
Bootstrapping Domain-Specific Model-Driven
Software Development within Philips

Hans Jonkers

Marc Stroucken
Richard Vdovjak

Philips Research

High Tech Campus 31
5656 AE Eindhoven, The Netherlands

{Hans.Jonkers,Marc.Stroucken,Richard.Vdovjak}@philips.com

Abstract
Philips recognizes the importance of model-driven software development
(MDD). Unfortunately, there seems to be a lack of mature tools that would
support domain-specific MDD and allow their deployment in an incremental
fashion. This paper describes the ongoing MDD research efforts at Philips,
introducing VAMPIRE1 − a light-weight model-driven approach to domain-
specific software development. The VAMPIRE MDD framework is developed by
Philips Research and it is currently being deployed at several Philips product
divisions. The paper elaborates on the VAMPIRE modeling environment,
focusing on its meta-modeling facilities, editors, and generators. Further, we
summarize the lessons learned during the process of deploying our MDD
framework into the product divisions.

1. Introduction
To be a successful player in a competitive business environment such as consumer
electronics, medical systems, or healthcare solutions, one needs to deliver integrated and
interoperable software-intensive systems, and fulfill the ever-growing demand for new and
improved features in ever-decreasing time to market. Moreover, the whole range of
product families is required to exhibit a similar look and feel towards the end-user. These
requirements affect the product’s hardware as well as its software. The proliferation of
software in Philips products has been substantial and the amount of software still continues
to grow at a great pace. As a consequence, the whole process in which the software is
designed and constructed needs to address the aforementioned requirements efficiently.

The struggle to increase the software productivity and reliability has accompanied software
development efforts since the very beginning. Among the remedies that proved to be (at
least partially) successful was the raising of the abstraction level for writing code.
Throughout the evolution of programming languages and design techniques (e.g.
procedural languages, object-orientation, and design patterns) one can clearly see an
increase in the level of abstraction at which software was written. The booming
proliferation of software across many fields makes the demand for software higher than

1 Visual Agile Model-driven Product-oriented Integrated Research Environment

ever before. The demand currently exceeds the ability to produce software by a large
margin, and this “software-gap” steadily increases in time.

To address this issue, the conventional development means need to be augmented by new
approaches that would enable to raise the level of abstraction even further, while bringing
the software engineering discipline closer to the actual domain where it is to be applied.
The combination of a higher abstraction level closely coupled with the domain knowledge
introduces a so-called model-driven development (MDD) − a paradigm shift in software
engineering that has the potential to become a solution to the software-gap problem. To
make this happen, we need to gradually move from writing code to creating domain-
specific models and generating code and other related artifacts, such as documentation, etc.,
from them. Using small domain-specific modeling languages, as opposed to a universal
modeling language such as UML, brings the modeling discipline much closer to the domain
experts and at the same time enables simpler maintenance and evolution of such models,
which contributes to the desired productivity increase as well as to the agility of the model-
driven development.

The rest of the paper is structured as follows. Section 2 introduces the VAMPIRE modeling
framework, section 3 elaborates on VAMPIRE’s meta-modeling features defined by the
Meta Object Model, section 4 focuses on model editors , and section 5 explains the ideas
behind our code generator. Section 6 summarizes the lessons learned during the process of
applying this framework in Philips product divisions. Finally, section 7 gives an overview
of related work, and section 8 presents our conclusions.

2. VAMPIRE modeling framework
VAMPIRE is a light-weight model-driven approach to domain-specific software
development. The VAMPIRE framework is being developed by Philips Research. It
primarily aims at raising the level of abstraction at which the software for Philips products
is produced, trying to increase productivity and reliability. The main idea is to capture the
domain knowledge by means of models and to develop (parts of) applications by
instantiating these models and generating the code, documentation, and other artifacts.
VAMPIRE consists of a collection of loosely-coupled tools and in some sense represents a
minimalist approach that allows us to apply MDD now and not wait till tools that would fit
our needs appear.

