
On The Impact of Domain Dynamics on
Product-Line Development

Haitham S. Hamza

Department of Computer Science and Engineering,

University of Nebraska

Lincoln, NE 68588-0115

hhamza@cse.unl.edu

Abstract: Software Product-line engineering aims at enabling systematic software
reuse by allowing several related software applications to be developed using
common assets. A key activity in product-line engineering is to identify common
concepts among different products and their variation space, and to exploit these
concepts to develop reusable assets. These concepts are also used to design a
domain-specific language and a set of associated tools to facilitate the development
of the different products in the family. However, when domains evolve, in response
to paradigm shifts and technological advances, concepts may need to be modified
or removed, or even new concepts might be added to the system. Such changes
will not only affect the developed domain language but also the associated tool
set. Adapting domain languages and associated tools, if possible, may become
expensive and time consuming. In this paper, we first investigate the impact of
domain dynamics on product-line development, and then we outline our going
research for developing an approach to reduce such an impact.

1. Introduction
Software community has long realized the need for systematic software production techniques to
overcome software complexity and to increase productivity [4]. However, unlike many other engi-
neering disciplines, software development is inherently apeople-orientedactivity that is hard to be
fully automated for mass production [6]. One promising approach to enable systematic software
development isProduct-line engineeringtechniques (also known as product-family engineering).

Product-line engineering aims at enabling systematic software production by providing the
required assets and tools to evolve related software applications from a base system. This base
system contains generic structures of features common to all products in the family. The concept
of developing afamilyof products by exploiting their commonalities have been under investigation
since early 70’s [13] [14]. However, the increasing complexity of software systems coupled with
time-to-market constraints, have renewed much interest in investigating the different aspects of
this topic over the last few years. Thus, several methods and techniques for engineering software
product-line have been developed, e.g. [1] [10] [22] [16].

Application
Engineering
Enviroment

Application
Engineering

1
Prodcut

− Domain Specific
 Language (DSL)

− Tools

− Application
 Engineering
 Process

Domain Engineering
Domain

Feedback

2
Prodcut

n
Prodcut

Figure 1: A generic structure of product-line engineering development [1].

A key common step in most product-line engineering techniques is to identify common con-
cepts among all products in the family, and to define the variation space of these concepts. These
commonalities and variabilities play a central role in identifying the domain scope of the product
family, and in evolving the base system of the family. In addition, commonalities and variabilities
are important for the design and the development of domain-specific languages and tools needed
for engineering the different products in the family.

However, when domains evolve, due to paradigm shifts and technological advances, the identi-
fied commonalities and variabilities may change, as concepts may need to be modified or replaced,
or even new concepts may need be added to the system. Such changes, therefore, need to be reflect
into all developed languages and tools. The ripple effect of domain evolution may greatly under-
mine the principle of adapting product-line techniques as maintaining domain languages and tools
may overshadow the benefits gained from the systematic reuse.

In this paper, we first investigate the impact of domain dynamics on product-line development
activities. Then, we illustrate our current research on developing an approach to reduce such an
impact using the notion of software stability model [5].

The reminder of the paper is organized as following. Section 2 reviews the basic concepts
of product-line engineering. Domain dynamics and their impact on product-line engineering ac-
tivities are discussed in Section 3. Sections 4 and 5 present the proposed approach. The paper
concludes in Section 6.

2. Product-Line Engineering
A typical product-line engineering process consists of two main activities (See Figure 1) [1]:Do-
main EngineeringandApplication Engineering:

• Domain Engineering.Domain engineering focuses on developing reusable assets required
to evolve the different products in the family. A key activity in domain engineering isdomain
analysis. Domain Analysis (or DA, for short) [12] is the activity of capturing the common

features among the different products in product family, and parameterizing the variation
space of these features. In addition, DA methods provides guidelines for exploiting iden-
tified commonalities and variabilities into reusable assets for future reuse. Several domain
analysis methods have been proposed in the literature, e.g. [3] [9] [10] [15] [17] [19] [20]
[21] [2] [11]. The main product of the domain engineering activities is the development
of application engineering environments (See Figure 1). The application engineering envi-
ronment consists of the necessarily domain-specific models and languages, and the required
tools to support the engineering of the different products in the family.

