
TOWARDS AN EXECUTABLE

DENOTATIONAL SEMANTICS FOR CAUSAL

BLOCK DIAGRAMS

Ben Denckla Pieter J. Mosterman ∗

Hans Vangheluwe ∗∗

∗ The MathWorks, Inc., Natick, MA 01760, USA
∗∗ McGill University, Montreal, Canada

Abstract: In the design of embedded control systems, a variety of languages are
used by different teams and in different development phases. Part of this variety
comes from the use of domain-specific modeling languages that are tailored to the
mental concepts of the user. This puts forward the need for efficient, systematic,
and structured design of the modeling languages themselves. In particular, a
precise and preferably executable specification of the language should be provided,
although not all domain-specific language may be specified in this manner. A
denotational semantics can provide such a specification. This paper presents a
denotational semantics for a language BdAppLang. BdAppLang can be viewed
as an abstract syntax for a simple subset of the domain-specific language of causal
block diagrams, which are predominantly used in the system-level phase of control
system design. The semantics are given in Haskell, and thus are executable while
still conforming to the tradition of giving denotational semantics in a language
derived from the lambda calculus.

Keywords: Domain-specific modeling, language design, block diagrams,
denotational semantic

1. INTRODUCTION

Computational modeling is increasingly being
used in industry to shorten the product develop-
ment time. In one way, it is used to complement
physical modeling, i.e., the design of physical pro-
totypes and mock-ups. In an alternate applica-
tion, it is used to replace physical modeling. Com-
putational modeling has many advantages over
physical modeling, as it is much easier and less
costly to design a computational model. Further-
more, computational models are more flexible in
their utility and modification.

For the design of embedded control systems, many
different computational models, or ‘models’ for
short, are being used. For example, models are

used for designing the control laws, models are
used for specifying the implementation of a con-
troller, and models are used to improve the ro-
bustness of a controller (Mann, 1996; Mosterman
et al., 2004).

Because of the wealth of disciplines involved in the
entire control system design process, the models
that are used are designed by engineers with very
different backgrounds and for many different pur-
poses. For example, the control law design is of-
ten based on continuous time differential equation
models because they are amenable to (automatic)
synthesis methods. On the other hand, modeling
the implementation of a controller is better done
using discrete-time models, as they are closer to



the implementation of a controller on a micro-
processor (Hyde, 2002).

Similarly, models based on finite element analy-
sis, frequency domain methods, multi-body meth-
ods, state transition approaches, etc., may be em-
ployed in the design process. Each of these models
relies on a different modeling language that is best
suited for the problem at hand.

In general, a modeling language that is chosen to
design a model should be closely aligned with the
problem that needs to be addressed. So, it should
have syntax that is close to the background and
education of the users and the semantic notions
that the language includes should be such that
it allows elegant models (going by the premisse
that elegant models are the best models). In case
semantic notions require ‘work-arounds’ or some
‘tweaking’ or any usage that is poorly aligned with
the mental concept of the model designer, the
modeling process becomes error prone and a less
useful if not incorrect model is bound to ensue.

To support this need for modeling languages that
are best-suited for a particular problem, domain-
specific languages are desired. Such languages
can be tailored to the background of the model
designers, the particular concepts that need to be
captured, and the problem that needs to be solved
by the model.

The design of modeling languages has been an
active area of research, recently. In particular, the
design of the syntax of a modeling language is
well-understood. This is where the use of meta-
modeling has proven very successful.

Meta-modeling concerns the modeling of mod-
els (Mosterman and Vangheluwe, 2000), or, in
other words, the modeling of modeling languages.
Once a model of a modeling language (the meta
model) has been designed, editors and parsers can
be automatically derived from the meta model.
Examples of successful application of meta model-
ing are DoME (Engstrom and Krueger, 2000), the
Generic Modeling Enironment (GME) (Generic
Modeling Environment, 2002), and AToM3 1 .

Modeling the semantics of a language has proven
to be much more difficult. Graph grammars have
been successfully applied to model the seman-
tics of graphical modeling formalisms either by
(i) modeling a transformation from the newly de-
fined language to an existing language with known
semantics, or by (ii) modeling the execution of
a model as a set of model transformations de-
fined for the newly defined language (de Lara et
al., 2004). The first approach can be considered
denotational in spirit, whereas the second is oper-
ational in nature.

1 http://atom3.cs.mcgill.ca/

Though the graph grammar approach appears
promising and holds great potential, it still falls
short in terms of efficiency compared to dedicated
implementations where the semantics are typi-
cally associated by hand crafting a compiler to
transform the syntax into computable code.

