Trandlation Patternsto Specify Processes

in the PSL Ontology

Arturo J. Sanchez-Ruiz Gregory Hansen
University of North Florida— CIS Department Computer-Aided Process | mprovement
4567 St Johns Bluff Rd S 830-13 A1A North, Suite 327
Jacksonville, FL 32224-2669, U.SA Ponte Vedra Beach, FL 32082, U.S.A.
asanchez@unf.edu http://www.capi.net/

Abstract — PSL stands for Process Specification Language, an ontology developed by the
National Ingtitute of Standards and Technology (NIST) to formally describe concepts, along
with their properties and relationships, in the context of manufacturing systems. In this paper we
derive patterns that can be used to describe processes comprised of activities, which can be
either complex or primitive. We discuss the cases of processes described by sequential and
concurrent composition of activities.

Keywords. Process Specification Language (PSL), domain-specific ontologies, manufacturing
systems, visual modeling of manufacturing processes, interoperability of manufacturing systems.

1 Introduction

The Process Specification Language (PSL) is an ontology developed by the National
Ingtitute of Standards and Technology (NIST) with the goal of providing a domain- and tool-
neutral representation of manufacturing processes. One of the main implications behind achieving
this goal is that of enabling interoperability among disparate process manufacturing/modeling
tools. By giving PSL the role of mediator, any two tools can interoperate provided that a
mapping is built, between the underlying ontologies such tools use to describe processes, and
PSL. This represents a linear approach to interoperability as opposed to the quadratic all-to-al-

mapping approach.

In Section 2 of this paper we give a gentle introduction to the PSL ontology for the theories that
we use in our trandation patterns. At the end of this section we present an annotated example
with the goal of helping readersto follow our approach.

Section 3 discusses how we derived our trandation patterns for processes described by the
sequentia composition of complex and primitive activities. Section 4 discusses the case of
concurrent composition of activities.

The paper concludes with Sections 5 and 6, which present how our approach compares to others
that have appeared in the literature, and a summary with some ideas for future work, respectively.

The relevance of this paper to this workshop stems from the fact that PSL can be seen as a
domain-specific model, in this case the domain is that of manufacturing processes, and also as a

mailto:asanchez@unf.edu
http://www.capi.net/

common (formally specified) lingo that can be used to achieve interoperability among disparate
tools. It is therefore important to derive patterns that can be used to express processes based on
the concepts specified by this ontology.

2 ThePSL Ontology

The PSL ontology is structured as a set of theories in first-order logic, whose axioms and
definitions are presented using the Knowledge Interchange Format (KIF) [1]. The so-called
“pd_core’ theory (Tps_core) defines fundamental concepts (e.g. “activity”). Other theories are said
to extend the core in that they introduce concepts to supplement those already in Tpy core. FOr
instance Tsubaciviy Provides axioms to characterize the fact that, for instance, given two activities
(say x and y), x is asubactivity of y and that y might have not subactivities associated with it. In
this section we give brief * intuitive descriptions of the theories that are used in this paper and an
annotated example that will allow us to show their use when defining process relationships in
PSL. A comprehensive coverage of PSL is beyond the scope of this paper. Detailed information
can be found in the website maintained by NIST [2] and in the literature cited in section “Related
Work” of this paper.

2. 1 Tpg_core

In this paper we use two concepts of this theory, namely activities and their occurrences (i.e.
activity occurrences). Activities can have many or no occurrences, and a specific occurrence is
associated with a unique activity. Table 1 shows the KIF terms used to refer to these concepts and
their intuitive meanings.

Table 1: Activities and their occurrencesin PSL?

(activity ?a) ?2ais an
activity
(occurrence_of ?0 ?a) |70 is an
occurrence of
activity ?a

2.2 Tsubacti vity

When activity x is a subactivity of activity y, theny is called “complex”. Activities that do not
have subactivities are caled “primitives’. Table 2 shows the corresponding KIF terms.

Table 2: Complex and primitives activities

(subactivity ?x ?y) |[?x is a
subactivity of ?y
(primtive ?x) ?x does not have
subactivities

1 We will not describe all axioms and definitions associated with these PSL theories but rather those (theories, axioms, and
definitions) used in this paper.

