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Abstract
Fuzzy or changing requirements may seriously impact the viability of complex IT systems 

when there is no way to obtain better requirements for a start, due to a lack of time in a 
competitive sector or of an immature perception about the domain. A successful development 
process will have to rapidly integrate any improvement or reworking of requirements.

This  paper  reports  lessons  learned  from  the  practice  of  Domain-Specific  Modeling  in 
unstable  or  evolving  domains.  It  shows  that  its  efficiency  in  bringing  agility  in  the 
development  process  depends  to  a  large  extent  on  the  place  it  occupies  by overlapping 
Domain and Application Engineering and on the techniques it  uses to reduce the harmful 
effects of changes.

INTRODUCTION
Most  papers  on  Domain-Specific  Modeling  (DSM)  focus  on  the  modeling  and 

metamodeling aspects. Here we look more at the equally vital aspect of code generation and 
at  the  possibilities  of  parsing.  We  tackle  parsing  as  a  manner  to  use  Domain-Specific 
Languages (DSL) and to mine existing legacy code, where the mining serves to promote code 
into models or integrate it better.

Hostile conditions such as immaturity and instability of a domain strongly complicate the 
proper unfolding of Domain Analysis, which propagates its vagueness in Domain Design and 
Implementation. At this level, any rectification may radically change the source code to be 
produced. The effect on source code may eventually be amplified by some indecisions and 
about-turns  on the technical  requirements or  in  the integration of  third  party components 
prone to modify their requirements too.

An evolving domain also causes similar but attenuated troubles as it provokes impacts on 
Domain and Application Engineering. It demands the introduction of new constructs and the 
refactoring  of  reusable  components,  Domain-Specific  Frameworks  and  software.  These 
improvements  suffer  from the  major  weakness  of  being too close to  get  the  big picture, 
certainly leading in the future to express the concepts of the domain differently, requiring 
once more a refactoring or even a total rewriting of earlier changes.

To  overcome  such  obstacles  for  smooth  software  or  product  line  development,  agile 
methodologies stand out as a good source of inspiration, but the Domain-Specific Modeling 
proves to be particularly well-adapted to reacting to changing requirements as it takes up a 
concrete point of junction between modeling and coding.

The Equity Derivatives area of BNPParibas, a world-wide Financial and Banking company, 
has  acquired  experience  in  bringing  agility  to  modeling  and  coding,  to  protect  its 
developments  from the  harmful  effects  of  changes  and  to  react  efficiently.  For  instance, 
Domain-Specific  Languages  and  source  code  generation  are  intensively  used  to  build  a 



software product line [5] intended for performing trading on electronic markets and more. 
Parsing, code generation, source-to-source translation and program transformation are widely 
applied through CodeWorker [4], a parsing tool and source code generator.

AGILITY IN MODELING TASKS
DSM has the beneficial effect of raising the level of abstraction using concepts familiar to 

the  application  domain.  It  requires  a  medium  where  the  domain  experts  and  the  IT 
participants share a same formal language, graphical or textual, where they are able to express 
business constructs and knowledge. They write models capturing the business knowledge and 
the IT team extends  the meta-models each time a new construct  occurs so that  they can 
represent knowledge related to this construct in the models.

In an immature or unstable domain, it is important for the IT team to react instantly to keep 
the  momentum  of  exploring  the  domain  and  reformulating  preceding  discoveries. 
Stakeholders  will  sharpen their  abstraction  of  the domain mostly proceeding by trial  and 
error,  so  the  more  attempts  they  accumulate,  the  faster  they  converge.  Highly-evolving 
domains  have  the  same  demands  of  reactivity,  to  prevent  the  IT  team  from  being 
overwhelmed and the business losing ground against competitors.

Building DSLs tolerant to rearranging
In CodeWorker, an extended Backus-Naur Form (BNF) script defines the grammar of DSLs 

in a declarative syntax close to BNF. It works like a recursive-descend parser to interpret DSL 
files for building a customized syntax tree. It provides several built-in non-terminals among 
those commonly used, such as the reading of C-like identifiers or floating-point numbers, but 
also offers  some regular expression facilities.  It may ignore insignificant  characters using 
default rules available for consuming whitespaces and some types of comment (C++, XML 
and others), or accepting the definition of a production rule for the most exotic formats.

