: Associating procedures to execution strategies by mediation of contracts.

Table 3: Description of the different constructs of Dart.
Construct Description
Primitive Allows specifying a step whose value is computed by calling a

‘primitive’ function, e.g., a method, a function in a library, even a task.
Factory Allows specifying a step whose value is computed by

instantiating/selecting a specific business object.
Getter Allows specifying a step whose value is computed by fetching the value

of an attribute of a given business object.
Setter Allows specifying a step that sets the value of an attribute of a given

business object.
Control
Structure

Allows specifying a step that carries an iteration or a conditional.

In-Pin Allows creating a step whose value is received as argument. In-Pins are
used in conjunction with components, in the sense that the behavior
associated to a component contains steps of type In-Pin whenever some
values should be passed to it at run-time. For instance, in the example
illustrated in Figure 1, step 1 could be an In-Pin, allowing to the
workflow to operate on any account received at run-time as argument.
Such a behavior could then be wrapped as a reusable component and
called by any part willing to ‘accrue the daily interest’ for a given
account.

Constant Allows creating a step whose value, a string, date, number or any other
business object, is provided at definition time and will not change at
runtime.

Component Allows creating a step whose value is computed by executing a behavior
specification.

4.4 Constructs
Now that we have modified the design of MWF procedures, we must face the challenge of
adapting other MWF modeling constructs, such as the control structures, to the new design
philosophy, and also adding new constructs such as parameterized tasks. Recall that our
ultimate goal is a system which targets both developers and domain experts. Adapting and
adding new constructs should therefore keep the system easy to reuse and extend by
programmers, and also easy to learn and to use by domain experts.

We have achieved this goal by adopting ideas from the formula languages investigated by
[Nardi93], where notably control structures are used seamlessly like primitives (an iteration
or conditional is defined in the same way as an addition or an average). For space reasons we
cannot describe the details of our design. Table 3 roughly describes the constructs that we
have added. Figure 12 puts them in the context of our class diagram. As an example, the step
1 in the example in Figure 2 uses a factory construct. Other steps use a primitive one.

From the design point of view these constructs are added by specializing Procedure by a
new abstraction called Construct. All modeling constructs of Dart correspond then to
specializations of Construct. Figure 12 provides an abstract view of the final design.

-argument

-holds
-instantiates

-method

Process Conscious Product

Task Part Holder

1 1..*

Construct

1..1

0..1

Contract

Ontology Concept

0..1 0..*

1..1

-spec1..1

1

-dependents0..*

0..1

0..1

Execution Strategy

-policy

1..1 0..*

Behavior

1
*

0..*

-contributes 0..*

Figure 12: The Dart process meta-model.

5 Putting It All Together
The two separations of concerns that we operated by refactoring the MWF core are
essentially motivated by the necessity to extend it to support End-user Programming
[Nardi93]. These refactorings, together with the addition of contracts and constructs lead to a
design (Figure 12) that is more consequent in terms of number of abstractions and their
relationships than the MWF core (Figure 4). It is consequently harder to learn. The
counterpart is that Dart provides more flexibility and more desired features for programming
by domain experts, as follows.

5.1 End-user programming and adaptivity
Contracts allow an explicit description of the language constructs and primitives in a human-
readable format. Conforming to the analysis of B. A. Nardi concerning task-specific
languages, it becomes possible to package business knowledge in a set of well-described
primitives and then present them to experts in a neat and structured manner (cf. e.g. [GLS02]).
Contracts can also serve for guiding experts at modeling and model fine-tuning at execution
time. For instance, it becomes possible to automatically identify that the Calculate Daily
Interest primitive requires two arguments of types Money and Percentage. By coupling a
type system to Dart, it becomes possible to filter choices and to avoid type mismatches when
selecting arguments. Contracts allow further automating the generation of graphical
interfaces for editing primitive instances. Material for online help can also be associated to
contracts. At runtime, contracts help automating type checking on effective arguments and
produced results. They can also automate the selection of better execution strategies
according to the primitive’s resource consumptions and the actual execution environment.
We currently take advantage of this feature in developing ambient systems [RMSAP06].

