
Using Domain-Specific Modeling to Develop Software Defined Radio 

Components and Applications 

 

Vikram Bhanot 

Dominick Paniscotti 

Angel Roman 

Bruce Trask 

Contact Author bt@prismtech.com  

PrismTech Corporation 

www.prismtech.com 

 

General Background 

 

For the past twenty years, there has been a continuous evolution in electronic communica-

tions equipment.  The evolution can be described as one of moving the radio functionality 

from being located in the hardware platform running with proprietary processors and cir-

cuitry to being located in firmware running on programmable logic and then to being lo-

cated in software running on general purpose processors. The driving force behind this 

evolution has been the need to leverage the inherent greater malleability and configurabil-

ity of software versus that of hardware.  As radio functionality continues to move into 

software, or looking at it another way, as that software moves “closer to the antenna”, it 

becomes more commercially viable to maintain, configure, test and reuse communica-

tions algorithms and functionality as well as the hardware on which it runs.  This evolu-

tion is very similar to that of the computer itself with today's PCs running applications, 

the bulk of which exist as software running on general purpose hardware. 

 

The communications industry has coined a term for this type of communications equip-

ment: the Software Defined Radio[14].   

 

As the radio and communications domain moves into a software centric solution, it is 

only natural that it leverage advances in the software domain as part of its implementa-

tion.  These advances include object orientation, frameworks, component based design, 

middleware, in addition to imperative and declarative languages. More recently, the rise 

in abstraction level of the radio platform in the form of operating systems and middleware 

in combination with advances in modeling tools has opened the door to allow the evolu-

tion of communications software to enter the realm of model-driven development.  This is 

fortuitous as the complexity of these communications systems has increased so dramati-

cally that the viability of these new systems now hinges on the increased productivity, 

correctness and robustness that model-driven development affords.   

 

This paper details the application of model-driven development, and more specifically, 

domain-specific modeling to the software defined radio domain.  This domain has very 

unique characteristics as its systems typically are a confluence of a number of typically 

challenging aspects of software development.  To name a few, these systems are usually 

described by modifiers such as, embedded, real-time, distributed, object-oriented, port-

able, heterogeneous, multithreaded, high performance, dynamic, resource-constrained, 

safety-critical, secure, networked, component based and fault-tolerant.  Each one of these 

modifiers by themselves carries with it a set of unique challenges but building systems 

characterized by all of these modifiers all at the same time makes for quite an adventure 

in software development.  In addition to all of these, it is quite common in these embed-



ded systems for components to have multiple implementations that must run on disparate 

processing elements.  With all of this taken into account, it stands to reason that these sys-

tems could and should benefit greatly from advances in software technology such as do-

main-specific modeling and model-driven development. 

 

Detailed background 

 

In 1999, a consortium of the leading U.S. military radio developer companies created the 

Software Communications Architecture (SCA)[1].  This is one of many possible software 

defined radio models that can be input into the Domain Specific Modeling process and 

techniques discussed in this paper.  We chose this one as concrete example of one such 

architecture since it is an open standard freely available to all. 

 

This SCA defines five primary aspects of next-generation communications equipment 

software 

• A standard component object model 

• A standard deployment and configuration framework 

• A standard declarative programming format for describing software components 

and how they are connected together 

• A standard portability layer upon which component run 

• A standard messaging format for intercomponent communication 

 

As a result, the SCA significantly furthers standardization of the software radio domain 

and thus brings many benefits to the domain such as interoperability, portability, reuse, 

and a level of architecture consistency.  However, the SCA specification does not solve 

all of the issues associated with implementing these complex systems. Some of the prob-

lems that remain include: 

• Labor intensive implementations of the SCA object model in 3GL languages 

• Lack of architectural consistency at various levels of implementations 

• The learning curve of the specification and lack of effective training materials 

• The technology gaps between software developers and radio domain experts 

• Ensuring correctness of implemented systems 

• The dynamic nature of the SCA, which opens the door to a host of runtime errors 

that would best be “left shifted” out of runtime into either modelingl or compile 

time. 