The VAMPIRE framework is based on a very simple pattern, involving object models,
editors and generators (see Figure 1).
Object models define the essential entities in the domain(s) of interest. There need not be a
single object model capturing a complete application domain, but there can be several small
object models such as models capturing the variation points of specific products.
Editors enable manual construction of model instances conforming to an object model. The
editors allow users to construct these model instances in an intuitive and domain-specific
way and completely hide the underlying implementation technology.
Generators facilitate the generation of various artifacts from model instances. The
generators allow (parts of) the software development process to be automated, i.e. to be
“driven” by the models.

Editor Generator

ObjectModel

Instance

conforms to

inputcreates

Figure 1: VAMPIRE modeling pattern.

Setting up an MDD approach like VAMPIRE requires the definition of a meta-model − a
modeling language defining the class of models that the framework supports. In
VAMPIRE, this is represented by the Meta Object Model (see section 3) which is used to
formally describe models of a certain domain. These models can be viewed as abstractions
of entities within the given domain. In VAMPIRE, a model constitutes a network (graph) of
types that capture domain knowledge in a certain area (e.g., medical systems). Object
models thus serve as languages for defining instances of models and are therefore also
referred to as domain-specific languages [1]. An important feature of VAMPIRE is that it
considers models not just as abstractions but as concrete objects from which artifacts such
as executable code and documentation can be automatically generated.

The models we develop for our product domains are relatively small in size, usually not
exceeding 50 mostly product-specific type definitions. However, given the fact that there
are many related products (creating groups of so-called product families) it is often the case
that various (related) models need to be reused, combined, or their elements simply have to
refer to other models’ elements.

In VAMPIRE, it is possible to combine models in different ways. Models can reference
types in other models, thus building separate but linked models. Models can extend existing
models, which allows the sharing of common parts (model inheritance). Finally, types can
be extended with different aspects, which facilitates building models incrementally while
separating concerns (Aspect Oriented Modeling).

A2

A1
 M1

T1

T2

T3

M2

T4

T1

T2

M3

cross-model type
inheritance

model extension

Figure 2: Aspect orientation and model reuse.

Figure 2 depicts three models (M1, M2, and M3). Models typically contain several
interrelated type definitions, e.g. M1 contains types T1, T2, and T3. As mentioned, models
can be extended by various aspects. An aspect is also a model; it defines (extensions to)
types that are combined with the types of the model to which the aspect is associated. For
instance, aspect A1 defines T1 which is combined with the definition of T1 from model M1;
this mechanism to some extent resembles partial-classes from C# 2.0 but then at model
level. The advantage of aspect orientation is the clear separation of concerns. One can
simply define different aspects to already existing models, e.g. XML serialization details
can be captured as an independent aspect.
Models can be also combined with, extended, or reused by other models. For instance,
model type T4 from M2 refers to (inherits from) a type T1 from M1, and model M3 inherits
all types from M1.

3. Meta Object Model (MOM)
The Meta Object Model (MOM) is defined as a combination of different aspects. Current
aspects include the model itself, documentation and XML serialization. The documentation
aspect supports the annotation of models with summaries, status, etc. The XML aspect
allows for customization of the XML language of the instances. This even makes it possible
to model existing XML languages like XML Schema (XSD), SVG, XML and XSLT. By so
doing, the generation of such an XML file is reduced to a model transformation followed
by a save-to-file operation.
The MOM is an instance of itself which brings great flexibility. It is possible to transform
any object model to a MOM instance and vice versa. This enables building tools such as
validators to perform additional semantic checks, normalizers that resolve model extensions
by creating a single self-contained model, and so-called defaults-resolvers that add or
remove default values, which makes navigating through the MOM instances easier from the
code. In the code, any MOM instance can be accessed by the graph it represents. When
saving an instance of an object model, the graph representation is mapped to a tree-
structure imposed by XML. This is done by a special model construct that allows indicating
at which location a definition of a certain item is expected and at which other locations in
the model references to that item may exist. A stubs-resolver replaces all reference stubs by
real references, so that at any location the item’s definition becomes transparent to the
programmer.
Since the MOM is a generic meta-model, it is very small with just 5 basic constructs: class,
union, list, enumeration and value type. Classes contain attributes that can be optional. This
makes it possible to test for the presence of (and even remove) an attribute from a class
object. The MOM currently supports single-inheritance, but the work on supporting
multiple-inheritance is in progress. This is possible because the generated C# code is fully
interface-based and multiple interface inheritance is supported in C#.
Unions represent a special kind of forward type declaration. They define (closed) sets of
classes or other unions; the instance of a union type is in fact an instance of exactly one
type within the defined set. From the modeling perspective, unions can also be seen as a
(type) choice. Unions do not have attributes of their own and support a weak form of
multiple inheritance.