2 In KIF, the expression “?x” denotes a variable, to differentiate it from a potential value of this variable such as “x”.
Therefore, theexpression (acti vity eat) indicatesthat “eat ” isan activity.

2- 3 Tocctree

In PSL, the occurrence tree characterizes all possible sequences of activity occurrences (for all
activities in the world under modeling). A given process can therefore be characterized by some
subtree of this tree, which is caled an occurrence tree. This implies that an occurrence tree may
have branches that may not make sense in the world under modeling (i.e. they are “illegal”). Table
3 shows the KIF terms that are used to reason about occurrences.

Table 3: Terms associated with occurrence trees

(successor ?a ?0) Denotes an
occurrence of
?a that follows
occurrence ?0
in the
occurrence tree
(I egal ?0) ?20is a lega
occurrence in

t he occurrence
tree

24 Tcomplex

Suppose that activity x is composed of subactivitiesy and z, and that these two are primitive
activities (hence, x is complex). This theory introduces terms to reason about the connections
between occurrences of x and occurrences of y, and z. An activity tree for x is defined as all the
possible sequences of primitive activity occurrences of y and z. Equivaently, an activity tree
characterizes a complex occurrence, that is to say, the occurrence of a complex activity. Notice
that all activity trees are occurrence trees, but not vice-versa. The following table shows the term
that expresses when a subactivity occurrence is the strict successor of another in an activity tree.
Notice that this term does not rule out the possibility of having another subactivity occurrence,
say 703, that follows ?01, aslong as ?03 is not an occurrence associated with a subactivity of
?a.

Table 4: Strict successor of a subactivity occurrence in an activity tree

(next _subocc ?01 ?02 ?a) | Subactivity
occurrence ?02
is the successor
of subactivity
occurrence ?ol
inaactivity
tree for ?a, and
there are no

ot her
subactivity
occurrences of
?a in between

t hem

2- 5 Tactocc

This theory provides the elements to reason about subactivity occurrences in connection with
complex occurrences. The terms used in this paper are shown in Table 4. The intuition associated
with the “root” and “leaf” primitive occurrences is that they mark the “beginning” and the “end”
of complex occurrences, and therefore they do not admit occurrences before and after them,
respectively.

Table 5: Terms associated with complex activity occurrences

(subactivity_occurrence ?0l1 ?02) | The primtive
occurrence ?0l
is part of a
conpl ex
occurrence ?02
(1 eaf _occ ?01 ?02) Primtive
occurrence ?o0l
is the | eaf of
conpl ex
occurrence ?02
(root _occ ?01 ?02) Primtive
occurrence 20l
is the root of
conpl ex
occurrence ?02

2.6 An annotated example

Congder a complex activity a, with primitive subactivities al and a2, respectively. Assume that
we want to express the process characterized by occurrences of al followed by occurrences of
a2, such that:

§ There are no occurrences before al and after a2.

8 There are no occurrences of a between al and a2.
Such process can be specified in PSL as shown in Table 6, using the theories that were described
in previous sections. Table 7 shows away or reading this specification in “plain English”.

Table 6: A smple sequentia processin PSL

[1] (activity a)

[2] (activity al)

[3](activity a2)

[4] (subactivity al a)

[5] (subactivity a2 a)

[6] (primitive al)

[7](primtive a2)

[8] (forall (?occ_a)

[9] (inplies

[10] (and (occurrence_of ?occ_a a)
[11] (legal ?occ_a))

[12] (exists (?occ_al ?occ_a2)
[13] (and

[14] (occurrence_of ?occ_al al)

[15] (l egal ?occ_al)

[16] (occurrence_of ?occ_a2? a2)

[17] (l egal ?occ_a2?)