• A complex set of XML descriptor files which are difficult to get correct by hand 

as there are many rules that govern them above and beyond being well formed 

• No formal meta-model or UML profile exists for the SCA 

• While the SCA definitely raises the level of abstraction with regard to radio com-

ponent development, it does not inherently provide an automatic and configurable 

means to get back to the lower, executable levels of abstraction or to its declara-

tive languages. 

 

Enter Domain-Specific Modeling  

 

In order to tackle and tame the complexity of these systems and of the new specification it 

was necessary to provide: 

 



• effective support under the SCA that allows users to program directly in the terms 

of the  language of the domain and specification, ideally in graphical and declara-

tive form to the greatest extent possible 

• means to ensure that the programming is correct 

• means to automatically generate executable 3GL programming language imple-

mentations from these models 

• means to automatically generate additional software artifacts that are synchro-

nized with the model 

 

Those familiar with Domain-Specific Modeling will recognize the above bullets as part of 

the sacred triad of Domain-Specific Modeling: Language, Editor, and Generator.  

Couched in terms of Domain Specificity and at a finer granularity, these three elements 

map to: 

• a Domain-Specific Language (DSL) 

• a Domain-Specific Graphical Language and Domain Specific Views (DSGL, 

DSViews) 

• a Domain-Specific Constraint Language (DSCL) 

• a family of Domain-Specific Code Generators (DSG).   

 

Table 4 lists the activities used in tackling the complexity in domain and then leveraging 

Domain Specific Modeling techniques to it 

 

General Approach Radio Domain 

Isolate the abstractions and how they work together The SCA 

Create a formalized grammar for these – DSL 
Create a formalize SCA meta-model 

 

Create a graphical representation of the grammar – 

GDSL 

Create a SCA specific graphical tool 

 

Provide domain-specific constraints – GDSCL,DSCL 
Program into the tool the constraints 

 

Attach generators for necessary transformations 
C++, C, Ada and VHDL generators 

 

Table 1 

 

One type of tool that can be used to develop the above software artifacts are what some 

refer to as Language Workbenches[2]; i.e. tools that allow a developer to define a do-

main-specific language and its graphical counter part, the editor, as well as a domain-

specific generators that can iterate over the domain-specific model to produce executable 

artifacts.  Some language workbenches available today include the Eclipse Modeling 

Framework and the Eclipse Graphical Editor Framework (EMF/GEF)[3], the Generic 

Modeling Environment (GME)[4], Microsoft’s Visual Studio Team System Domain Spe-

cific Language Tools (VSTS DSL)[5], and MetaCase MetaEdit+ [8]. 

 

To allow users to run on multiple host platforms most easily and to integrate with addi-

tion eclipse tools and frameworks, we chose to use the EMF/GEF solution. 

 

Defining the Domain-Specific Language (DSL) 



 

The goal here is to provide a domain-specific higher level of abstraction with which both 

software and lay developers can program.  Key to this is not only raising the level of ab-

straction but also providing domain-specific abstractions.  Developers of SCA applica-

tions typically program in 3GL languages such as C, C++ and Ada.  One of the goals of 

domain specific modeling is simplified modeling and programming in the problem 

space vs. complex modeling and programming  in the solution space.   Figure 1 below 

juxtaposes two possible ways to represent the same concept in the SCA Software Defined 

Radio Domain.  The left side diagram shows a typical UML diagram for a trivial SCA 

Component with two ports and two properties.  The C++ source code is even more com-

plicated. The right side diagram shows the same entity in terms of a higher abstract con-

cept, a component with two ports and two properties, that is much more readable and less 

complex 

 

 

     
Figure 1 

 

The raising of the level of abstraction is made possible through the creation of a formal-

ized metamodel expressed in terms of the particular language workbench.  In this case 

this involves creating a metamodel that the Eclipse Modeling Framework can understand.  