The paradigms of object-oriented programming do not really contribute to the reusability 
and reworking of declarative production rules, except in the building and maintenance of the 
parse tree. On the other hand, some other paradigms proposed in CodeWorker have turned 
out  to  be  particularly  useful.  The  overloading  of  production  rules,  for  instance,  greatly 
participates  the  reuse  and  specialization  of  existing  grammars,  while  the  principle  of 
parameterized production rules appears well-adapted for reacting to changes in the syntax of 
the DSL (extension or correction).

Parameterized Rules
The  notion  of  parameterized  production  rule  partly  draws  its  inspiration  from  generic 

programming, and consists of switching a BNF non-terminal to the proper instantiation of a 
production rule at runtime, the selection depending on a parameter linked to the non-terminal. 
The following example shows a sample of the grammar for a little scripting language, where 
parameterized production rules describe the parsing of statements: 
// the rule for matching an instruction
instruction ::=
  // read an ident assigned to sKeyword
  #readIdentifier:sKeyword
  // switching to the rule taking
  // charge the parsing of the
  // instruction stored in 'sKeyword'
  statement<sKeyword>
  ;

// several instantiations of the



// production rule, one for each
// statement of the language
statement<"while"> ::= ...;
statement<"for"> ::= ...;
There are two main advantages of proceeding with parameterized production rules. Firstly, 

if an unknown keyword appears at the beginning of an instruction, the BNF engine will not be 
able to  match an instantiation of the 'statement'  rule and so will  trigger an accurate error 
message. Secondly, extending the DSL amounts to no more than adding a new production 
rule instantiation. In the heat of the action, it happens frequently that new constructs of the 
DSL are expressed in the specifications before the grammar has changed. Consequently, if the 
developers have omitted to integrate these constructs in the grammar, the BNF engine will 
come up against a new keyword, for instance, and will throw an error message. The developer 
will have to react simply by adding the production rule instantiation, which will handle the 
new construct.

Reusability
To come back to reusability facilities, overloading is a way to specialize the behaviour of a 

production rule. The transformation of existing production rules is another way which has 
noticeable advantages when the original rule definition is liable to vary, but does not suit in 
its  form without  some adjustments.  In practice,  for  instance,  it  may consist  of  reusing a 
production rule intended to scan a part of the input for populating a parse tree. Here is an 
example of a rule scanning a comparison: 
comparison_expr ::=
  arithmetic_expr
  [
    ['<' | '>' | "==" | "!="]:op
    arithmetic_expr
  ]?
  ;
The approach consists of detecting some invariant pieces of BNF code and applying some 

transformations around these reference marks. An extended-BNF script includes the original 
grammar and embodies the directive #transformRule.

This directive filters interesting rules by their name, then transforms the signature and the 
body of each selected production rule. A translation script performs the transformations. The 
following example shows the result of transforming 'comparison_expr', so that it populates a 
parse tree: 
comparison_expr(expr : node) ::=
  arithmetic_expr(expr.operands[0])
  [
    ['<' | '>' | "==" | "!="]:op
    => insert expr.op = op;
    arithmetic_expr(expr.operands[1])
  ]?
  ;
Once all transformation rules are specified, the scanner becomes the only BNF script to 

maintain (a scanner applies the grammar but does not build a parse tree). The parser follows 
automatically behind.  Note that  CodeWorker does not  especially reclaim the writing of a 
scanner, unless a program-transformation script reuses it.



Mining of existing software
It happens that a DSM approach has to compromise with existing software. The developers 

intervening on it may be resistant to the DSM principles. One reason may be that the software 
has strong reliability requirements and the existing code counts several  hundred thousand 
lines, dissuading its developers and the management from initiating a refactoring or change of 
development process towards Model-Driven Software Development [3], even progressively. 
Possibly,  being  particularly  reactive  in  the  integration  of  evolutions,  they  will  not  be 
convinced of adopting a new way of coding.

A piece of code is  not  well  suited as a medium for promoting interchange of ideas or 
knowledge. It does not focus on the business knowledge, but rather scatters it among gluing 
code aware of particularities of the language, the technical framework and the implementation 
context (database layer, GUI, unmarshalling, computation...). Sometimes however the source 
code appears as the only available representation of the Business Model and the first impacted 
each time an evolution or a change occurs in the domain.

In equity  derivatives  at  BNPParibas  for  instance,  the  pricer  plays  a  central  role  in  IT 
systems, as it must compute the price of any financial product and evaluate the exposure to 
market variations, the results interesting most of the software behind and explaining why it is 
the first to integrate new products or readjustments on old ones. The demands on number 
crunching strongly imprint  the design of  the application,  to  such an extend that  the data 
structures do not reflect a business modeling of all recognized financial products but rather 
the willingness to optimize the algorithms for speed.

