
Domain Concepts for
Communication Protocols

Juha Pärssinen
juha.parssinen@vtt.fi

In this paper domain concepts for communication protocols are introduced.
These concepts were found from several different protocols, and protocol
implementation frameworks and environments. In this paper there are intro-
duced first two different protocol implementation environment, then the
domain concepts, and finally how those concepts can be mapped to imple-
mentation environments. These concepts were used to support protocol
design, implementation, documentation, and also as a learning aid for new-
comers to this domain. They were also used when a guideline for standard-
ization was developed in ETSI. The main reason for this work was (and still
is) the insufficience of the UML for protocol engineering domain. The limi-
tations of the UML in this domain are introduced briefly in this paper.

1 Introduction
Nowadays graphical modeling, e.g. the Unified Modeling Language (UML) [18][20],
and code-generation from graphical models are often used in software engineering to
master complex systems and to improve productivity. In protocol engineering domain
their usage is not so common.

Graphical modeling of protocol systems and code-generation from those models
using traditional box-and-line graphical modeling based on Open Systems Interconnec-
tion (OSI) reference model, as explained in this paper in chapter 2 and [8][10], or the
UML [18][20] are not possible:
• The OSI based traditional modeling is concentrating only on the external behavior of

the protocol systems, not implementation issues, and does not include any concepts
required for the code-generation.

• The OSI based traditional modeling is bound tightly to a layered structure, but some
protocol systems, e.g. the GSM [12], has layers located beside the rest of the stack.

• The OSI based traditional modeling does not model subconnections, which can be
found from some modern protocols, e.g. the WAP +[19].

• The UML1[18] or the UML2[20] have no formal semantics, and it is impossible to
use any of them to make unambiguous and precise description of all aspects of proto-
col systems.

These are some of the reasons why domain concepts for communication protocols pre-
sented in the chapter 3 were developed. Another import reason is current protocol engi-
neering frameworks, which introduce their own concepts for communication protocols.
Domain concepts introduced in this paper were developed as a tool or an implementation
language independent teaching aid for newcomers, and communication aid between pro-
tocol engineers.

This paper introduces briefly what kind of concepts can be found from communication proto-
cols, what kind of relations there are between those concepts, and how those concepts can be
described. More information about them can found from [1][2][3][4][6].

Chapter 2 introduces communication protocols, including specification and implementation
issues, and two different protocol engineering frameworks. Chapter 3 introduces domain con-
cepts for communication protocols, and mapping between these concepts and two different
protocol engineering framework. Chapter 4 contains conclusions and future work. Chapter 5
list references used in this work.

2 Communication protocols

2.1 Communication Protocol Specification
For two parties to successfully communicate, it is necessary that they speak the same lan-
guage. What is communicated, how it is communicated, and when it is communicated must
conform to some mutually acceptable set of conventions between the parties involved. The set
of conventions is referred to as a communication protocol, which may be defined as a set of
rules governing the exchange of data between parties. This paper uses the term protocol as a
shorter form of the term communication protocol.

A communication system typically contains more than just one protocol. Protocols of one
system are typically specified adjacent layers, e.g. Open Systems Interconnection (OSI) refer-
ence model [10] (see Figure 1a.). Layers are built on top of each other, and higher layer uses
the interface provided by the lower layer [8]. The use of an interface hides the lower layer
from layers above it. This modularity and encapsulation of layers, or entities, have been in use
years before the advent of the object-oriented programming.