Modeling steps by combining part holders with procedures (instead of uniquely procedures)
brings several new possibilities. It allows developing modeling environments with a
spreadsheet look & feel, well-known for their accessibility to domain experts [Nardi93].
Domain experts can model complex behavior by simply (1) selecting amongst the contracts,
the primitive to instantiate, (2) selecting the grid cell to which the instance of the primitive
should be attached, and (3) selecting the arguments for the primitive amongst other cells in
the sheet. We have successfully tested this idea by developing a Web-based and Dart-
compliant graphical interface for a research prototype called AmItalk [CRZ05].

Additionally, following the Observer pattern [GHJV95], Dart couples a dependency
mechanisms with the reification of arguments (cf. the dependents link in Figure 12). If the
part holder P1 serves as argument to the primitive that computes the value of the part holder
P2, then P2 is automatically made dependent of P1 so as it computes its value upon to any
significant change in the definition of the primitive associated to P1. This feature, also
present in spreadsheets such as Excel, is also very appreciated by domain experts. It prevents
them from manually keeping track of the consequences of a change in a primitive definition
or value.

Adding execution strategies which are used through the mediation of contracts, allows
changing the execution policy at runtime, which is no more structurally attached to the task
definition. It also allows deploying task definitions on non-object execution platforms. We
are also exploiting this possibility in implementing ambient systems that feature runtime
adaptivity to a changing execution context. From the domain experts’ point of view, this
feature is appreciated, since Dart dissociates the operational semantics of the task from their
definitions. In conformance with the DSM approach, it becomes possible for the domain
experts to focus on the expression of the business logic in terms of an (object) workflow or
task. The platform then transforms the definition and deploys it, based on the contextual data.

Our industrial experience with FI-AOMs shows that experts use both artifact and activity-
based modeling. It is often a question of perspective for them, and they need to be able to
switch between these two perspectives. In effect, experts need to analyze both the products
and the actions, for instance from cost and resource-effectiveness point of view. Thanks to
the contracts, the reification of parameters, the management of dependencies and business
objects types, it becomes also possible to recursively guide experts for finding the write

sequence of actions for achieving a specific product. Dart supports then the two activity
modeling methodologies.

Last but not least, Dart provides a full reification of behavior modeling abstractions. Even
complex control structures are fully reified. This allows domain experts defining complex
procedures without low-level programming.

5.2 Ities: expressivity, modularity, reusability and extendability
The MWF primitives model also the formal arguments. However, an argument is represented
as a symbol and not a full-fledged object. In Dart, arguments are represented by the part
holders. This allows in particular designating as argument virtually any complex interpretable
structure (Interpreter pattern) that implements the value protocol. We have used this feature
in a successful metrology application [Raz00] to allow experts embedding mathematical
expressions as arguments to other primitive calls.

Consequently, it becomes possible to hierarchically structure a computation, while keeping
the same spreadsheet-like programming look & feel. For instance, an IfElse conditional
can be represented as a “primitive” that takes two arguments which are themselves
workflows. At runtime, the predicate-workflow is executed first, and the action-predicate is
executed only if it returns true. Programmers can relatively easily extend Dart to add specific
control structures, adapted to the business domains and domain experts. The Mobidyc system
[GLS02], which reuses an implementation of Dart, has taken advantage of this possibility to
implement a variety of control structures.

From the framework design point of view, having separated the different roles in the design
of procedures makes the architecture more flexible by allowing the evolution of one aspect
without being limited by the constraints imposed by the other aspect. In other terms, Dart
decomposes the process model component of the MFW into several reusable, extensible and
finer-grained components.

6 Conclusions and perspectives
An extension to the MWF core component dedicated to workflow definition and execution is
proposed. We show that the goals of a workflow architecture that targets both developers and
domain experts is achievable. Many enhancements and more flexibility (including new hooks
for dynamic adaptivity) are possible.

To experimentally validate Dart, we have developed an object-oriented framework using
VisualWorks Smalltalk, which we first used in an ecology simulation system [GLS02]. This
prototype is being reused in a project related to the Ambient Intelligence and Ubiquitous
Computing, where we are further deploying this architectural style for developing a macro-
programming environment for Wireless Sensor-Actuator Networks [RMSAP06].

7 Acknowledgements
This work has been partially funded by the University of Luxembourg, in the framework of
the Åmbiance, a project in the field of Ambient Intelligence (R1F105K04). We would also
like to acknowledge the valuable collaboration of G. Agha, I. Borne, A. Cardon, N.
Bouraqadi, Ch. Dony, B. Foote, V. Ginot, Ph. Krief, M. Malvetti, D. Manolescu, K. Mechitov,
S. Sundresh, and J.-W. Yoder.