The translation into an operational form is well-
suited for model execution, but for understanding
the intricacies of a language and its complexity, a
denotational representation may be better. This is
a more powerful way of reasoning about languages
and comparing them.

Causal block diagrams are predominantly used in
the design of control systems (e.g., (Åström and
Wittenmark, 1984; Chen, 1970)) yet the semantics
of industrial tools such as Simulink R© (Simulink,
2004)) that support their use at times contain
implicit assumptions that can complicate under-
standing by the user and language developer
alike (Denckla and Mosterman, 2005). In this pa-
per, a denotational specification for causal block
diagrams (adopted from (Posse et al., 2002)) is
given, based on earlier work on language de-
sign (Schmidt, 1986) and a functional approach
to languages design and analysis (Denckla and
Mosterman, 2004; Nilsson et al., 2003). The intent
is to make the semantics explicit and unambigu-
ous so as to arrive at a well-defined causal block
diagram formalism. As such, this paper is about
language creation, more so than its use.

In Section 2 causal block diagrams are introduced
by their abstract syntax. In Section 3, an abstract
syntax that is amenable to a denotational seman-
tics specification is given. Section 4 presents a
language to capture denotational semantics. Sec-
tion 5 extends the language defined in Section 4
to support specification of block diagrams and
presents Haskell as an approach to execution. In
Section 6 the conclusions of this work are given.

2. CAUSAL BLOCK DIAGRAMS

Control system design is an involved process that
moves through many different stages. For exam-
ple, a model of the physical system to be con-
trolled may be derived using finite element meth-
ods. This could result in a high order model, which
needs to be reduced to a less complex version to al-
low synthesis and often numerical matrix methods
are used for this (e.g., (Varga, 1999)) as available
in, for example, MATLABR© (MATLAB, 2004).

Once the reduced order model is arrived at, con-
trol algorithms are developed to achieve the con-
trol objectives. The algorithms are then embedded
into a model of the control system. This model
embodies aspects such as mode switching between
control laws for the different control regimes; data



analysis computations such as scaling, calibration,
and filtering; and sample rate effects. Modeling
the control system is often done using causal block
diagrams with, for example, Simulink.

An example of a causal block diagram is given in
Fig. 1. It shows two cascaded multiplier blocks,
mul1 and mul2. The first multiplier block, mul1,
takes two values that are input to the block
diagram, u0 and u1, multiplies them, and the
result of this is multiplied by a third input value,
u2, by mul2. The result of the first and second
multiplications are the block diagram output, y0
and y1, respectively.

2

y1

1

y0

mul2

mul1

3

u2

2

u1

1

u0

Fig. 1. A causal block diagram model.

This work will concentrate on the abstract syntax
of block diagrams (the adjective causal will be
omitted). The concrete syntax of block diagrams
is irrelevant for the semantics analysis given in
this paper.

A block diagram then consists of the following set
of elements:

• Blocks are the basic elements of a block
diagram.

• Input ports may be bound to blocks or be
free. If they are free (e.g., y0 in Fig. 1), they
are output of the block diagram, otherwise,
they are input to the block they are bound
to.

• Output ports may be bound to blocks as well.
Similar to input ports, free output ports (e.g.,
u0 in Fig. 1) are input to the block diagram
while they are output of the block they are
bound to otherwise.

• Connections are arrows from output ports to
input ports.

In general, the behavior of a block may be defined
in terms of another block diagram, thus creating
hierarchy (Denckla and Mosterman, 2005). That
notion, however, will not be elaborated as it is
not important within the scope of this paper
and would add significantly to the length of the
treatise.

3. THE SYNTAX OF BLOCK DIAGRAMS IN
BDAPPLANG

When a block diagram is interpreted, it may
be translated in a number of abstract syntaxes,

one following the other. The sequence of abstract
syntaxes contain less and less information that is
superfluous for the eventual interpretation.

In this work, the abstract syntax outlined in Sec-
tion 2 is translated into another abstract syntax,
which is then used for the denotational semantic
specification. The abstract syntax consists of the
following elements:

• A block diagram, BD, is a duple BD =
〈blocks, outs〉 that consists of a list of block
characteristics, blocks, and a list of outputs,
outs.

• A block characteristic is a triple block =
〈name, func, inputs〉 of block name, name,
block function, func, and a list of block input
arguments, inputs.