Interface of a protocol layer is traditionally specified using services. A service represents a
set of functions offered to a user by a provider. The service is made available through service
access points (SAP) (see Figure 1b). From the user perspective, all of the qualities of the ser-
vice are completely defined by the interface at the SAP. [8]

The service provider entity itself might be composed of smaller entities, which in turn use
the service below as shown in Figure 1b. This figure also explains how two entities combine

(N)-service
 user entity

(N)-service
provider entity

(N-1)-service provider

(N)-service access point

(N-1)-service access point

(N)- service protocol

(N)-service provider

Figure 1. OSI Reference model [10] (a), and service layering [8] (b)

(N)-service
 user entity

(N)-service
provider entity

Physical

Data link

Network

Transport

Session

Presentation

Application

a. b.

to offer a new service: they use the service from below and they communicate using a proto-
col. A relatively simple service may be augmented to offer more powerful services at the layer
immediately above. This process may continue until the desired level of abstraction is
reached. For example, the logical structure of the OSI Reference Model [10] is made up of
seven protocol layers.
It is important to notice that there is a terminology difference between the protocol engineer-
ing domain and the object-oriented modeling: the word “interface” is used in both of them, but
it has different meanings. In the traditional protocol modeling a protocol’s service interface
(defined for service primitives at the Service Access Point, SAP) is bidirectional, as shown in
Figure 2a. However, in the object-oriented modeling the interface is unidirectional (i.e. incom-
ing only). Figure 2b. shows an example of use of UML2 [20] when a protocol’s service inter-
face is modeled. As shown in this figure, UML2 Port is quite similar to the interface in
protocol engineering domain, i.e UML2 Port can include both provided (UML) interface for
incoming messages and required (UML) interface for out-going messages.

2.2 Communication Protocol Implementation
A communication protocol implementation process can be facilitated if some of existing pro-
tocol engineering framework is used [13][14][15][16][17]. In next section 2.2.1 two of such
frameworks, Conduits+[13] and SDL[17] are introduced briefly. However, it is no matter if
protocol framework is used or not: the architecture of a protocol entity implementation will
contain several common parts. These are shown in Figure 3:
• Codecs, coding and decoding functionality, for primitives to communicate to different enti-

ties, e.g the peer entity, the upper and the lower layer entities.
• Codecs for the protocol messages

(N)-service
provider entity

(N-1)-service
provider entity

SAP
requestindication

N:Protocol Entity

provided required

a. b.

Figure 2. Comparison between the service interface at the Service Access Point (SAP)
(a.), and the Interface and the Port of the UML2 (b.).

UML2 Port
UML2 Interface

codec layer (N) primitives

codec layer (N-1) primitives
other code

parameters
state
timers

EFSA
codec (N)
protocol

(N) primitives

(N-1) primitives

(N) entity
pointers

Figure 3. Common parts of protocol entity implementation

message

• State machine (Extended Finite State Automaton, EFSA). This usually implements those
protocol functions that are needed for the protocol entity. Protocol functions can be e.g.
segmentation and reassembly, encapsulation, connection control, ordered delivery, flow
control, error control, synchronization, addressing, multiplexing, and transmission services
[7].

• Storage space for protocol entity’s parameters, state, timers, pointers etc.

2.2.1 Protocol Engineering Frameworks
In this section two very different protocol engineering frameworks and their concepts are
introduced briefly. Small parts of TCP/IP stack [9] design are shown as examples. How
domain concepts for communication protocols are mapped to these framework concepts is
shown in the section 3.1. Detailed explanations of this mapping and can found from [4].

Conduits+. The Conduits+ [13] is an object-oriented protocol implementation framework.
The framework consists of two basic elements, conduits and information chunks or messages.
The conduits can be connected to each other creating a conduit graph that represents the actual
protocol stack, as shown in Figure 4. Messages represent the information flowing through the
stack. There are four different conduits: Protocol, Mux, ConduitFactory and Adapter.