Parsing Source Code
Hopefully,  the  attributes  of  financial  products  are  dispersed  into  the  unmarshalling 

functions implementing the in-house communication layer embedded into the pricer. Below is 
an example of elementary financial product called vanilla (the programming language of the 
pricer is Ada [1]): 
function Unmarshall_Vanilla(
  D : in Data_Source;
  Name : in String -- product name
  E : in Equity) return Vanilla_Product
declare
  K : Get_Double(D, Name&".strike");
  T : Get_Date(D, Name&".maturity");
  CP : Get_Call_Put_Or_Default(D,
         Name&".call_put", "call");
begin
  if K <= 0.0 then
    Error("positive strike expected");
  end if;
  return Create_Vanilla(Name,E,K,T,CP);
end;
The recognition of some coding patterns indirectly lead to the extraction of an underlying 

class diagram. The same mining approach could be applied on other types of unmarshalling 
functions,  to  extract  market  data  representations  or  available  pricing  objects.  The coding 
patterns  are  written  as  production  rules  in  CodeWorker  which  populates  a  parse  tree  in 
accordance with the output of the DSL parser. For instance: 
products["Vanilla"]
  |- name = "Vanilla"
  |- attributes["strike"]
       |- type = "double"



  |- attributes["maturity"]
       |- type = "date"
  |- attributes["call_put"]
       |- type = "Call_Put_Enum"
       |- default = "call"

Export to the DSL
The parse tree comes from a piece of source code, but it may have another origin, like the 

output of a Domain-Specific Modeling tool. Part of the model may have been described in a 
graphical DSL and may be required to couple with another part, perhaps written in a textual 
DSL.

From a  parse  tree,  CodeWorker  can  generate  the  translation  to  a  DSL representation. 
Depending on the nature of this DSL, it will enhance the design model, but perhaps also a 
coordination or an implementation model. Below is a possible output generated for the vanilla 
product: 
product Vanilla {
  double strike;
  date maturity;
  Call_Put_Enum call_put = call;
}
Here is the template-based script querying the parse tree and generating this piece of DSL: 
product <%this.name%> {
<%
foreach i in this.attributes {
  %> <%i.type%> <%i.key()%> <%
  if i.default {
    %> = <%i.default%><%
  }
  %>;<%endl()%><%
}
%>}
Extraction of an Underlying Meaning
An extended-BNF parse script of CodeWorker extracts the parse tree of the function bodies 

too. The parse tree undergoes some transformations, after which only remains the constraints 
between attributes, issued from the consistency checks done during the unmarshalling. Then a 
template-based script generates the constraints in JavaScript simply by traversing the parse 
tree.  For  instance,  after  skipping  the  declaration  of  a  vanilla  class,  the  translation  of 
constraints in JavaScript becomes: 
// returns an error message or null
function checkVanilla(Prd : Vanilla) {
  var K = Prd.strike;
  var T = Prd.maturity;
  var CP = Prd.call_put;
  if (K <= 0.0) {
    return "positive strike expected";
  }
  return null;
}
These constraints may interest an implementation model because they only use the classical 

statements of the language and do not call the standard Application Programming Interface 



(API), reducing JavaScript here to play the role of an imperative constraint language. The 
advantage of choosing JavaScript in this project stems also from the ease of its integration in 
Web  browsers  used  as  lightweight  clients  or  in  several  general-purpose  programming 
languages [15][16].

Consequently, the effort of updating the design model consists of running the exploration of 
the source code at any time. Of course, the operation of revealing parts of the design model by 
mining go against the tide and give partial satisfaction only, particularly when some hard-to-
detect  subtleties,  perhaps  prone  to  frequent  changes,  cannot  be  raised  to  the  models. 
Hopefully, it may initiate a refactoring process for replacing some handmade pieces of source 
code by code generation and progressively modify the development process to adopt the use 
of models.

AGILITY IN CODING TASKS
Changes in requirements may heavily impact the existing source code. A revision of meta-

models has a consequence on the structure of the domain constructs' representation, while the 
choice of a new implementation design, programming language or collaboration mechanism 
between components leads to refactoring or complete rewriting. Hand-typing of the whole 
source code seems to be a colossal task, where frequent reworking will be turned out highly 
time-consuming,  daunting  and  error  prone,  demotivating  the  developers  writing  here 
throwaway source code. At first sight, code generation appears as a good candidate to relieve 
the human actors.