Blocks and diagrams may have multiple source
ports, so block inputs and diagram outputs
must specify port numbers. A special identifier,
toplevel, exists for the top level input.

4. A LANGUAGE FOR DENOTATIONAL
SEMANTICS

In order to rigorously describe behavior of causal
block diagrams, a language is required to capture
the denotational semantics. Here Haskell (Jones,
2003) is used in a style based on previous work on
denotational semantics (Schmidt, 1986).

First the core language referred to as AppLang

(as it is based on the Section An Applicative
Language in (Schmidt, 1986)) is defined by giv-
ing the syntactic and semantic domains. In this
work, a module AppLang (‘denotational semantics
block diagram core’) is defined which exports the
function mPro that assigns meaning to a program.
It also exports the data types that mPro takes
as input; expressions Exp and identifiers Ide. It
further exports the data types that mPro produces
as output; values Val and errors Err.

The syntactic domain then consists of programs,
where a program Pro is an expression Exp. An
expression can be one of six possible forms:

• LamExp is a lambda expression, a function
definition (Slonneger et al., 1995).

• AppExp is a function application.
• LerExp is a recursive let expression.
• TupExp is a tuple constructor.
• IdeExp is an identifier expression.
• IntExp is an integer constant.

The semantic domain consists of denotable values
that can be one of four possible forms:

• A function with denotable value as domain
and co-domain.

• A tuple of denotable values.



• An integer.
• An error that can be one of the following

three forms:
· an undefined identifier,
· the application of a non-function, and
· an incorrect argument type.

In summary, the syntactic and semantic domains
are given by:

1 module AppLang

2 (mPro,Exp(..),Ide,Val(..),Err(..)) where

3

4 type Pro = Exp

5

6 data Exp =

7 LamExp Ide Exp |

8 AppExp Exp Exp |

9 LerExp [(Ide,Exp)] Exp |

10 TupExp [Exp] |

11 IdeExp Ide |

12 IntExp Integer

13

14 type Ide = String

15

16 data Val =

17 FunVal (Val -> Val) |

18 TupVal [Val] |

19 IntVal Integer |

20 ErrVal Err

21

22 data Err =

23 UndefIdeErr Ide |

24 AppNonFunErr Val |

25 TypErr [Val] [Val]

The semantic valuation functions of AppLang

consist of the following functions:

• mPro provides the meaning of a program. It
takes an expression p and returns a value that
is the meaning of the expression treated as a
stand-alone program, i.e., the meaning in the
initial environment iniEnv.

• mExp provides the meaning of an expression.
It takes an expression Exp and an environ-
ment Env and returns a value Val that is the
meaning of the expression in that environ-
ment. The function mExp takes the following
forms:

· mExp (LamExp i x) e returns the mean-
ing of a lambda expression with argu-
ment i and body x in environment e.

· mExp (AppExp fx ax) e returns the mean-
ing of applying expression fx to expres-
sion ax in environment e.

· mExp (LerExp ds x) e = mExp x (fix

newEnv) returns the meaning of a le-
trec expression with declarations (iden-
tifier/expression pairs) ds and body x

in environment e. The meaning of this
letrec is the meaning of x in an envi-
ronment that is the fixed point of the
function newEnv.

· mExp (TupExp xs) e = TupVal $ mExps

xs e returns the meaning of a tuple ex-

pression with expression list xs in an
environment e which is a tuple value of
the meanings of the xs in e.

· mExp (IdeExp i) e = e i returns the
meaning of identifier i in environment
e, which is the value that i is bound to
in e.

· mExp (IntExp n) e = IntVal n returns
the meaning of an integer constant. The
meaning of the expression is the corre-
sponding integer value.

An additional evaluation function mExps operates
on lists. Its mechanics are similar to those of mExp,
but applied to a list of expressions.

The valuation functions can be summarized as:

1 mPro :: Pro -> Val

2 mPro p = mExp p iniEnv

3 mExp :: Exp -> Env -> Val

4 mExp (LamExp i x) e =

5 FunVal (\v -> mExp x $ updEnvOne i v e)

6 mExp (AppExp fx ax) e =

7 apply (mExp fx e) (mExp ax e)

8 where

9 apply (FunVal f) v = f v

10 apply v _ = ErrVal $ AppNonFunErr v

11 mExp (LerExp ds x) e = mExp x (fix newEnv)

12 where

13 fix f = let x = f x in x

14 newEnv e’ = updEnvUnz dis (mExps dxs e’) e

15 where

16 (dis,dxs) = unzip ds

17 mExp (TupExp xs) e = TupVal $ mExps xs e

18 mExp (IdeExp i) e = e i

19 mExp (IntExp n) e = IntVal n

20 mExps xs e = map (flip mExp e) xs

A number of ‘helper’ functions for the semantic
(valuation) functions are created. These functions
all operate on an environment:

• An environment Env is a function from an
identifier Ide to a value Val.