ProtocolProtocolTCPSocket:Protocol

Figure 4. Simplified TCP/IP protocol stack using the Conduits+[13]

SocketAPI:Adapter

:Mux

:Mux

:ConduitFactory

Ethernet:Adapter

sideA

sideA

sideA

sideAsideA

sideB

sideA

sideB

sideB[...]

sideB[...]
sideB[0]

sideB[0]

creates

IP:Protocol
sideA

sideB

TCP

IP

Adapter

Protocol

MuxConduitFactory

One example of a simple TCP/IP [9] protocol implementation using the Conduits+[13] is
shown in Figure 4. In this figure there are two Adapters to connect conduits graph to Ethernet
and to SocketAPI (TCP/IP socket application programming interface), two Muxes to handle
connection-oriented socket communication of the TCP, and single Protocol conduit to handle
all connectionless communication of the IP protocol. In Conduits+ one can not separate proto-
col layers, or entities, by encapsulating selected conduits within other structures. In Figure 4
additional notation is used to guide a reader and make easier for him or her to see the protocol
entity boundaries

SDL. The Specification and Description Language (SDL)[17] is a standard language for spec-
ification and description of communicating systems. It is currently developed by ITU-T and is
defined in the Z.100 recommendation [17]. There are several SDL versions. The current ver-
sion is SDL2000 which contains many object-oriented features, and similar kind of notation as
UML2[20]. However, there are no tool support existing for SDL2000, and for this reason
older version of SDL [17] is used here as an example.

An SDL system consists of blocks which can communicate with each other and with the
environment surrounding the system by sending signals. In Figure 5a the system consist of
two blocks TCP and IP. They correspond to protocol layers. Inner structure of the IP block is
shown in Figure 5b. Communication between the blocks is done via channels. Signal lists
associated with the channels list the signals that are allowed to be sent to a given direction.

[(TCPToSocketAPISignals)]

[(SocketAPIToTCPSignals)]
SocketAPIToTCPChannel

[(IPToTCPSignals)]
TCPToIPChannel

[(TCPToIPSignals)]

System TCP_IP

[(EthernetToIPSignals)]
[(IPToEthernetSignals)]IPToEthernetChannel

TCP

IP

1(2)

block

signal list

channel

system

TCPToIPChannel

[(IPSignalsToTCP)]
[(IPSignalsFromTCP)]

[(IPSignalsToEthernet)]
[(IPSignalsFromEthernet)]

IPDataAndControlChannelRouteUp

IPDataAndControlChannelRouteDown

IPToEthernetChannel

IPProcess

Block IP

a.

b.

Figure 5. TCP and IP layers in a protocol stack using SDL [17](a.) and structure of the IP
layer using SDL [17] (b.)

3 Domain Concepts for Communication Protocols
In this chapter domain concepts for communication protocols are introduced. These concepts
and relations between them are independent from particular specification, implementation
details or implementation language. A more detailed descriptions of these concepts can be
found can be found from [1][2][3][4][6]. These concepts have been also used in ETSI Guide-
line document [5].

Relations between these concepts are presented in this paper using simple UML1[18] class
diagrams. However, this does not limit their use in object-oriented design and implementation
nor in UML.

The TCP/IP protocol suite [9] is used in this paper as an example. However, in real-life
TCP/IP protocol suite is not coded as a layered structure.

In this paper following domain concepts (see Figure 6 for concepts and their relations) are
introduced: Protocol System, Protocol Entity, Environment Interface, Entity Interface, Peer
Interface, Storage, Protocol Behavior, Router, Communication Manager, and Communication
Session.
• The Protocol System (see Figure 6 for concept, and Figure 8 and Figure 9 for TCP/IP

example) encapsulates the whole protocol system, and forms the basis of other concepts. It
describes a protocol system structure by specifying what are the components that a system
is composed of, and how they are interconnected to each other.

• The Protocol Entity (see Figure 6 for concept, and Figure 7 for TCP example) represents an
active entity in a protocol layer or sublayer. It contains Entity Interfaces. A Protocol Entity
communicates with other Protocol Entities in the same system by exchanging messages
through Entity Interfaces. A Protocol Entity needs to manage possible multiple concurrent
communication sessions, store internal states and other information, communicate with
other entities in the same system, and communicate with entities in peer systems.