Fig 2 shows a greatly simplified metamodel for the SCA.  Naturally, the full meta-model 

for the entire SCA is much more involved but for the purposes of demonstration and sav-

ing space we have presented a simplified version of it. 

  

 
Figure 2 

DT

myFunc1()

myFunc2()

myFunc3()

(f rom C++ Reverse Engineered).. .)

<<Interface>>

Port

connectPort()

disconnectPort()

(from CF)

<<Interface>>

DTPort
(from C++ Reverse Engineered)

<<Interface>>

POA_DTPort

POA_DTPort()

POA_DTPort()

<<virtual>> ~POA_DTPort()

_this()

<<static>> myFunc1_skel()

<<static>> myFunc2_skel()

<<static>> myFunc3_skel()

<<static>> connectPort_skel()

<<static>> disconn ectPort_skel()

(from C++ Reverse Engineered)

POA_DT

POA_DT()

POA_DT()

<<virtual>> ~POA_DT()

<<virtual>> _is_a()

_this()

<<abstract>> myFunc1()

<<static>> myFunc1_skel()

<<abstract>> myFunc2()

<<static>> myFunc2_skel()

<<abstract>> myFunc3()

<<static>> myFunc3_skel()

(from C++ Reverse Engineered)

PropertySet

configure()

query()

(f rom CF)

<<In terface>>
PortSuppl ier

getPort()

(f rom CF)

<<Interface>>

Li feCycle

initial ize()

releaseObject()

(f rom CF)

<<Interface>>

TestableObject

runTest()

(f rom CF)

<<Interface>>

DTUsesPort

m_ProvidesRefs : std::map<std::string, DT_var>

m_Name : std::string

m_HowManyConnectionsAllowed : unsigned long

m_HowManyConnectionsMade : unsigned long

DTUsesPort()

connectPort()

disconnectPort()

name()

numOfConnectionsMade()

myFunc1()

myFunc2()

myFunc3()

(from C++ Reverse Engineered)

Encoder

DTProvidesPort

m_pResource : ResourceNameIt*

DTProvidesPort()

myFunc1()

myFunc2()

myFunc3()

(f rom C++ Reverse Engineered)

FrequencyProp...SerialName

Resource

identifi er : stri ng

start()

stop()

(from.. .

<<In terface>>

Properties
(from.. .

<<CORBATypedef>>



 

As stated before, the SCA provides a general architecture and UML diagrams as well as 

text-based behavioral descriptions and requirements and annotated XML DTD docu-

ments. While these are very detailed they are not formalized sufficiently to serve as a use-

ful meta-model by themselves.  The meta-model created and desribed here involved 

building upon the structure of the SCA and culling from the rest of the specification re-

quirements, constraints and behaviors that together make up a complete and comprehen-

sive meta-model characterizing the entire specification.  As is usual, the group of devel-

opers building the meta-model are experienced SCA and software defined radio develop-

ers as well as experienced modelers.  

 

It is from this meta-model that one provides the end user with the ability to program more 

directly in the domain.   Additionally, end users are able to program more in the declara-

tive than in the imperative; i.e. saying what they want to have, not specifying how it is to 

be done.  Listing 1 shows a simple example of the persistent form of the Domain Specific 

Language in accordance with the metamodel. 

 

 
<?xml version="1.0" encoding="ASCII"?> 
<com.prismtech.spectra.sdr.sca2_2.models:Assembly  

 xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"  
 xmlns:com.prismtech.spectra.sdr.sca2_2.models="http://com.prismtech.spectra.sdr.sca2_2.mod

els"> 
  <components Name="BitFlipper" organization="PrismTech" id="DCE:8f647411-91a1-4295-bbc6-

6d3eff4982f7"> 
     <ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:UsesPort" instance-

Name="TX" name="Data"/> 

<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort"                 
instanceName="RX" name="Data"/> 

  </components> 
</com.prismtech.spectra.sdr.sca2_2.models:Assembly> 

Listing 1 

 

While providing a higher level of abstraction this text  based language can still be labor 

intensive, error prone and hard to read.  This leads directly into the next step of Domain-

Specific Modeling. 