• Application Engineering. Application engineering activities focus on the process of de-
veloping the different products in the family. These activities include the generation of the
product specification and the selection, customization, and integration of the appropriate as-
sets to implement a specific product in the family.

3. The Problem
In this section, we explain the concept of domain dynamics, and then investigate the impact of the
evolution of the domain on the activities of product-line engineering.
3.1 Domain Dynamics
Domains can evolve overtime to reflect paradigm shifts or technological advances. This fact, how-
ever, is neglected in most existing product-line engineering methods. Most existing DA techniques,
for example, identify a set communalities and assume that these communalities are“stable” , i.e.
they are enduring in the domain. This assumption, however, may not always hold. In fact, several
features that appear to be common to the products of a given domain may become“unstable” over
time, and sometimes they even disappear as new technologies emerge. As a result, domain models
developed based on these “unstable” commonalities become unstable too, and hence, they may
require significant modifications over time.

To illustrate the concept of stable and unsable communalities, consider the example of de-
veloping a family of telecommunication routers. In telecommunication networks, a source and a
destination are connected through some intermediate routers. These routers are dynamically con-
figured in order to establish the required connection. A router consists of several modules includ-
ing: theswitch unitand thecontrol unit. Switch unit has input ports and output ports for receiving
and sending signals, respectively. The control unit consists of control circuits and algorithms to
configure the switch unit.

A possible domain model that captures the commonalities among electronic routers is given
in Figure 2. The model can be used to develop different types of routers by adding/removing
additional components to the model shown in Figure 2, and by adjusting the parameters of the
different features and components in the model. For example, one can adjust the size and the type
of the “Memory” to develop different models of the same type of routers. Also, one can change the
type of the router by adding/removing the appropriate components. For example, we can develop
an ATM (Asynchronous Transmission Mode) router (Figure 2), or replace the ATM switch with an
IP (Internet Protocol) switch to develop an IP router.

However, when the domain evolves, the model shown in Figure 2 may require considerable
changes. To illustrate this, consider for example the OEO (Optical-Electronic-Optical) convert-
ers unit shown in Figure 2. OEOs are indeed one of the main building blocks for any electronic
router. However, with the continuing advances in optical technologies and devices, future routers
are expected to operate in the optical domain, where no OEOs are needed. In such a case, the

Switch
ATM

Electrical
Wire

Port

Control
Circuit

Electronic
Switch

Converter
OEO

Input
Port

Output
Port

Buffer

Memory

Figure 2: Portion of the domain model of an electronic router.

domain has not changed per se, we are still interested in developing telecommunication routers but
with different type of technology. In complex architectures, accommodating such evolution may
be very costly as several changes may be required.

3.2 Impact of Domain Dynamics on Product-Lines
Experiences reported with adapting product-line engineering techniques suggest that, productivity
can be increased if domain specific languages and specialized tools are developed based on the
concepts of the domain itself [1] [23]. This is because, generic modeling languages (e.g. the
Unified Modeling Langauge) need to be customized and/or extended to reflect the concepts of the
domain and to accommodate the parameterized variability space of products in the family; a task
that, if possible, can become complex, error prone, and of course expensive.

However, when the domain evolves, a chain of changes may be required in order to adapt the
developed domain language and its associated tool sets. These modifications, if possible, may be-
come complex and time consuming, error prone, and of course expensive.

4 The Proposed Approach
In this section, we present the underlying principle of an approach that we develop in order to
alleviate the impact of domain dynamics on product family development activities.4.1 Approach
Overview
In order to reduce the impact of domain dynamics on the different activities in product-line engi-
neering processes, we suggest that:

“domain analysis methods, and in particular the techniques used for identifying com-
monalities and variabilities, should isolate the common“core concepts”of the domain
form concepts that are likely to change overtime,even if these concepts appear to be
“common” to all the products in the family”.

For example, in the analysis of electronic routers, we may identify“storing” as a common
concept among all routers. Whether developing electronic or optical routers, the concept of “stor-
ing” is still valid, although the realization of the concept can be quite different1. Thus, the new

1For example, in optical routers; the notion of Buffers cannot be explicitly realized because of the current lack of

Control
Unit

Switching
Devices

Management

Electronic
Switch

Control
Circuit

Port

Input
Port

Output
Port

Electrical
WireSwitching

Conversion

Storing
Storage
Elements

Buffer Memory

Converter
OEO

Switch
ATM

Figure 3: Portion of the domain model of an electrical router applying the new vision.

commonality model contains “Storing” as a component. Should the type of the router change, or
new storage technologies evolve, the domain must not be reanalyzed from scratch.