• The Entity Interface (see Figure 6 for concept, and Figure 7 for TCP example) defines the
allowed set of incoming and outgoing messages. It is these bindings between Entity Inter-
faces that specify how the components of the system are interconnected. The Entity Inter-
face concept is considered to be bidirectional, as they are in the traditional protocol
modeling. It interprets Entity Messages which are received from another Protocol Entity. It
also produces Entity Message which are sent to another Protocol Entity in the same system.

Figure 6. Concepts for Communication Protocols

Storage
1 1

1

1

0..1

Communication
Manager manages

Router

0..1

0..* Protocol Behavior
Protocol Entity

Entity
Interface

11..*
Peer

Interface

Communication
Session0..*

{at least one Communication
Manager or Communication Session}

Protocol System
1..*

Environment
Interface

0..*

• The Environment Interface (see Figure 6 for concept, and Figure 8 and Figure 9 for TCP/IP
example) models interfaces to system’s environment. From a protocol system’s point of
view an Environment Interface acts as a message source for incoming external messages
and as a message sink for outgoing messages.

• The Storage (see Figure 6 for concept) contains all volatile and non-volatile information of
a Protocol Entity. Information collected to the Storage can be visible for the whole Protocol
Entity or it can be split to dedicated parts. An example of this is communication session
specific information.

• The Peer Interface (see Figure 6 for concept, and Figure 7 for TCP example) handles com-
munication between entities located in the peer protocol systems. It interprets Peer Mes-
sages which are received from a peer entity. It also produces Peer Messages which are sent
to another entity in a peer system.

• The Protocol Behavior (see Figure 6 for concept, and Figure 7 for TCP example) encapsu-
lates the intelligence of the protocol and contains roles which can be used to compose any
kind of behavior of the protocol in concern. The Protocol Behavior contains Routers, a
Communication Manager, and Communication Sessions. Detailed behavior of Protocol
Behavior can be described using e.g. statecharts [18].

• The Router (see Figure 6 for concept, and Figure 7 for TCP example) is needed if there can
be multiple receiving Communication Sessions for messages coming from a single entity
interface. A Router routes incoming messages to the correct receiver i.e. a Communication
Manager or one of Communication Sessions.

• The Communication Manager (see Figure 6 for concept, and Figure 7 for TCP example)
creates, controls, and closes sessions as needed.

• The Communication Session (see Figure 6 for concept, and Figure 7 for TCP example) han-
dles communication between two communicating peers. It uses a Peer Interface to send and
receive messages as shown in Figure 7.

One example of the use of the Protocol Behavior pattern is shown in Figure 7 on page 7 as an
object diagram. It presents a snap-shot of a simplified TCP protocol. In this diagram there are
two concurrent communication sessions, TCPSockets.

Figure 7. An example of concepts for protocols: the object diagram of the TCP protocol.

:Peer
Interface

:Router

SocketAPI
:Environment Interface

TCPtoIP:Entity Interface

TCPSocket
:CommunicationSession

TCPSocket
:CommunicationSessionTCPManager

:CommunicationManager

TCPtoSocket:Entity Interface
TCP:ProtocolEntity

:Router

There are two different views how these concepts can be used when a whole protocol systems
is described: the Entity Interface centric view and the Peer Interface Centric view. Following
examples show two different views of it: the Entity Interface centric view in Figure 8; the Peer
Interface centric view in Figure 9.

Figure 9 presents the Peer Interface centric view of the IP. The figure shows only those
messages that are sent between the TCP and the IP protocol, and those between two peer IP
protocols via a virtual connection. The layers below the IP are omitted. This view makes it
possible to specify behavior of a protocol only in terms of the messages of the IP.

Figure 8 presents the Entity Interface centric view of the IP. Only physical interfaces and
message paths are shown. The virtual peer connection of the IP is hidden inside the behavior
of the IP.