 

Defining the Domain-Specific Graphical Language (DSGL) and Views (DSVs) 

 

What is needed next is a way to express the Domain Specific Language graphically or 

visually. 

This involves working within your Language Workbench of choice to adorn the Domain-

Specific Language with graphical and visual artifacts that allow the user to program 

quickly and correctly and in a way that communicates correctly the essence of the archi-

tecture and design. 

 



 
Figure 3 

 

Figure 3 shows the PrismTech Spectra SDR PowerTool modeling tool. This modeling 

tool allows end users to quickly and acurrately build software defined radio components 

and connect them together.  The DSGL is built and based on the underlying meta-model 

described earlier and can be persisted in textual form for processing by other programs.  It 

is through this DSGL that end users program with very intuitive icons, images, tools, arti-

facts and property sheets.  Just as UML provides different views to describe various as-

pects of object-oriented systems so to does this tool provide Domain Specific Views that 

allow users to design, express and communicate domain specific aspects of their designs.  

Additionally, the Domain-Specific Modeling tool provides the end user with ability to 

program in the declarative versus the imperative. 

 

The Domain-Specific Constraint Language (DSCL) 

 

Almost as important as what you see in the graphical tool illustrated in Figure 3 is what 

you don’t see.   The very fact that the DSGL is based on the meta-model means that it re-

stricts programming to within the bounds of the meta-model.  In other words, the tool is 

metamodel-centric as opposed to GUI-centric.  In this case, the GUI itself forces the user 

to abide by the structural and creational aspects of the meta-model.  This goes extremely 

far in allowing the developer to program quickly and correctly in terms of their domain.  

Additional constraints can be added via various programming facilities of the language 

workbench being used.  Concrete SCA-unique examples of these types of constraints in-

clude not being able to connect ports that support different interfaces or not exceeding 

connection thresholds of output ports.  These are errors that are typically allowed to creep 

into the runtime system which lead to expensive integration and support problems.  By 

“left shifting” these potential defects into the modeling/compilation phase, we can simul-

taneously harness the dynamic nature of the SCA runtime component deployment, con-

figuration and connection paradigm and do so in a correct and robust fashion. The DSCL 

 
  <components Name="BitFlipper" organization="PrismTech" 

id="DCE:8f647411-91a1-4295-bbc6-6d3eff4982f7"> 
<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:UsesPort"  
    instanceName="TX" name="Data"/> 
<ports xsi:type="com.prismtech.spectra.sdr.sca2_2.models:ProvidesPort" 
instanceName="RX" name="Data"/> 

</components> 
</com.prismtech.spectra.sdr.sca2_2.models:Assembly> 



enforces structural compositional, directional, etc. constraints, pre-conditions, post-

conditions and invariants 

 

Domain-Specific Generators (DSG) 

 

Ultimately, the tool must be able to transform the domain specific language into an ex-

ecutable or imperative format, or to a form that can be transform easily by other compil-

ers into an executable form.  This is achieved through the connection of Domain Specific 

Generators to the Domain Specific Editors.   Embedded systems are frequently targeted 

at disparate processing elements (e.g. general-purpose processors, digital signal proces-

sors, field programmable gate arrays (FPGA)) and as such the tool needs to be able plug 

in multiple domain specific code generators that can iterate over the model and produce 

multiple types of executable code. 

Figure 4 

 

Figure 4 shows examples of the software artifacts coming from the domain-specific gen-

erators.   Having the key information captured in the model, changes in the model are in-

stantly reflected in the generated code.   