When balancing between commonalities and variabilities of the domain, code generation 
does  not  act  necessarily as  the  main  contributor  for  bringing  reactivity in  coding.  Some 
alternatives  exist,  depending  on  the  features  provided  by  the  programming  language. 
Introspection  and  generic  programming  appear  very powerful  in  handling  some types  of 
variation.  Hybrid solutions  also deserve some attention.  An example  of  this  is  when the 
generated code combines calls to the reflection API and instantiation of template classes.

However, code generation is a process which strengthens the interest of choosing DSM and 
confirms the pivotal role it occupies in the Adaptive Process. The code generator intends to 
traverse the specific model semantics issued from the modeling stage and to produce the 
source  code.  A refactoring  amounts  to  reworking  the  generator,  while  the  production  of 
source code in a new programming language leads to extending the generator.

Building code generators tolerant to changes
By nature, enrichment of models does not affect code generators as long as it does not touch 

on meta-models. They also easily admit the implementation of some variants in the output. 
On the other hand, code generators are sensitive to changes applied on meta-models, as they 
have to explore the specific model semantics [14] differently or translate new constructs in 
the target language. Also, revisions on how the outputs have to interact with the Domain-
Specific Framework may rearrange the generator.

In CodeWorker, a code generator is composed of one or several template-based scripts. 
Changing the generator consists of modifying some existent scripts or adding new ones. A 
template-based script takes charge of the generation of one output. The script embodies both 
rough text directly, as it  should figure in the output, and scripting statements for handling 
variant factors. A tree structure represents the models to query. A tree is generally issued from 
the parsing of DSLs, but it may also come, for instance, from a database plugin.

To facilitate the propagation of changes from modeling to coding, where the tree arises as 
the main vehicle, the code generator should be able to detect any change in the tree structure 
or in the semantics it conveys. An evident manner to take precaution against modifications in 



the parse tree is to type its nodes so that they belong to a structured type. This allows the 
interpreter to report the inconsistencies at compile-time between the parse tree structure and 
how the template-based script uses it.

Parameterized Functions
Parameterized  functions  also  contribute  significantly  to  the  flexibility  against  changes 

among  the  range  of  node  types  the  tree  may  have  to  store.  Close  to  the  notion  of 
parameterized production rule, the principle consists of switching a function call to the proper 
instantiation of a function definition at runtime. The selection depends on a parameter linked 
to  the  function  call.  The  following  example  shows  a  sample  of  a  template-based  script 
translating  a  little  constraint  language  to  C,  where  parameterized  functions  describe  the 
generation of expressions, looking up the parse tree: 
#include "<%this.name%>.h"
int execute(Param** params, int nb) {
  return <%
// switching to the proper function
expression<this.expr.op>(this.expr);
%>;
}
<%
// generation of the equality
function expression<"==">(expr : node) {
  expression<expr.left.op>(expr.left);
  %> == <%
  expression<expr.right.op>(expr.right);
}
... [skipping other instantiations]
The  advantages  of  working  with  parameterized  functions  are  similar  to  those  of 

parameterized production rules. Firstly, if the interpreter cannot match an instantiation of the 
'expression'  function  while  resolving  the  function  call,  it  raises  a  clear  error  message. 
Secondly, the implementation of a new instantiation of the parameterized function naturally 
extends  the  code  generator.  This  appears  similar  to  polymorphism  in  a  object-oriented 
approach. These functions behave like methods overloading a member. Here, the developer 
proposes a function implementation for each type of expression.

Code Expansion
A  template-based  script  may  have  to  generate  only  one  output,  like  a  factory,  an 

unmarshalling  process  or  specific  implementation  of  the  visitor  design-pattern  [6]  (in 
serialization for instance). A traditional code generation approach will generate the source 
code,  including  the  commonalities.  The  commonalities  may  have  to  undergo  some 
improvements. The developer will tend to intervene directly on the source code through its 
EDI,  especially  during  debugging  stages,  rather  than  to  report  its  modifications  in  the 
template-based script. As a side effect, the next source generation will erase the hand-typed 
code.