Figures 3 and 5 shows portions of the domain models of an electronic and an optical routers,
respectively, using the new approach. It is worth noting that the two architectures have several ele-
ments in common. In particular, they share all thecore conceptsof the domain such as “switching”,
“management”, “conversion”, and “storing”.

Now, consider a simple domain evolution scenario, where a new optical device that cansimul-
taneouslyswitch and convert optical signal has become available. An example of such a device
is the Wavelength Exchanger Optical Crossbar (WOC) proposed in [8]. In such a case, all the
elements related to the conversion concept can be removed from the model (See Figure 4). It is
worth noting that such a change does not affect the other components in the model.

The above approach for developing domain models leads naturally to a new approach for con-
structing domain-specific languages and engineering tool sets for developing the products of the
family. In particular, we suggest that domain-specific languages shoulddirectly map the core
concepts of the domain into language constructs.These constructs provide appropriate extension
points for binding the required features of a given product, which will be identified during the
requirement specifications in the process of application engineering.

4.1 Separation of Concepts
When domains evolve, some common core concepts may need to be removed and/or new concepts
may be added. In large and complex domains, modifying the domain model may lead to major

optical technology. Physically, signals are stored in the optical domain by being delayed through multiple fiber-delay
loops (FDLs).

Control
Unit

Switching
Devices

Management Control
Circuit

Switching

Conversion

Storing
Storage
Elements

Memory

Port

Input
Port

Output
Port

Switch

FDL

OBS

Converter
WC

WOC

Fiber

Figure 4: Portion of the domain model of an optical router under domain evolution.

changes due to the ripple effect of some of the changes. In the worst case, the overall model may
collapse forcing a new domain engineering process. To avoid this, one may think of the domain
model as a collection ofconcept unitsinstead of a set of individual concepts. For example, in
Figure 5, two units are highlighted (the dashed boxes), one unit encapsulates concepts related to
the “switching” functionality, whereas the other unit consists of the concepts related to the “con-
version” process. Adapting the domain model for future changes may be achieved by only adding
and removing appropriate concept units. This further abstraction of the domain model can reduce
the complexity of the model and hence minimize the impact of domain evolution on the model and
all associated activities.

5 Realizing the Approach
To realize the above approach, two main questions need to be answered:

1. How to identify the core common concepts of a domain? and

2. How to group different concepts into units that can be added and removed with minimal
impact on the rest of the model?

To answer the above two questions, we developed an approach that applies the concepts of
Software Stability Model(SSM) [5] to identify the common and stable concepts of the domain. In
addition, in order to separate and encapsulate concepts into different concept units, the approach
uses the mathematical theory ofFormal Concept Analysis(FCA) [18] along with a set of quantita-
tive metrics, similar to those we proposed in [7].

Control
Unit

Switching
Devices

Management Control
Circuit

Switching

Storing
Storage
Elements

Memory

Fiber

Port

Input
Port

Output
Port

Converter
WCConversion

Switch

FDL

Switch

OBS

Optical

Figure 5: Portion of the domain model of an optical router.

5.1 A Brief Background
The proposed approach is based on two main notions: theFormal Concept Analysis(FCA) theory
[18] and theSoftware Stability Model(SSM) [5]. FCA is a mathematical framework that can be
used to represent and analyze data and their relationships [18]. A formal concept is defined as a
pair (O,F), such thatβ(O) = F andα(F) = O, whereG is a set of objects;F is a set of features;
O ⊆ G; andF ⊆ M . β(O) is an operator that is defined as the set of features shared by all the
objects inO. Similarly,α(F) is defined as the set of objects that share all the features inF .

SSM is a generic layered approach for modeling software that classifies the classes of the sys-
tem into three layers:Enduring Business Themes(EBTs): contains the enduring and core knowl-
edge of the underlying business;Business Objects(BOs): contains classes that map the EBTs of
the system into more concrete objects; andIndustrial Objects(IOs): IOs are classes that map the
BOs into concrete objects. In a banking system, for example, one possible EBT is “ownership”;
without an “Ownership”, there is no account. “Account” is a BO, while a “SavingAccount” is a
concrete “Account”, and hence it is an IO.