• The function updEnv takes a list of bindings
(identifier/value pairs) and an environment,
and gives back this environment updated
with the new bindings.

• The maybe call returns (lookup i b) if the
lookup succeeds, otherwise it returns e i.

• A function updEnvOne updates an environ-
ment with a single binding.

• A function updEnvUnz updates an environ-
ment with ‘unzipped’ bindings of identifiers
is to values vs.

• The initial environment iniEnv is the empty
environment updated so that a few useful
functions can be built into the language.

• The empty environment is one in which all
identifiers are bound to an ‘undefined identi-
fier’ error.

In summary:

1 type Env = Ide -> Val

2 updEnv :: [(Ide,Val)] -> Env -> Env



3 updEnv ivs e = \i -> maybe (e i) id (lookup i ivs)

4

5 updEnvOne :: Ide -> Val -> Env -> Env

6 updEnvOne i v e = updEnv [(i,v)] e

7

8 updEnvUnz :: [Ide] -> [Val] -> Env -> Env

9 updEnvUnz is vs e = updEnv (zip is vs) e

10

11 iniEnv = updEnv builtins empEnv

12

13 empEnv i = ErrVal $ UndefIdeErr i

The built-in operations “builtins”, e.g., ‘+’ and ‘*’
are not of central significance to the semantics,
and, therefore, they will not be listed here. The
reader is referred to the appendix for details.

5. EXTENDING THE CORE LANGUAGE
FOR BLOCK DIAGRAMS

Now that the denotational semantics of AppLang

is available, it needs to be defined how a block di-
agram is mapped onto AppLang. To this end, an
extension to AppLang is defined, called BdAp-

pLang, that includes notions specifically included
for defining block diagrams. It is shown how this
mapping results in an executable representation
of the block diagram.

5.1 Mapping a Block Diagram Onto BdAppLang

First, the extensions that constitute BdAppLang

are defined as part of the BdAppLang module that
imports all the AppLang definitions:

1 module BdAppLang

2 (

3 bdExp,Signal(..),

4 eq0,add,mul,neg,sbs,ifeq0,sbt,

5 lambda2,apply2,fstErr

6 ) where

7

8 import AppLang

9 import List

The function bdExp gives an expression for the
block diagram described by block list blocks and
output list outputs. It gives a lambda expression
whose input identifier is "toplevel" and whose
body is a letrec expression with the declarations
decls and body body as argument. The decls

are generated from the block list blocks using a
function getDeclForBlock.

To obtain a list of declarations, the function
getDeclForBlock takes as argument one block at
a time, and it is iterated over the list of blocks
by merit of the map function. For each block,
getDeclForBlock then operates on the three con-
stitutive parts of a block, i.e., its output outid,
the function that describes the block behavior
func, and the block inputs inputs. This corre-
sponds to the abstract syntax defined in Section 3.

The output is produced by using AppExp to apply
the function to the inputs.

The body that is the argument to the letrec
expression in bdExp is the output list outputs

converted to a tuple expression by a function
signalsToTuple which takes a list of signals
signals and returns a tuple expression of sub-
scripted identifiers.

A function xSignal is used to convert a bound
signal described by an identifier i and a subscript
n. It converts the signal to an application of the
subscript operator sbs to the identifier. In case the
identifier is not specified, the subscript operator
is applied to the input of the block diagram, i.e.,
the unbound output ports in Section 4, referred
to as "toplevel" in this paper. Moving from the
block diagram abstract syntax to BdAppLang to
AppLang, an output port (bound or unbound)
becomes a Signal which becomes a subscripted
identifier.