A solution consists of writing the source code, including markups where some variabilities 
are expected.  A template-based script  describes  the  variabilities  specific  to  each markup. 
Then, the code generator scrutinizes the source code and executes the template-based script 
on  each  markup  encountered.  The  script  generates  the  appropriate  outputs  and  the  code 
generator injects them on markups at the same time. Below is an example of C++ source code 



implementing  a  factory.  It  contains  two  markups,  one  for  including  the  declaration  of 
Business classes and another for implementing a builder function for each: 
//##markup##"INCLUDES"

class Factory {
  public:
//##markup##"BUILDERS"
};
The  template-based  script  describes  how  to  generate  the  INCLUDES  and  BUILDERS 

section: 
<%
switch(getMarkupKey()) {
  case "INCLUDES":
    foreach i in this.products {
      %>#include "<%i.name%>.h"
<%
    }
    break;
  case "BUILDERS":
    foreach i in this.products {
      %> static  <%i.name%>* build<%i.name  %>(const std::string& 

name) {
    return new <%i.name%>(name);
  }
<%
    }
    break;
}
Then, the source code of the factory becomes: 
//##markup##"INCLUDES"
//##begin##
#include "Vanilla.h"
//##end##

class Factory {
  public:
//##markup##"BUILDERS"
//##begin##
  static Vanilla* buildVanilla(const std::string& name) {
    return new Vanilla(name);
  }
//##end##
};
The injected code remains attached to its markup thanks to the delimiters ##begin## and 

##end##, so the code generator is not going to confuse among hand-typed and generated code 
the next time source code will be expanded.

Preserved Areas
Often,  the  same  template-based  script  is  used  to  generate  several  outputs.  The  script 

factorizes  their  requirements,  but  it  may  happen  that  outputs  reclaim  some  specialized 
implementations at well-determined locations. For instance, it may be the implementation of 
some methods whose skeletons were generated, but not the bodies. It occurs when the effort 



of raising the level of abstraction about the behaviour of these methods seems too long and 
too complicated, when their implementation is too low-level. Therefore, the behaviour has 
not been transferred to the models and the generator cannot translate it to source code (or 
anything else).

Consequently, there are pieces of code to report in some outputs. The models may hold 
them,  establishing  a  dependence  with  the  choice  of  the  target  language,  platform  and 
framework.  Ordinarily,  the  code  generators  can  preserve  the  Domain  Design  from  such 
implementation details, prone to radically change and thus, to impact the models in return.

Another way could be to keep these pieces of code separate from the outputs. The code 
generation process will have to merge them properly, but the developer will suffer from the 
same  trouble  described  in  the  previous  section  when  he  corrects,  refactors  or  adds  new 
features in the source code. He might forget to report the modifications and if he does not he 
could make mistakes.

Like some other tools, CodeWorker proposes to embed the hand-typed code of specialized 
implementations in preserved areas. A well-defined comment delimits both the beginning and 
the end of the area. The code generator recognizes the areas and takes care to not eliminate 
them.  This  technique  does  not  release  the  developer  from  the  burden  of  reporting  the 
modifications of the generated part to the template-based script, translating them in term of 
commonalities and variabilities.

Code generation versus dynamic execution
Code  generators  do  not  necessarily  stand  out  as  an  unavoidable  software  asset  of  the 

Domain Implementation. Among the software family, there may exist  some which require 
only a subset of the models, related to stable parts of the meta-models. The subset may grow 
and undergo some reworking, but the underlying meta-models remains invariant. If Object-
Oriented  Programming,  Generic  Programming,  Reflection  or  any other  paradigms  of  the 
programming language are sufficient to implement the variant factors, the concerned software 
or  code  components  can  load  the  models  subset  as  data  and  then  adapt  their  behaviour 
dynamically.

In Financial Engineering for instance, a Graphical User Interface (GUI) application may 
have to build forms dynamically to create, edit and validate any existing derivatives product. 
It is possible to write a generic GUI engine, loading the description of products at startup. The 
products are composed of a set of attributes, restrained to a triplet of string values: the name, 
type  and  attached  documentation.  The  constraints  between  attributes  are  expressed  as  a 
JavaScript  function (see  the  example  of  the  section  touching on  mining),  linked  to  each 
product description as a string value. This description allows the dynamic building of dialog 
boxes (appropriate input fields, tooltips for the documentation...) for each product, and the 
validation behind if the application embeds a JavaScript interpreter.