[18] (subactivity_occurrence ?occ_al ?occ_a)

[19] (subactivity_occurrence ?occ_a2 ?occ_a)
[20] (root_occ ?occ_al ?occ_a)

[21] (next _subocc ?occ_al ?occ_a2 a)

[22] (leaf _occ ?occ_a2 ?occ_a)))))

Table 7: The PSL specification in “plain English”

[1]1 et a be an activity
[2]1et al be an activity
[3]let a2 be an activity
[4]1et al be a subactivity of a
[5]let a2 be a subactivity of a
[6]let al be primtive
[7]1et a2 be primtive
[8]for all ?occ_a:
[9] if
[10] ?occ_a is an occurrence of a and
[11] “?occ_a is legal, then
[12] there exist ?occ_al, ?occ_a2, such that
[13]
[14] “?occ_al is an occurrence of al, and
[15] ?occ_al is legal, and
[16] ?occ_a2 is an occurrence of a2, and
[17] ?occ_a2 is legal, and
[18] ?occ_al is a
subactivity occurrence of ?occ_a, and
[19] ?occ_a2 is a
subactivity occurrence of ?occ_a, and
[20] ?occ_al is the
root occurrence of ?occ_a, and
[21] ?occ_a2 strictly follows ?occ_al in
the activity tree of a, and
[22] ?occ_a2 is the | eaf occurrence of ?occ_a

3 Trandation Patterns: Sequential Composition

The previous section concluded with what can be considered our first trandation pattern,
which we would like to call P1 — Sequential Compostion of two Primitive Activities. In this
section we will show a progression of generalizations of this pattern.

3.1 P2 Generalized Sequential Compostion of Primitive Activities

Let a be a complex activity comprised of a sequence of primitive activities al, .., an, where
n>1. We will assume that:

8 There are no occurrences before al and after an

8 Thereare no occurrences of a betweenai andai +1, fori =1, .., n- 1.

In order to generalize P1, we first define in Table 8 some functions that produce trandation
strings from their arguments.

Table 8: Template functions used to build P2

Decl arations(a, al,..,an):=
(activity a) (activity al).(activity an)
(primtive al).(prinmtive an)

Exi st P(al, ..,an):= (?occ_al ...?occ_an)

Legal _Cccurrences(al, ..,an): =
(occurrence_of ?occ_al al) (legal ?occ_al)

(occurrence_of ?occ_an an) (legal ?occ_an)
Subactivities(a,al,.,an):=

(subactivity_occurrence ?occ_al ?occ_a)

(subactivity_occurrence ?occ_an ?occ_a)

Root P(a, al): =
(root _occ ?occ_al ?occ_a)

Next P(a, al, ..,an): =
(next _subocc ?occ_al ?occ_a2 a)

(next _subocc ?occ_an-1 ?occ_an a)

Leaf P(a, an): =
(1 eaf _occ ?occ_an ?occ_a)

In Table 9 we show how to use these functions to define P2 by generalizing regions in the PSL
specification of Table 6.

Table 9: Trandation Pattern P2

Decl arations(a, al, .. an)
(forall (?occ_a)
(inmplies
(and (occurrence_of ?occ_a a) (legal ?occ_a))
(exists ExistP(al, .., an)
(and
Legal COccurrences(al, .., an)
Subactivities(a, al,..,an)
Root P(a, al)
Next P(a, al, .., an)
Leaf P(a,an)))))

3 The suffix “P” used as part of the name of some of the functions means “ Primitive”. Later in the paper we will use “C” for
“Complex”.

3.2 Activity dependency treesand activity execution trees

Pattern P2 in Table 9 models processes as complex activities that can be expressed as the
sequential composition of primitive ones. In this section we generalize this idea by alowing
processes to be expressed as sequential composition of activities which can be either complex or
primitive.

An activity dependency tree (ADT) models the PSL subactivity relation and has two types of
nodes. Interna nodes are associated with complex activities, and leaves are associated with
primitive activities. For an internal node x, the descendants of x are associated with the
subactivities of x. These subactivities can be either complex or primitives. The root of this tree
characterizes the whole process under modeling.

An activity execution tree (AET) is an ADT such that its depth-first traversal characterizes
activity occurrence sequences that are legal in association with the process under modeling, in the
sense that if we take any given sequence of legal occurrences in the process description, and
change the name of each occurrence for its corresponding activity, then this sequence is a
subsequence of the depth-first traversal of the AET, and vice-versa.

The following are examples of ADT (see Figure 1) and AET (see Figure 2). Circles represent
internal nodes, and rectangles represent leaves. For the AET we have added arrows to emphasize
the depth-first order.