 

The SCA architecture is most effectively implemented using a number of industry stan-

dard Design Patterns. Most notably are the Extension Object Pattern[6], Extension Inter-

face Pattern[7] and the Component Configurator Pattern[7].  These patterns are typically 

repeated over and over again in an SCA implementation with minor paramaterization to 

account for the context in which they are used.  The pre-validated implementations of 

these patterns can be generated directly from the domain specific generators.  Many of 

these patterns capture infrastructure scaffolding, behavior required by the SCA specifica-

tion as well as middleware concerns that can be difficult for radio developers to under-

stand and get correct.  Additional artifacts are generated from the model including, the 

XML descriptors, Unit Test Cases, documentation etc.   The constraints of the tool strad-

dle the editor and the generators.  By using the generated code, the users can rely on 

prevalidated logic and patterns written by experts in the domain and thus they are “con-

strained”, if you will, to being correct in their implementation.    

 

Benefits of Domain-Specific Modeling as applied to Software Defined Radios 

C++ VHDL Test Cases 

Code Coverage 
Translate from declarative to imperative 



 

A number of notable benefits become extremely apparent as a result of providing a do-

main modeling tool and all its constituent parts to the software defined radio domain. 

• Increased productivity – users can program at a much higher level of abstraction 

and use generators to automatically get to lower levels that can thereafter be trans-

formed and executed.  The increased level of abstraction is coupled with the fact 

that the DSL is much more declarative in nature and so the users become less con-

cerned with how actions are done and more concerned with that they are done.  

Users of the tool report a minimum of 500% increases in productivity and com-

pare the magnitude of gains to be analogous to using a compiler to generate as-

sembly code from higher order languages. 

• Increased correctness – the generators provides prevalidated logic and other arti-

facts 

• Synchronization of software artifacts.  Since the artifacts are generated directly 

from the model, the maintenance burden of maintaining them all is greatly re-

duced 

• Involvement of lay programmers and increased communication amongst company 

teams.  Since the model is expressed in problem domain terms and not solution 

domain terms, the communication of the model encompasses more disciplines be-

yond software engineering to include hardware and systems engineering and man-

agement teams. 

• Lower cost of entry.  As much of the infrastructure detail is captured in the meta-

model, editor and generators, the learning curve of developing software defined 

radios for a particular domain is greatly reduced.  

• Architectural consistency at the implementation level.  While the SCA mandates 

architectural form at the interface level it does not at the implementation level.  

This opens the door to many different architectural implementations.  While this is 

necessary in some uses cases, in many it is not and results in unnecessary com-

plexity and maintenance burdens.  The degree to which the applications have ar-

chitectural consistency in their implementations determines the ease of mainte-

nance by a central maintenance body. 

• “Left shifting” of defects from runtime to modeling time.  This provides orders of 

magnitude of cost savings across the development cycle 

 

Dealing with Change 

 

Model Driven Development as described above goes along way to handling many of the 

commonalities and variabilities in the software defined radio domain. The subsequent 

“closing” of the design to effects of movement in particular degrees of freedom and 

change must be strategic.  No design/approach can close a software product to all degrees 

of freedom or variablities[9].  We have found particular techniques to be effective in han-

dling changes in meta-models and domain-specific generators.  Some of these include 

leveraging many of the techniques of the Agile Software Development world that enable 

one to “embrace change”[10] more easily than with older software methodolgies.  

 

At the heart of these techniques are Test Driven Development[11], Refactoring[12], 

Refactoring to Patterns[13].  In addition to keeping the design of the tool as simple as 

possible, tests form suites that are useful in quickly isolating the exact areas where meta-

model changes affect designs and thus provide targeted areas for refactoring.  Refactoring 

towards new patterns that become applicable as new requirements enter the picture pro-



vides developers with very codified means of moving existing designs to new designs that 

more effectively handle new commonalities and variablities introduced by various 

changes in requirements. 

 

In addition to agile software techniques, generative techniques can also be leveraged 

within model driven development tools themselves. 