Lists are modeled closely to the generic list type of C# 2.0. Enumerations contain literal
values. Value types are types that restrict some other basic types, e.g. the name of a C#
identifier may subtype string with the restriction that it does not contain spaces.
The generated C# programming library enables a MOM-oriented reflection. So in code it is
possible from any model instance to access and explore its object model, which brings
more flexibility for writing artifact generators (see section 5).

Figure 3: The MOM meta-modeling pyramid.

The MOM is extensible. Since it is described in itself, an extension to the MOM is
achieved in 2-pass iterations. In the first pass the MOM is extended and new code is
generated from it. In the second pass the code generator is extended to start using the new
constructs. Extensions that are independent of the C# model are even simpler and can be
added at any time. Therefore, extending the MOM with new aspects, e.g. layout metadata
for a graphical editor is very easy. Figure 3 illustrates the extension pyramid of MOM. It
starts with the MOM itself as the basic building block followed by general–purpose meta-
modeling extensions such as serialization; this layer can be (optionally) extended with
domain specific meta-modeling extensions. These meta-modeling facilities are then used to
describe concrete domains in terms of Object Models and their instances (Models).

4. Editors
The first letter from the VAMPIRE acronym stands for “Visual”, emphasizing that the
visual aspect plays a crucial role in the MDD way of working. The fact that models and
their instances are edited visually (as opposed to writing code or hand-crafting XML files)
makes the learning curve much less steep and the actual process of modeling much more
appealing. The visual aspect also contributes to the desired agility of our approach, as it is
much easier for people to reason and change models if they are represented visually.
There are several approaches to model / instance visualization, browsing, and editing.
These approaches range from more generic table-based model editors (such as the one
depicted in Figure 4) to more diagrammatic or pictorial editors. The latter have the potential

to offer more (domain) specific elements in the visualization, but of course then they
become model dependent and therefore need to be individually tailored for every single
application domain.

Figure 4 InfoPath-based Application Editor.

The VAMPIRE framework offers an extensible set of loosely-coupled generic tools for
editing and browsing models and their instances. Most of these tools are currently based on
existing XML-enabled editing suites such as InfoPath2 or XMLspy3.
The generic editors provided by the framework can be made more domain-specific by
extending the default generators. Future development includes a customizable suite of
diagrammatic and pictorial tools for visual model editing.

5. Generators
The VAMPIRE framework includes a C# code generator which takes an object model as its
input and produces a C# library of types occurring in the model together with a set of
interfaces for access and manipulation. The library is fully interface-based implying that
instances of model types can only be accessed / modified by interfaces [6].
The generated code provides an easy-to-use programming model for instances of an object
model, where all constructs defined in the object model, are also available in C# using
Intellisense of VS.NET (see Figure 5). This strongly-typed approach of model instance to
C# conversion brings the benefit of compile-time checks and an early discovery of potential
inconsistencies (which may occur especially when models are instantiated by humans).

2 http://www.microsoft.com/office/infopath
3 http://www.Altova.com/XMLSpy

Figure 5: Model-aware Intellisense support.

Multiple views in the code provide a value-oriented, object-oriented, and an attribute-
oriented way of working. The adopted interface-based approach allows switching between
the different views. Construction methods are generated for the types to reduce the lines of
code you have to write in a generator.

Editor Generator

ObjectModel

Instance

conforms to

inputcreates

C# Code
Generator

Model API

Artifact

createsinput

creates

has knowledge of
uses

Figure 6: Artifact Generator.