The basic set of functions that is needed to trans-
late a block diagram into BdAppLang then be-
comes:

1 bdExp blocks outputs = LamExp "toplevel" $ LerExp decls body

2 where
3 decls = map getDeclForBlock blocks

4 where
5 getDeclForBlock (outid, func, inputs) =

6 (outid, AppExp func (signalsToTuple inputs))
7 body = signalsToTuple outputs
8 signalsToTuple signals = TupExp $ map xSignal signals

9 where
10 xSignal (Bound i n) = sbs (IdeExp i) (IntExp n)

11 xSignal (Unbound n) = sbs (IdeExp "toplevel") (IntExp n)
12

13 data Signal = Bound Ide Int | Unbound Int

5.2 Executing a Block Diagram

With BdAppLang defined, a block diagram can
be conveniently expressed in a denotational speci-
fication. For example, consider the block diagram
in Fig. 1. Its representation in BdAppLang is
constructed using the following statements:

1 bd = bdExp blockList outputList

2 where
3 blockList = [

4 ("mul1", tupleMul, [Unbound 0, Unbound 1]),
5 ("mul2", tupleMul, [Bound "mul1" 0, Unbound 2])]

6 outputList = [Bound "mul1" 0, Bound "mul2" 0]

where

1 xfst id = ApplyExp (IdExp "fst") (IdExp id)

2 xsnd id = ApplyExp (IdExp "snd") (IdExp id)
3 tupleMul = LambdaExp "n" $ TupleExp [xmul (xfst "n") (xsnd "n")]

To execute this block diagram, the Haskell 98
based programming system Hugs 98 2 is used.
Hugs 98 translates the denotational specification
into an executable form. Executing this block
diagram with input values [3, 4, 5] is done by the
statement:

2 http://www.haskell.org/hugs/



1 mPro $ AppExp bd (TupExp [IntExp 3, IntExp 4, IntExp 5])

which produces the expected output Tup [Int

12,Int 60], i.e., a tuple of integers 12 and 60
(3*4 and (3*4)*5).

Note that this paper addresses the evaluation of
a block diagram for one given set of input. It
does not intend to provide an execution engine
that will repeatedly evaluate a block diagram to
generate a sequence of output values (which may
be associated a temporal notion). In other work,
the details of generating such an execution trace
have been discussed (Denckla and Mosterman,
2005), which shows that the evaluation of the
block diagram function and the generation of a
trace can indeed be well separated. In particular,
this can be achieved by making the state an
‘implicit input’ to the block diagram.

6. CONCLUSIONS

Support for domain-specific modeling is critical
in the control system design process. Many dif-
ferent aspect of a system need to be modeled
by engineers with widely differing backgrounds
and for very different purposes. This requires tai-
lored modeling languages that specifically address
a particular domain, model designer background,
and problem that needs to be solved by using the
model.

To design such languages, it is critical to be ex-
plicit about the language semantics. A powerful
way to capture the semantics of a language well
is by translating it into a denotational represen-
tation. A denotational semantics avoids overspec-
ifying a language as it specifies at a higher level
of abstraction than, for example, an operational
semantics.

This paper has concentrated on causal block dia-
grams, which is a domain-specific language widely
used in addressing the system-level aspects of an
embedded control system. A denotational seman-
tics for such causal block diagrams was presented,
thus providing a clear and unambiguous interpre-
tation. Because based on Haskell, a freely available
compiler allows execution of the denotational se-
mantics.

One advantage of this approach is the explicit de-
finition of the semantics, which makes underlying
assumptions clear and facilitates further reasoning
about the meaning of causal block diagrams.

An additional advantage is the restriction to a
basic set of denotational concepts to be used for
the definition of causal block diagram semantics.
This restriction prevents the inadvertent imple-
mentation of semantics that are beyond what a
declarative formalism such as causal block dia-

grams should embody, which could easily happen
when specifying the semantics by imperative code.

All this leads to an approach that is precise, not
over-determined, and executable.

REFERENCES

Åström, Karl J. and Björn Wittenmark (1984).
Computer Controlled Systems: Theory and
Design. Prentice-Hall. Englewood Cliffs, New
Jersey.

Chen, Chi-Tsong (1970). Linear Systems Theory
and Design. Holt, Rinehart and Winston,
Inc.. New York. ISBN 0-03-060289-0.

de Lara, Juan, Hans Vangheluwe and Pieter J.
Mosterman (2004). Modelling and analysis
of traffic networks based on graph transfor-
mation. In: Formal Methods for Automation
and Safety in Railway and Automotive Sys-
tems (FORMS/FORMAT 2004) (Eckehard
Schnieder and Géza Tarnai, Eds.). Braun-
schweig, Germany. pp. 120–127.

Denckla, Ben and Pieter J. Mosterman (2004).
An intermediate representation and its appli-
cation to the analysis of block diagram ex-
ecution. In: Proceedings of the 2004 Summer
Computer Simulation Conference (SCSC’04).
San Jose, CA.