Given an AET T, the PSL characterization of the process that is described by the sequence of
primitive activities resulting from the depth-first traversal of T can be obtained by applying
pattern P2 with “a” being the root of the tree and al, .., an being the leaves of T in depth-first
order. As an example, consider the subtree of AET in Figure 3 with root “Build Structure”, which
has as descendants only “Paint Walls’, and “Build Walls’. In this case, the PSL characterization
of this process is obtained after applying pattern P2 with a="Build Structure’, al="Prepare
Concrete’, a2="Let Dry”, a3="Take out Cast”, a4="Paint”, a5="Dry”, a6="Polish”.

This approach "flattens' the AET, and therefore does not express in PSL dependencies among
inner nodes and leaves. In order to accomplish this we would need a pattern that does not require
theal, ..., aninP2to be primitive.

In order to model the cases for which descendants of complex activities can in turn be complex,
we can introduce activity occurrences that model the root and leaf of such complex activities. So
every time a complex activity is “vigted” (in the depth-first traversal) we use the primitive
occurrences that span from the primitive root occurrence, to the leaf root occurrence of such
complex occurrence. This leads to the creation of new template functions which are shown in
Table 10. We can use these functions to build P3 that we call “Generalized Sequential
Composition of General Activities Pattern (GSCGAP)” (see Table 11).

3.3 Generatingthe PSL code associated with an AET

We are now in a position to give a general algorithm to generate the PSL code associated with an
Activity Execution Tree by iteratively usng P3. In our notation, GSCGAP(x) computes a string
that contains the PSL code associated with node x in the AET. This string corresponds to the
application of P3 to the sequential composition al, a2, .., ak(x) where the ai are the
descendants of x in the AET. Notice that each ai can be either primitive or complex. The
agorithm is shown in Table 12.

<8 T
Cunstruct\
House /
s e
T e =
et - . T,
. o e e . s .
e - L T
/.’ e _(//— “\\ /
Install / Build
Bulld R
(\Windows) \ uillis Root) Structure
e o ‘\\._ //
S . _.H-:' _,-rf.f
//z ez T P ":\—’ // .
. Assemble .
talnt Wal9 < Walls > <Bu|ld Wnl%
A
. 4 e ~ #
TR T
- .. Pt / N e
B ~ P / . .,
,,»’/ / I L ’ //) . o T
1 I
i 2 ¢ Prepare Pour Let Take out of
H
| Paint I l Dry I Polish i Concrete ‘ Concrete ‘ 1 Dry ‘ Cast
Figure 1: Example of ADT
C-nnstruct
Huuss
- ’\ ——
//’_‘:_k ;Hh\
Build Install
(Eitructure/} 'Glndnws BUikERCo)
e \\
= SR
o
e T
e R —_
,_L R -
T e
o T e -
- /L"‘-_\‘ (/h.
é““d WALES | oo ettt v Assemble ,.lf:ia“-d Walls
Walis !\
\\\\ e R /
- - R
-~ ;7'5“" — ./T -
Py e Pl ~
P . P ~-.
o . R o e
e ya N . o \ .
o J/ ™ _ e -
Prepare Pour : Let .| Take out of . 2
‘ Concrete Concrete .- Dry Cast : At ‘ " Dry l g S

Figure 2: Example of AET

Table 10: New template functions

Exi st C(al, ..,an): = (?occ_al ...?0cc_an
?root _al ?leaf _al ...
?root _an ?l eaf _an)

Root Leaf Ccc(al, ..,an): =
(root _occ ?root_al ?occ_al)
(leaf _occ ?leaf _al ?occ_al)

(root _occ ?root_al ?occ_al)
(leaf _occ ?leaf _al ?occ_al)

Root C(a, al): = (root_occ ?root_al ?occ_a)

Next C(a, al, ..,an): =
(next _subocc ?l eaf _al ?root_a2 a)

(next _subocc ?leaf _an-1 ?root_an a)

Leaf C(a, an): = (|l eaf _occ ?leaf _an ?occ_a)

Table 11: Trandation Pattern P3

Decl arations(a, al, .. an)
(forall (?occ_a)
(inmplies
(and (occurrence_of ?occ_a a) (legal ?occ_a))
(exists Exist(C(al, .., an)
(and
Legal _Cccurrences(al, .., an)
Subactivities(a, al,..,an)
Root Leaf Ccc(a, al, .., an)
Root C(a, al)
Next C(a, al, .., an)
LeafC(a,an)))))