Because the source code of dialog boxes is not generated, the IT team does not have to 
deliver a new release of such software each time the subset changes in the model. Here, code 
generation is pushed into the background, requested only for translating models to a reduced 
form  that  suits  the  needs  of  the  involved  code  components  and  no  more.  Updating  the 
software consists of generating a new data file/record in a database and deploying it.

Maintenance of multiple translations
Application generators and reusable components issued from the Domain Implementation 

rarely  exist  for  several  target  languages,  otherwise  their  parallel  maintenance  becomes 
seriously hard to manage. Changing a component or application generator available for a 



given target language obliges them to report after translation in components or application 
generators for all other target languages. Doing it by hand is slow, tedious and error prone.

However,  it  happens  that  code  components  and  the  Domain-Specific  Framework  were 
originally written in a programming language well-adapted at the time to the requirements. 
Code components have grown considerably and are widely used. However, some new kind of 
software has appeared, using a different programming language, and wishing to integrate the 
module within the application, rather than as a remote component.

Hopefully,  source-to-source  translation  may partially  help  to  automate  the  updating  of 
versions available in other target languages. An automatic translation of the whole original 
code component is arduous to obtain. Whereas classical statements generally require a rather 
straight-forward  transformation,  the  access  to  low-level  primitives  and  the  way they are 
combined must be detected by the recognition of coding patterns.

Some coding patterns are frequent and do not really vary from one project to another, like 
the iteration of containers, implemented differently in C++ and Java. Some others are highly 
dependent of how code has to collaborate with the Domain-Specific Framework, which may 
vary strongly from one programming language to another. Effectively, the implementation of 
a  framework  has  to  take  advantage of  the  main  strengths  of  the  programming language, 
including the paradigms, but also the available API, standard or provided by third parties.

Specific coding patterns are tedious to list exhaustively and hard to maintain. Generally, the 
more time has elapsed, the more stable are the commonalities.  If so,  the participants can 
consider  the  rewriting  of  the  largest  part  of  commonalities  by  hand.  In  practice,  the 
developers will write new template-based scripts and new components of the framework and, 
because of the stability of commonalities, they will not really suffer reporting adjustments 
from one target language version to another.

The original code component may contain numerous preserved areas, open to grow with the 
evolution  of  the  design  model.  Rewriting  commonalities  does  not  require  an  automatic 
recognition of coding patterns.  This work can be done by hand, but the translation of all 
preserved areas and those expected in the future are seriously time-consuming. To remain 
reactive, the developers will benefit from automating this translation process.

Program Transformation
The  translation  is  easier  when  it  consists  of  changing  the  way  of  coding  in  a  code 

component, but keeping the same programming language. For instance, a financial library for 
equity derivatives has been written in C++ at BNPParibas. This library was delegating the 
lifetime management  of class instances to  the client  component.  Some software has then 
appeared, requiring an opaque memory management of instances allocated in the library. A 
particular reference counting mechanism, very intrusive in the existing code and changing 
appreciably the API, was specified.

Code generation was building about 90% of the original library and the rest was embodied 
in preserved areas. A parallel maintenance was required for the two versions of the financial 
library, as some code components using the library did not intend to integrate the new one. So 
firstly, the developers have written a second set of template-based scripts, generating a code 
compatible with the specifications. Secondly, they have written a tool for transforming the 
code embedded in preserved areas.

In CodeWorker, a source-to-source translation script handles the program transformation. 
For instance, here is a sample of C++ code to make compatible with the reference counting 
logic: 
Product* p = new Vanilla("BNP",56,2007);



The source code issued from the transformation of the precedent C++ statement should look 
like: 
Product_ref p = Factory::buildVanilla
("BNP",60,2007);
CodeWorker accomplishes transformation through a production rule extended with code 

generation features: 
init_declaration_1 (scope : node) ::=
  class_name:C1 '*' id:V '=' "new" id:C2
  => {//leave the BNF engine for 3 lines
    scope.addVariable(V, C1 + '*');
    // @ is similar to <% or %>
    @@C1@_ref @V@ = Factory::build@C2@(@
  }
  '(' params(scope) #implicitCopy ')'';'
  ;
The original library continues to grow. The developers populate the new preserved area and 

eventually modify the others. Then the developers apply both the code generation and the 
program transformation processes to duplicate the library to the reference counting version. If 
a  bug  occurs  in  the  latter  library,  developers  have  to  fix  it  in  the  original  library  too, 
modifying a preserved area or a template-based script. If they want to extend the library, they 
integrate the evolutions in the first one and execute the building process once again.