Denckla, Ben and Pieter J. Mosterman (2005).
Formalizing causal block diagrams for mod-
eling a class of hybrid dynamic systems. In:
Proceedings of the IEEE Conference on Deci-
sion and Control. Seville, Spain.

Engstrom, Eric and Jonathan Krueger (2000). A
Meta-Modeler’s Job is Never Done: Build-
ing and Evolving Domain-Specific Tools With
DOME. In: Proceedings of the IEEE In-
ternational Symposium on Computer Aided
Control System Design. Anchorage, Alaska.
pp. 83–88.

Generic Modeling Environment (2002).
http://www.isis.vanderbilt.edu/Projects/gme.

Hyde, Rick A. (2002). Fostering innovation in de-
sign and reducing implementation costs by
using graphical tools for functional specifi-
cation. In: Proceedings of the AIAA Model-
ing and Simulation Technologies Conference.
Monterey, CA.

Jones, Simon Peyton (2003). Haskell 98 Language
and Libraries. Cambridge University Press.
Cambridge, UK. ISBN-10: 0521826144.

Mann, Heřman (1996). A versatile modeling and
simulation tool for mechatronics control sys-
tem development. In: 1996 IEEE Symposium
on Computer Aided Control System Design.
Dearborn. pp. 524–529.

MATLAB (2004). The Language of Technical
Computing. The MathWorks, Inc.



Mosterman, Pieter J. and Hans Vangheluwe
(2000). Computer automated multi-paradigm
modeling in control system design. In: Pro-
ceedings of the IEEE International Sympo-
sium on Computer-Aided Control System De-
sign. Anchorage, Alaska. pp. 65–70.

Mosterman, Pieter J., Janos Sztipanovits and Se-
bastian Engell (2004). Computer automated
multi-paradigm modeling in control systems
technology. IEEE Transactions on Control
System Technology.

Nilsson, Henrik, John Peterson and Paul Hudak
(2003). Functional hybrid modeling. In: Lec-
ture Notes in Computer Science. Vol. 2562.
Springer-Verlag. New Orleans, LA. pp. 376–
390. Proceedings of PADL’03: 5th Interna-
tional Workshop on Practical Aspects of
Declarative Languages.

Posse, Ernesto, Juan de Lara and Hans
Vangheluwe (2002). Processing causal block
diagrams with graph-grammars in atom3. In:
Proceedings of the European Joint Confer-
ence on Theory and Practice of Software
(ETAPS). Grenoble, France. pp. 23 – 34.
Workshop on Applied Graph Transformation
(AGT).

Schmidt, David A. (1986). Denotational Seman-
tics – A methodology for language devel-
opment. David Schmidt. 234 Nichols Hall,
Kansas State University, Manhattan, KS.

Simulink (2004). Using Simulink. The Math-
Works, Inc.. Natick, MA.

Slonneger, Ken, Kenneth Slonneger and Barry
Kurtz (1995). Formal Syntax and Seman-
tics of Programming Languages: A Labora-
tory Based Approach. Addison-Wesley Long-
man Publishing Co., Inc.. Boston, MA, USA.

Varga, Andras (1999). Selection of software for
controller reduction. SLICOT Working Note.

7. APPENDIX

The following operations are defined:

1 builtins =

2 [

3 ("true",true),("false",false),("eq0",eq0),

4 ("+",addi),("*",mult),("-",subt),

5 ("subscript",subs)

6 ]

7 where

8 true = FunVal (\v1->FunVal (\v2->v1))

9 false = FunVal (\v1->FunVal (\v2->v2))

10 eq0 = FunVal f

11 where

12 f (IntVal n) = if n==0 then true else false

13 f v = ErrVal $ TypErr [v] [intExa]

14 addi = arithOp (+)

15 mult = arithOp (*)

16 subt = arithOp (-)

17

18 subs = binOp subscript

19 where

20 subscript (TupVal vs) (IntVal n) =

21 vs !! (fromInteger n)

22 subscript v1 v2 =

23 ErrVal $ TypErr [v1, v2] [tupExa, intExa]

24

25 tupExa = (TupVal [])

26 intExa = (IntVal 0)

27

28 arithOp = binOp . intOp

29 intOp op = op’

30 where

31 op’ (IntVal n1) (IntVal n2) = IntVal $ op n1 n2

32 op’ v1 v2 =

33 ErrVal $ TypErr [v1, v2] [intExa, intExa]

34 binOp op = FunVal f1

35 where

36 f1 v1 = FunVal f2

37 where

38 f2 v2 = op v1 v2