5.2 Main Activities
In the following, we provide a brief overview of the main activities in our approach:

• Phase 1: Analysis Phase.In this phase, first the common generic requirements of the differ-
ent products are analyzed using existing analysis and requirements engineering techniques.
This step produces a set of common Functional and Non-Functional Requirements. Next,
the domain is analyzed using the concepts of SSM (See Section 5.1) in order to identify the
EBTs, BOs, and IOs of the domain. In addition, a use-case model is developed and use-case

scenarios are identified and specified. Finally, a set of core concepts in the domain are iden-
tified. Each core concept is matched with a set of use cases that realizes this core concept.
For example, the“Security” concept can be matched with a set of use cases that includes the
VerifyPasswordand theUserLoguse cases.

• Phase 2: Formal Concept Analysis Phase.In this phase, we first construct the formal
context of the domain withG being the set of the EBTs; BOs, and IOs of the domain, andM
being the set of all the use cases identified in Phase 1. In the formal context, anX is placed
in the intersection between a element inG and a use case inM , if the element is a participant
in this use case. Next, we generate the formal concepts of the system2. It should be noted
that, not all the generated formal concepts are relevant concepts. For example, some formal
concepts may violate the structure of the SSM, and hence, they must be eliminated. The
elimination of irrelevant concepts is accomplished by identifying a set offiltering rules. A
rule is a predefined constrain that should be satisfied by each concept for it to be relevant
to the domain. One rule, for example, may emphasize that a relevant formal concept must
contain one or more EBTs. Any concept that violates this rule must be eliminated.

• Phase 3: Concept Encapsulation Phase.This phase quantifies the relationships between
the core concepts (Phase 1) and the computed formal concepts (Phase 2) of the domain.
The result of this phase is a set of formal concepts that decompose the domain into stable
units. This phase consists of two main steps. The first step decomposes the domain into a set
of “Clusters” . Each cluster is a collection of formal concepts that realizes one of the core
concepts in the system. A cluster “realizes” a given core concept, if and only if, the union
set of the use cases of all the formal concepts in the cluster forms asuper setfor the set of
the use cases of the given core concept.

It may be noted that, for a given core concept there can be several clusters that realize this
concept. Thus, the second step in this phase is to select the one cluster among all possi-
ble clusters to realize a given core concept. To achieve this, we quantify the relevance of
each cluster in the domain with respect to a given core concept using the following four
quantitative metrics:

1. Coverage Percentage:measures the percentage by which a cluster covers a given core
concept. This metric assigns a negative weight that is proportional to the relative size
of the use case sets of the cluster and the core concept. Clusters with less redundant
use cases can reduce the possibility of overlapping clusters in the final decomposition
of the domain. The less this overlap is, the simpler the model becomes;

2. Coupling Index:measures the average interaction between a given cluster and all the
core concepts of the domain. The objective here is, again, to reduce the overlap possi-
bility between the set of clusters if the final decomposition of the domain;

3. Stability Index:measures the level of stability of a given cluster. That is, how enduring
the cluster is in the domain under consideration;

4. Quality Factor: computes the overall quality of a given cluster with respect to each
core concept by assigning weights to each of the previous three metrics. The weight
of each metric is adaptable and depends on several factors, such as the nature of the
domain and its evolution rate.

2http://www.st.cs.uni-sb.de/∼ lindig/ (online)

Based on these metrics, we can identify the best cluster to realize each core concept in the
domain. Effectively, we have decomposed the domain into a set of clusters, each can be
manipulated separately.

One of the main challenges in the proposed approach is that, some of the core concepts may not
be separable as they significantly cross-cut other concepts in the system. To solve this problem,
we introduced the notion of“Autonomous” concepts and“Distributed” concepts3. The former
are concepts that can be isolated and encapsulated into stand-alone units, whereas the later are
concepts that cross-cut other concepts, and hence, they cannot form a stand-alone unit. Based on
this classification, we developed two approaches to handel each of these two concept types when
evolving the model of the domain.