Table 12: Algorithm to generate the PSL code associated with an AET

Al gorithm Generates the PSL code associated with an AET
| nput :
T: AET
Qut put :
psl: String that contains the PSL code associated with T
Met hod:

String psl = enpty_string;
for each (node x in T in depth-first order)
if (x is conplex)
psl = psl + GSCGAP(x)

4 Trandation Patterns: Concurrent Composition

When modeling “concurrency” it is important to first define the interpretation the modeler is
giving to the term. Two acceptations of the term that are often found are:

a) A single processor must execute various processes. Each process is conceived of as a
sequence of tasks (each of them usually considered to be atomic in the sense that their
execution is not interrupted). The processor executes tasks from each process in an
interleaved manner. A redl-life example that conforms to this mode is the way some
people play chess with various opponents. The person in question would be the processor.
The processes would be the games associated with each opponent. At any moment the
player is playing with exactly one opponent. However, if atime line were plotted showing
the progress of each process it would depict each game evolving in an interleaved way
without overlapping.*

b) There are specialized processors for various classes of tasks, and they must execute
various processes. Since it is usually the case that they must cooperate, there can be some
dependencies among them. One way of exposing such dependencies is by building a
“dependency graph”. In the graph, there is a directed edge from u to v if and only if task u
must finish before task v garts (i.e. v depends on u). A topological sort of this graph
reveals independent threads of execution [3]. Each thread is a sequence of tasks and
threads can be executed in parallel among themselves. A time line showing the progress
of computation shows overlapping of execution among the threads. A rea-life example
that conforms to this model is a jazz ensemble. The processors would be the players and
the processes would be the music they play.

When modeling processes using “fork/join” nodes in activity diagrams found in UML2 [4], the
second interpretation seems to be the one that better suits their intended semantics. An example
from the wine-making application domain can be seen in Figure 3. We are adopting this graphical
notation to represent concurrent processes.

From the perspective of the PSL ontology, theory Taomic introduces the concept of atomic
activities as a specialization of the concept “Activity” and a generalization of the concept of
“Primitive Activity”. Additionally, this theory introduces the concept of concurrent compostion
of atomic activities“conc (al, a2)” which defines a new atomic activity as the composition
of al and a2. This new activity can be referred to as awhole in the description of a process.

The following section describes an approach to generate the PSL code associated with a process
specified using fork/join nodes.

4 Sometimes thisis called simultaneous chess playing, even though none of the games progress simultaneously.

4.1 Specifying implicit parallelism in PSL

This approach is equivalent to expressing in PSL a dependency graph associated with activities.
This implies that if two given activities are dependent among each other, then the use of
“m n_precedes” (of theory Teompiex) €Xpresses the enforcement of the required execution
sequence.

Activities that are not dependent among each other are considered to proceed concurrently (or,
more precisely, in paralel). To fix ideas, let us consider the diagram in Figure 4, which
corresponds to a certain activity “a” whose subactivities are “x”, “y”, and “z”. The PSL code
associated with this diagram is presented in Table 13.

Feceiwve Grapes=

!

Crush Grapes

4

Separate Licaids

Free Run Solid Process

X !

Screen Free Bun Licuid Press Solids
Chill Liguid Chill Liguid

Settle Licpaid

Store Liguid

Figure 3: Process with fork/join nodes

For the sake of brevity, we have omitted the predicate “(| egal 7?occ..)” associated with
occurrences “?occ..”.

We define a “fork/join-to-fork/join path” (or fj-path) to be a sequence of activities that emanate
from a fork-join node and culminate in a fork-join node. Figure 5 shows the fj-paths associated
with the activity diagram in Figure 4. If we were able to decompose a given activity diagram into
its fj-paths, we could smply apply pattern P3 (see Table 11) to generate the code associated with
such paths, and then use the technique shown in Table 13 to enforce dependencies at the fork/join
nodes. The algorithmin Table 14 summarizes the idea.

If we apply the algorithm to the diagram in Figure 3, we have:

The decomposition into fj-paths would yield { Fj-p1, Fj-p2, Fj-p3, Fj-p4}.
Fork/Join nodes are n1 and n2.