Every model has its own XML representation for which an XML schema file can be
generated. The generated C# code provides load and save methods for the instances of the
model that conform to their XML representation. The default XML representation makes
efficient use of XML attributes, elements or anonymous constructs.
Besides the C# code generator, the VAMPIRE framework offers a number of other tools
such as XML schema generator, HTML documentation generator, and a generator of an
SVG graphical model browser. On top of the “built-in” generators (which are generic for
all instances of the MOM), one can write domain-specific generators that create domain-
specific artifacts. Figure 6 shows such a generator; the generator uses the model API
created by the C# generator and processes the instances of the model, creating domain-
specific artifacts.

6. Applying VAMPIRE
In the past three years we have successfully applied our approach in several domains
which, because of the proprietary nature of the products involved, we can only describe
briefly in this paper.

During this time the approach has reached a maturity level where it can be transferred to
other departments within Philips. Some departments are going to use the approach to
research new models and description languages, while others will use the development
environment to implement tools for their customers. Because of the fast development of
models and transformations more time can be spent focusing on the content instead of the
tooling.
The complexity of using MDD in existing software-intensive product lines is mainly
identifying those parts in the software architecture that can be replaced by models with
generated code. Certain skills, and a different way of thinking about software in general,
are required. A trained eye sees possibilities for code generation almost everywhere, which
requires switching between several meta-level views.
A typical target for applying MDD is the class of software that exists in many varieties in
one product line, or software that changes a lot over time, e.g. with every new release. It
may also be applied to develop architecture description languages (ADLs) [7].
Below we shortly summarize the lessons learned during the last few years when we were
trying to introduce the VAMPIRE framework in Philips. This (not exhaustive) list can be
seen as necessary prerequisites without which it would be very hard to apply MDD within
an industrial environment like the Philips product divisions.
• Incremental deployment of MDD.

It is important to be able to introduce MDD in small evolutionary steps (as opposed
to a sudden 100% MDD conversion). This is important especially in an environment
which possesses a long history of products and usually has many obligations to third
parties w.r.t. that.

• Very simple meta-modeling facility.
It is necessary to realize that the ultimate user of MDD will eventually be a
(technically savvy) domain expert rather than a “purist” programmer4. Therefore,
the learning threshold for embracing the MDD approach must be as low as possible
and the actual models must be close to the domain where they are to be applied.

• The ability to combine/reuse/extend models.
Multitude of related products require their models to be also related. The agility of
MDD brings even more benefits if one is able to reuse and combine existing
models.

• Support the rapid development of generators (using MDD).
Tools like an efficient C# code generator or editor generators must be present in the
framework to increase its usefulness, its ease of use, and ultimately to make it
embraced by the community of modelers and developers.

• Software development paradigm shift.
The introduction of any paradigm shift takes time. We have to change the way in
which developers perceive software, the way they think about development, and
prove that the changes will bring benefits in the long run. Developers are often
reluctant to change the way they work. MDD focuses on developing tools that
generate (parts of) the end-product, instead of developing the product manually.

4 Excellent software developers will still be needed to develop MDD tools like (domain-specific) generators etc.

We believe that MDD has the potential to improve the way we create software and above
all to make this process more efficient. However, as any new technology, also MDD must
overcome the inertia of existing approaches, and even if all the technical ingredients are in
place, it also requires the management support and their devotion to make the change
happen.