 

The most notable element of the model driven development that is affected by changes in 

the meta-model is the domain-specific editor that allows one to manipulate the domain-

specific language via domain-specific graphical articfacts.  Providing an additional gen-

erator framework in between the meta-model and editor that automatically generates a 

great deal of the editor is very effective in mitigating changes in the meta-model on 

model driven development tools. 

 

Meta model changes in the meta-model cause unwanted effects to the DSL and DSGL 

code. When code generation comes to mind one usually thinks about the end product: the 

C++, Java, VHDL, documentation, and/or xml files that are generated. One reason why 

DSLs are favored is due to the decoupling of the model from the the generated files. If the 

user wants to create a change in his model he/she effortlessly modifies the model and lets 

the generators/translators regenerate the output.  

 

Ideally, developers should take advantage of generators and translators when creating the 

DSGL as well. The goal would be to extract and generate as much of the DSGL as possi-

ble given the meta model. Several tools exists which allow the user to design the meta 

model and generate a DSGL editor. These tools are effective, however, they are usually 

lacking when it comes to domain specific visualizations. Some of them allow the user to 

specify bitmaps and connections anchors for any given model element. However, since 

these tools are generic it sometimes take great efforts to modify an editor that is generated 

(visual aspects) rather than designing one correctly from scratch making the correct visual 

abstractions for the look and feel desired. 

 

When using a generic programming language one usually creates constructs that map di-

rectly to the problem domain. DSLs eleminate the need to specify unnecessary generic 

syntax/constructs in order to create a domain specific solution. Applying the same para-

digm to the creation of a DSL editor can work as well. Instead of using a generic domain 

specific graphical editor generator (similar to using c++),  tool developers can create a 

Domain Specific Domain Specific Language Editor Generator (DSDSL for a specific 

DSL). Once the look and feel is determined one can factor out the visual programming 

aspects and create generators that would interpret relationships between objects in the 

meta model and map them to a specific visual representations.  Next time a change occurs 

in the meta-model the user can effortlessly modify the metamodel and let the genera-

tors/translators regenerate the editor. 

 

Summary and Conclusion 

 

The history of software has seen the continued process of raising the level of program-

ming abstraction while simultaneously providing an automatic and configurable means to 

traverse to lower levels of more executable forms of programs.   Additionally, this evolu-

tion has included the continued introduction of ways and means to express domain con-

cepts effectively so that the end user can program more directly in the problem space and 



not  in the solution space.    Using Model Driven Development and Domain-Specific 

Modeling via existing Language Workbenches is another effective step in this direction.  

Application of these techniques to the Software Radio Domain has yielded orders of mag-

nitude of increase in productivity, correctness and robustness of these systems and can 

serve as the foundation for a graceful evolution of its products. 

 

References 

 
 

[1] http://jtrs.army.mil/sections/technicalinformation/fset_technical_sca.html 
 

[2] http://www.martinfowler.com/articles/languageWorkbench.html  

 
[3] http://www.eclipse.org  

 

[4] http://www.isis.vanderbilt.edu/Projects/gme/ 
 

[5] http://msmvps.com/vstsblog/archive/2005/07/02/56408.aspx 

 
[6] http://www.smallmemory.com/almanac/Gamma98.html 

 

[7] http://www.cs.wustl.edu/~schmidt/POSA/ 
 

[8] http://www.metacase.com/  
 

[9] http://www.objectmentor.com/resources/articles/ocp.pdf  

 
[10] http://www.aw-bc.com/catalog/academic/product/0,1144,0321278658,00.html  

 

[11] http://www.aw-bc.com/catalog/academic/product/0,1144,0321146530,00.html  
 

[12] http://www.aw-bc.com/catalog/academic/product/0,1144,0201485672,00.html  

 
[13] http://www.aw-bc.com/catalog/academic/product/0,1144,0321213351,00.html 

 

[14] http://web.it.kth.se/~jmitola/   
  