I(nl) = { Separate Liquids}

[(n2) = {Chill Liquid, Settle Liquid}

O(nl) = { Free Run, Solid Process}

O(n2) = {Store Liquid}

w W W W W W

Figure 4: A smple process with concurrent activities

Receiwve Grapes

!

Crush Grapes

|

Separate Licguids

g [

Fi-p3

Solid Process

}

Press Solids

|

Chill Liguid

4

Settle Licuid

SGcreen Free Run Liguaid

i

Chill Liguid

Store Liguid

Figure 5: fj-paths associated with the diagram in Figure 3

Table 13: The PSL code associated with the diagram in Figure 4
(activity a)
(activity x)
(activity y)

(activity 2z)

(subactivity x a)
(subactivity y a)
(subactivity z a)

(forall (?occ_a)
(inplies (occurrence_of ?occ_a a)

(exists (?occ_x ?occ_y ?occ_z)

(and
(occurrence_of ?occ_x x)
(occurrence_of ?occ_y vy)
(occurrence_of ?occ_z z)
(subactivity _occurrence ?occ_x ?occ_a)
(subactivity _occurrence ?occ_y ?occ_a)
(subactivity _occurrence ?occ_z ?occ_a)

(m n_precedes (leaf _occ ?occ_x)

(root _occ ?occ_z) a)
(m n_precedes (leaf _occ ?occ_y)

(root _occ ?occ_z) a))))

Table 14: Algorithm to generate the PSL code associated with a fork/join diagram

Algorithm Generating the PSL code associated with a fork/join diagram
that describes a process.
I nput: fork/join diagram
Qut put: string representing the PSL code.
Met hod:

Deconpose the activity diagraminto its fj-paths;

for each (fj-path f) do

CGenerate the PSL code for f using translation pattern P3;

for each (fork/join node n in the diagram) do

Let I(n) be the set of all activities ai such that ai is the |ast one
in a sequence associated with a fj-path which is incident upon n;

Let Q(n) be the set of all activities bi such that bi is the first one
in a sequence associated with a fj-path which emanates from n;

for each (pair (ai, bj) such that ai isinl(n) and bj is in Q'n)) do
CGenerate the expression “m n_precedes(| eaf _occ(?occ_ai),

root _occ(?occ_bj))” as part of the translation in the appropriate
pl ace;

Figure 6 illustrates the situation. The algorithm generates the code for the threads of execution
that correspond to each fj-path. The application of the innermost loop implies generating PSL
code that expresses the following facts:

8 Separate Liquids come before Free Run and Solid Process.
§ Chill Liquid and Settle Liquid come before Store Liquid.

5 Reédated Work

The PSL ontology is under frequent revisions and improvements. The latest version, along with
supplemental material, can be found in the website maintained by NIST [2]. One of the main goas
of PSL isto become a standard similar to STEP, “a comprehensive 1SO standard (1SO 10303)
that describes how to represent and exchange digital product information” [5]. In fact, “PSL is
being standardized within Joint Working Group 8 of Sub-committee 4 (Industrial Data) and Sub-
committee 4 (Manufacturing integration) of Technical committee | SO TC 184 (Industria
Automation Systems and Integration).” [2], [6].

PSL is intended to be a very genera ontology for manufacturing processes and the typica
approach to specify processes consists of imposing restrictions on configurations that describe
valid scenarios associated with the world under modeling. Examples of this approach, including
insights that revead the intuition behind several PSL theories can be found in a paper by Gruninger
[7], who leads the group working on this standardization effort. This paper is part of a recent
compilation of ontologies[8].

In [9], Bock and Gruninger present UML conceptual models that describe the relationships
among concepts of the PSL theories used in our paper. They also show examples that illustrate
the use of PSL to associate semantics with smple UML activity diagrams. The patterns presented
in this paper can be seen as extensions and generalizations of some of the examples presented in
their paper.

The work reported in [9] also raises the issue of closure, namely whether additional restrictions
should be added to process specifications to avoid sequences not explicitly allowed by the
modeler. For ingance, we mentioned that the expression (next _subocc ?0l1 ?02 ?a) (see
Table 4) does allow activity occurrences between ?01 and ?02 aslong asthey are not a
subactivity of ?a. It istherefore possible to add termsto P3 (see Table 11) to explicitly disallow
occurrences of any other activity but the intended ones. This can be accomplished by inserting the
term shown in Table 15 right after Next P(..) in P3 (in Table 11).