7. Related work
In this short comparison we chose to focus on two MDD initiatives advocated by OMG and
Microsoft, respectively. We note that there are a number of other model-driven frameworks
and approaches that VAMPIRE can relate to. However, to our knowledge no existing
approach offers an aspect-oriented way of modeling combined with (pure) interface-based
C# code generation, features which are very important in our application domain.
MODEL DRIVEN ARCHITECTURE (OMG)
The OMG promotes model-driven architecture [2, 3]. In simple terms, their approach states
that applications are developed by creating platform-independent models (PIMs) in UML.
PIMs conform to domain-specific meta-models defined by UML profiles or by means of
the meta-object facility (MOF). Model transformations map PIMs to platform-specific
models (PSMs) and from there to code, etc. Tools exchange data by means of the XML
Metadata Interchange (XMI) language. The OMG itself does not develop tools and the tool
support is (to be) delivered by third parties.
MDA in some sense represents an MDD vision that other approaches can relate / comply
to. VAMPIRE too adopts some of the MDA ideas, however, we consider our approach
being more of a bottom-up nature (starting with a concrete domain) than top-down nature
of MDA (having the universal language that needs some tailoring).
SOFTWARE FACTORIES / DSL (Microsoft)
Microsoft’s software factories initiative [4] and the associated DSL tools [5] are very close
to our approach therefore we compare it in more detail. The Microsoft approach uses a
meta-language to define domain-specific languages (DSLs), which is not very different
from our Meta Object Model. One important difference though, is that the VAMPIRE
framework facilitates various ways of combining and reusing models; this feature is, to our
knowledge, missing in DSL. The type of reflection provided by VAMPIRE and DSL also
differs. While VAMPIRE allows for reflection at model level, DSL provide reflection at C#
level only.
Another difference is that DSL use a tem7plate-oriented approach to artifact generation
while VAMPIRE uses a (full-fledged) code-based approach. The former fits well in simpler
types of artifacts such as documentation reports; however, writing templates that generate
C# code is much more tedious, especially since (at the time of writing) supporting tools like
Intellisense or the syntax highlighting are missing.
On top of that, DSL tools are still undergoing radical changes (to the better we believe) and
their meta-model and APIs are not yet stable enough for use in production quality code. We
continue to monitor the developments of the DSL tools and do not exclude the possibility to
port our VAMPIRE framework onto this platform some time in the future.

8. Conclusions
In this paper we have described the essence of the VAMPIRE framework developed at
Philips Research. Our approach targets both new product architectures as well as existing
software intensive product lines, where the handwritten code can be incrementally replaced
by generated code from models.
The framework is based on a pattern involving models, editors, and generators and the
paper elaborated on these MDD “ingredients” in more detail. We have also summarized the
lessons learned from applying our framework in Philips product divisions. Below we list
some of the distinguishing features of VAMPIRE.
• By incorporating Aspect-Oriented Modeling and supporting multiple inheritance,

VAMPIRE provides an easy way to build new models on top of existing ones,
facilitating model extensibility and reuse.

• The generators are implemented as loosely-coupled tools associated with different
model instances, and can also be combined into file- or memory-based generator
pipelines, where output of one generator serves as input for another one.

• Flexible XML serialization format allows for modeling of existing standardized XML
languages such as XML Schema. Creating output in such a standard XML language is as
easy as building a model-to-model generator.

• Using a minimalist approach, we tailored VAMPIRE to the needs of our industrial
applications. However, the framework proved to be powerful and extensible enough to
be applied in different (unrelated) contexts.

In our experience, MDD has the potential to make the process of software creation much
more efficient. In order to achieve that, the MDD way of thinking needs to be adopted by
the developers and domain experts, some of whom will actually become application
modelers.

Acknowledgements
We would like to thank our colleagues both from Philips Research and Philips product
divisions for providing their valuable feedback on this work.

References
[1] Czarnecki, K., Eisenecker, U. Generative Programming: Methods, Techniques and Applications.

Addison-Wesley, 1999.
[2] OMG Model Driven Architecture (MDA) URL: http://www.omg.org
[3] Mellor, S., Scott, K., Uhl, A. Weise, D. MDA Distilled, Principles of Model Driven Architecture.

Addison-Wesley Professional, 2004.
[4] Greenfield, J., Short, K., Cook, S., Kent, S. Software Factories. Wiley, 2004.
[5] Microsoft Domain-Specific Languages Tools. URL: http://msdn.microsoft.com/vstudio/DSLTools/, June

2006.
[6] Steimann, F., Mayer, P. Patterns of Interface-Based Programming, Journal of Object Technology (JOT)

Vol. 4, No. 5, July-August 2005.
[7] Clements, P., C. A survey of architecture description languages, Proceedings of the 8th International

Workshop on Software Specification and Design, Page(s):16 - 25, March 1996.

	1. Introduction
	2. VAMPIRE modeling framework
	3. Meta Object Model (MOM)
	4. Editors
	5. Generators
	6. Applying VAMPIRE
	7. Related work
	8. Conclusions
	Acknowledgements
	References