Source-to-Source Translation
To finish without evading the translation of preserved areas to another language, a C++-to-

Java translation of the financial library, for instance, could have been processed on this hand-
typed code, but after the writing of more specific coding patterns taking into account the 
differences between these languages.

Coming back to the precedent example about reference counting logic, the translation to 
Java of the C++ statement should look like: 
Product p = new Vanilla("BNP",56,2007);
The coding pattern for processing such a translation to Java is quite direct: 
init_declaration_1 (scope : node) ::=
  class_name:C1 '*' id:V '=' "new" id:C2
  => {
    scope.addVariable(V, C1 + '*');
    @@C1@ @V@ = new @C2@(@
  }
  '(' params(scope) #implicitCopy ')'';'
  ;
However, this implementation is not representative of the effort of writing a coding pattern, 

because it  does  not  combine several  lines of  code plus  all  their  variants,  as  may happen 
sometimes when some constructs of a language are difficult to render in another.

RELATED WORK
The  FAST  (Family-oriented,  Abstraction,  Specification,  and  Translation)  process  [17] 

proposes to consider a system production as creating different members of a family, to avoid 
the creation of a new system each time requirements change. They have experienced mainly 
two methods to migrate the knowledge issued from the analysis stage into useful technology: 



the creation of small DSLs and the writing of components libraries. The specifications written 
in a DSL were translated to code. The automation of this translation was shrinking labour 
costs  and time to market, but the generator screens and underlying code were sometimes 
expensive to develop [2].

There  exists  a  large  number  of  code  generators.  Most  of  them  are  listed  at 
http://www.codegeneration.net [8]. They can work on the command line or using a GUI, and 
can generate  any kind of output  or are intended for existing frameworks.  They impose a 
proprietary format in the writing of models or can recognize standard meta-models, and can 
be coupled to a parsing tool or not.

A good collaboration between the parsing tool and the code generation engine enhances the 
propagation  of  changes  initiated  by domain  variability  and  uncertainty.  Terence  Parr  has 
developed a recursive-descend parser generator and a template engine, respectively called 
ANTLR  [12]  and  StringTemplate  [13].  The  StringTemplate  template  engine  provides  a 
framework for accessing the extracted data in a formal way. A combination of ANTLR and 
StringTemplate provides a consistent approach for performing source-to-source translation.

Aspect-Oriented Programming (AOP) [9] appears like an efficient approach to reduce the 
impact of changes. It restrains the side-effects of a change propagation by the separation of 
concerns  it  implies  on  legacy source  code.  DSLs might  also  take  advantage of  powerful 
technologies turning around AOP, to propose modularity in the writing of models.  These 
technologies  are  often  focused  on  a  single  programming  language,  and  a  proposal  [7] 
addresses the goal of creating new weavers from meta-specifications of a language.

CONCLUSION
Domain-Specific  Modeling  not  only enhances  the  communication  between  the  domain 

experts and the IT team, but also accelerates the implementation of software. The participants 
directly  handle  the  constructs  of  the  domain  for  the  description  of  the  problem  space, 
expressed using one or more DSL, or better, a Domain-Specific Visual Language [10][11] if 
the domain is  endowed with a  rich graphical  language or  could adopt  one that  suits  the 
experts.  As  much  as  possible,  the  IT  team  translates  this  description  to  programming 
languages automatically, capitalizing on technical and coding skills in code generators for a 
large extent.

As a side effect, the effort of raising the abstraction level, both in modeling and coding 
tasks, moves the complexity in the process of transforming models to code. So, this process 
doesn't fall in with the modification of requirements naturally. But the complexity of systems 
built today obliges the process to tolerate weaknesses in the understanding of the domain and 
so,  to  accept  partial  reworking  or  extensions  at  any time of  the  development.  The  same 
complexity drives the process to accept unusual sources for updating requirements, such as 
extracting a part of the design by parsing an existing code component.

The practice of parsing and code generation in the financial area of equity derivatives has 
revealed some useful paradigms, features and guidelines, which improve the reaction of a 
Domain-Specific Modeling approach against changing requirements in the meta-models or in 
the Domain-Specific Framework for instance. These functionalities help in spreading these 
changes along parse tasks and code generators. They are also flexible enough to satisfy new 
requirements of a system being into its stride but still  prone to evolve. An example is the 
duplication of a reusable component to another target language, under the constraint that the 
original component will continue to be extended.
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