Our definition of fj-paths is akin to that of “decision-to-decision” paths which has been amply
used in the context of the automatic generation of test cases from graphs that model the flow of
control of programs[10], [11].

We have applied the trandation patterns discussed here to the implementation of a visual modeler
that allows users to graphicaly represent processes and which automatically generates the PSL
code associated with such representation.

6 Summary and Future Work

In this paper we have derived patterns that can be used to trandate graphical representations of
processes based on the arbitrary application of the subactivity relationship among activities, and
which can be composed sequentially and concurrently. Such trandations are expressed in PSL, an
ontology that provides process modelers with concepts formalized by a lattice of first-order
theories.The use of PSL enables the interoperability among disparate manufacturing process tools.
Using PSL is not an easy task even for modelers who are well seasoned in specific application
domains. Our approach completely liberates modelers from having to pursue such a task, for it
bridges the gap between graphical representation of concepts, which are generally intuitively
closer to the application domain, and the PSL ontology.

We are currently working on extending our visual modeler to include concepts such as resources,
time constraints, inputs/outputs, and queues. We are also investigating on generating output that
can be used to simulate manufacturing processes[12].

Receiwve Grapes

I

Crush Grapes

!

Fj-pz Jeparate Ligquids

So0lid Process

I

Press Solids

!

Chill Liguid

'

Gettle Limuid

Screen Free Bun Liguid

g

Chill Liguid

Store Liguid Fi-p4d

Figure 6: Applying the algorithm in Table 14 to the diagram in Figure 3

Table 15: Closure term
C osure(al, ..an): =
(and
(forall (?x)
(inplies
(not (equal ?x (successor ?a2 ?occ_al)))
(not (legal ?x))))

(forall (?x)
(inplies
(not (equal ?x (successor ?ai+1 ?occ_ai)))
(not (legal ?x))))

(forall (?x)
(inplies
(not (equal ?x (successor ?an-1 ?occ_an)))
(not (legal ?x))))

Acknowledgements

The authors would like to thank Michael Gruninger and Conrad Bock, from NIST, for their
constructive feedback. The authors also thank the anonymous reviewers for their valuable
comments. This work was partialy funded by the National Institute of Standards and Technology
as part of contract SB1341-03-W-0828.

References
[1] See http://www-kd.stanford.edu/knowledge-sharing/kif/

[2] See http://www.mel.nist.gov/psl/

[3] T.H.Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein: “Introduction to Algorithms”
(Second Edition). MIT Press. 2001.

[4] C. Bock: “UML2 Activity and Action Models. Part 3: Control Nodes’, in Journal of Object
Technology, vol. 2, no. 6, pp. 7-23. 2003.

[5] STEP Tooals, Inc. See http://www.steptools.com

[6] 1SO—TC184/SCA. See http://www.tc184-sc4.org/

[7] M. Gruninger: “Ontology of the Process Specification Language”. In [8], pages 575-592.

[8] S. Staab, R. Studer (Editors): “Handbook on Ontologies’. Springer. 2004.

[9] C. Bock, M. Gruninger: “PSL: A Semantic Domain for Flow Models’. Software, Systems,
and Modeling (On-Line First). November 2004. SpringerLink. See http://www.springerlink.com/

[10] J. C. Huang: “An Approach to Program Testing”. ACM Computing Surveys, vol. 7, issue 3,
pp. 113-128. 1975.

[11] W. R. Adrion, et alia: “Validation, Verification, and Testing of Computer Software” ACM
Computing Surveys, vol. 14, issue 2, pp. 159-192. 1982.

[12] G. A. Hansen: “Automating Business Process Re-Engineering: Using the Power of Visual
Simulation Strategies to Improve Performance and Profit” (Second Edition). Prentice-Hall. 1977.

http://www-ksl.stanford.edu/knowledge-sharing/kif/
http://www.mel.nist.gov/psl/
http://www.steptools.com
http://www.tc184-sc4.org/
http://www.springerlink.com/