8 References
[YJ02] Yoder JW, Johnson R. The adaptive object-model architectural style. In: Bosch J, Morven
Gentleman W, Hofmeister C, Kuusela J, editors. Third IEEE/IFIP conference on software architecture
(WICSA3). IFIP conference proceedings 224. Dordrecht: Kluwer. p. 3–27. 2002.
[RBYPJ05] Razavi, R., Bouraqadi, N., Yoder, J.W., Perrot, J.F., Johnson, R.: “Language Support for
Adaptive-Object Models using Metaclasses”. In the Elsevier Int. journal Computer Languages,
Systems and Structures. Bouraqadi, N. and Wuyts, R. (Eds.) Vol. 31, Number 3-4, ISSN: 1477-8424,
October/December(2005).
[Tolvanen05] Tolvanen, J.-P.: Domain-Specific Modeling for Full Code Generation. Methods &
Tools - Fall 2005.
[WMC99] The Workflow Management Coalition. Process definition model and interchange language.
Document WfMC-TC-1016P v1.1. October 1999.
[LR2000] Frank Leymann and Dieter Roller. Production Workflow—Concepts and Techniques.
Prentice-Hall, Upper Saddle River, New Jersey, 2000.
[AJ98] Francis Anderson and Ralph Johnson. "The Objectiva telephone billing system". MetaData
Pattern Mining Workshop, Urbana, IL, May 1998.
[DT98] Martine Devos and Michel Tilman. A repository based framework for evolutionary software
development. MetaData Pattern Mining Workshop, Urbana, IL, May 1998.
[Raz00] Razavi, R.: “Active Object-Models et Lignes de Produits – Application à la création des
logiciels de Métrologie”. In proceedings of OCM’2000, 18 - May 2000, Nantes, France, pp 130-144
(2000)
[GLS02] Ginot, V., Le Page, C., Souissi, S.: “A multi-agents architecture to enhance end-user
individual-based modeling”. Ecological Modeling 157 pp.23-41 (2002).
[CDRW02] Caetano H., De Glas M., L., Rispoli R, Wolinsky F.: The Importance of Fragility in the
Realisation of Seismic Simulators: The Urban Risks Example. Assembleia Luso Espanhola de
Geodesia e Geofisica (2002.
[YBJ01] Yoder J, Balaguer F, Johnson R. Architecture and design of adaptive object-models.
SIGPLAN Notices;36(12):50-60, 2001.
[Manolescu2000] Manolescu, D.: “Micro-Workflow: A Workflow Architecture Supporting
Compositional Object-Oriented Software Development”. PhD Thesis, University of Illinois at
Urbana-Champaign, Illinois (2000).
[Manolescu2002] Manolescu, D.: “Workflow enactment with continuation and future objects”.
Proceedings of the 17th OOPSLA Conference. ACM Press, ISBN 1-58113-471-1. Pages 40 – 51.
Seattle, Washington, USA (2002).
[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.
[RTJ05] Dirk Riehle, Michel Tilman, and Ralph Johnson. “Dynamic Object Model”. In: Pattern
Languages of Program Design 5, Addison-Wesley (2005).
[GPW99] Dimitrios Georgakopoulos, Wolfgang Prinz, and Alexander L. Wolf, editors. Proceedings
of WACC99, volume 24 of Software Engineering Notes. ACM, March 1999.
[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns---
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[Nardi93] Nardi, B. A.: “A Small Matter of Programming: Perspectives on End User Computing”.
MIT Press, Cambridge, MA (1993).
[RMSAP06] Reza Razavi, Kirill Mechitov, Sameer Sundresh, Gul Agha, Jean-François Perrot:
Ambiance: Adaptive Object Model-based Platform for Macroprogramming Sensor Networks. Poster
session extended abstract. OOPSLA 2600 Companion October 22–26, 2006, Portland, Oregon, USA
(to appear).
[CRZ05] Stéphane Célet, Reza Razavi et Pouryia Zarbafian : “AmItalk: towards MDE/MDA Tool
Support for Ambient Systems”. Communication to the ESUG Innovation Technology Awards (2005).