6. Conclusions
In this paper, we define and discuss the impact ofdomain dynamicson the different activities of
product-line engineering. We investigate how the evolution of the domain can adversely affect
domain models and other components that are based on these models. To avoid this problem, we
suggest an approach that identifies the“core” common concepts of the domain instead of just con-
sidering the common concepts among the products of the domain as in most existing product-line
engineering methods. These core concepts are used to develop a core domain-specific language
that can be easily adapted when the domain evolves. This work still in its preliminary stages and
further investigation and validations are certainly needed. However, we believe that the proposed
approach holds the promise to alleviate the impact of domain evolution on the different activities
and products of the product-line engineering paradigm.

References

1. D.M. Weiss and C.T.R. Lai. Software product-line engineering: a family-based software
development process. Addison Wesley, 1999.

2. G. Arango. Domain analysis methods. In Software Engineering, W. Schaefer and D. Diaz,
Eds., New York: Ellis Horwood, 1994.

3. S.C. Bailin, et al.,‘KAPTUR: knowledge acquisition for preservation of tradeoffs and under-
lying rationales,Proc. 5th knowledge-based Software Assistant Conference,1990.

4. J.M. Buxton, P. Naur, and B. Randell, (editors) “Software engineering concepts and tech-
niques1969 NATO Conference of Software Engineering.NATO Science Committee, Brus-
sels, 1969.

5. M. E. Fayad, A. Altman, ”Introduction to Software Stability”,Communications of the ACM,
vol. 44, no. 9, Sept. 2001.

6. J. Greenfield, and K. Short. “Software Factories: Assembling Applications with patterns,
Models, Frameworks and Tools’” Proc. of 18th ACM Conference on OOPSLA03,pp. 16-27.

3Distributed concepts can be viewed asaspects. However, we prefer to use different name to avoid the confusion
between the two notions, as each is handled differently.

7. H.S. Hamza, “Separation of concerns for evolving systems: a stability-driven approach,”
Proc. of 1st ICSE05 Workshop in Modeling and Analysis of Concerns in Software (MACS2005),
pp. 57-61, 2005.

8. H.S. Hamza and J.S. Deogun,“Architectures for WDM Benes network with simalteneoues
space-wavelength switching capabilities,”Proc. 2nd IEEE Int. Conf. on Broadband Net-
works (BROADNETS 05), (To appear).

9. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-Oriented Domain Analysis
(FODA) Feasibility Study,Tech. Report CMU/SET-90-TR-021,SE I, Nov. 1990.

10. R. McCain, “Reusable software components construction: a product oriented paradigm,
Proc. 5th AIAA/ACM/NASA/IEEE Computers in Aerospace,1985.

11. H. Mili et al. Reuse-based software engineering. John Wiley Sons, Inc. 2002.

12. J. Neighbors, “Software Construction using components, PhD Thesis, Dept. of Information
and Computer Science, U. of California, Irvine, 19981.

13. D.L. Parnas, “On the criteria to be used in decomposing systems into modules,”Communi-
cation of the ACM,vol. 15, no.12, 1972.

14. D.L. Parnas, “On the design and development of program families,”IEEE Transactions on
Software Engineering,March,1976.

15. R. Prieto-Diaz, Domain analysis for reusability,” Proc. 11th Annual International Computer
Software and Applications Conference (COMPSAC), 1987.

16. P. Predonzani, G. Succi, and T. Vernazza. Strategic software production with domain-
oriented reuse. Artech House, 2000.

17. W. Vitaletti, and E. Guerrieri, “Domain analysis within the ISEC rapid center,Proc. 8th
Annual National conf.on Ada Tech., 1990.

18. R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts. In I.
Rival, editor, Ordered sets, Reidel, Dordecht-Boston, 1982, pp. 445-470.

19. Reuse-Driven Software Process Guidebook,Software Productivity Consortium, VA, 1993.

20. Reuse Adoption Guidebook,SPC-92051-CMC, SPC, VA, 1993.

21. SofTech, Inc., Domain Analysis and Design Process,Do. 1222-04-210/30.1, DISA-CIM
Software Reuse Program Office,1993

22. J. Greenfield and K. Short. Software factories: assebling applications with patterns, models,
frameworks, and tools. Wiley Publishing, Inc. 2004.

23. R. Pohjonen, J.-P. Tolvanen, “Automated Production of Family Members: Lessons Learned,”
Proc. OOPSLA International Workshop on Product Line Engineering The Early Steps: Plan-
ning, Modeling, and Managing ,2002. http://www.plees.info/Plees02/plees02.htm