Both views are very useful because they answer to different questions. The first one
answers to the question “what is the correspondence between internal messages towards entity
interface users (the TCP in case of the IP) and external messages towards peer protocol enti-

Figure 8. The Entity Interface centric view of the IP.

:Ethernet

1:

2:

3:

IP:Behavior

IPtoTCP:Entity Interface

TCPtoIP:Entity Interface

TCP:Protocol Entity

IP:Protocol Entity

4:

:Ethernet

8:

7:

6:

IP:Behavior

TCP:Protocol Entity

IP:Protocol Entity

5:

IPtoEthernet:Enviroment Interface

:Protocol System :Protocol System

IPtoEthernet:Entity Interface

9:

10:

TCPtoIP:Entity Interface

IPtoTCP:Entity Interface

IPtoEthernet:Entity Interface

IPtoEthernet:Enviroment Interface

Figure 9. The Peer Interface centric view of the IP

IP:Peer Interface

1:

2: 3: 4: 5: 6:

7:

TCPtoIP:Entity Interface

IP:Behavior

IPtoTCP:Entity Interface
IP:Protocol Entity

TCP:Protocol Entity

IP:Behavior

IP:Protocol Entity

TCP:Protocol Entity

:Protocol System :Protocol System

IP:Peer Interface

IPtoTCP:Entity Interface

TCPtoIP:Entity Interface

ties”. The second one answers to the question “how do protocol entities within a system com-
municate with each other”.

3.1 Mapping Domain Concepts for Communication Protocols to Conduits+
and SDL
This section shows a part of mapping between two different protocol implementation frame-
works and domain concepts for communication protocols introduced in this paper. More com-
plete mapping can be found from [4].

Conduits+. A Protocol Entity itself is purely conceptual in Conduits+[13]. Its structure can be
modeled by one or more Protocol conduits and any number of Muxes and ConduitFactories.
These conduits define the Protocol Behavior of a Entity. Every conduit can contain ordinary
variables which can be used to store protocol specific information.

The sides of conduits are used to connect conduits to each other, and are one part the Entity
Interfaces. Other part of Entity Interface is set of Messengers which are used to define all pos-
sible incoming and outgoing events of a Protocol Entity.

A concrete example of these and use of Conduits+[13] to present a protocol entity is shown
in Figure 4. The conduits inside the TCP box belong to one Protocol Entity. Muxes are used to
route messages. ConduitsFactory is used to create new TCPSockets which are Protocol con-
duits. These have functionality to handle peer communication and they also contain all data of
a single connection.

In Figure 10 it is shown how domain concepts for communication protocols are mapped in
Conduits+[13]. This figure uses UML notation for templates from [18].

SDL. In SDL[17] a block can contain several processes or process sets. A block represents the
Protocol Entity role as shown in Figure 11. The behavior of a block is not explicitly defined
but it can be derived from the behavior of its processes. The processes model the Protocol
Behavior.

Processes inside a block communicate with the block environment, i.e. the system outside
them, also using signal routes. The routes linking processes to the block environment are
attached to channels which are on the upper abstraction level connected to other blocks or the
system environment.

Figure 10. Mapping between Conduits+[13] and domain concepts for communication
protocols

Protocol Entity
Peer Interface
Entity Interface

Protocol Behavior
StorageMux*

Protocol1

Conduit
Factory*

Variable

Storage

Protocol Behavior

Protocol

Peer Interface

Side

Messenger

Entity Interface

Protocol Entity

Signal lists can be used to define the signals that can be transmitted through a channel, these
two component together define the Entity Interface between two entities. A channel name is
shown in the border of a block. A concrete example of these and use of SDL[17] to present a
protocol entity is shown in Figure 5.

In Figure 11 it is shown how domain concepts for communication protocols are mapped in
SDL. This figure uses UML notation for templates from [18].

4 Conclusions and Future Work
The concepts presented in this paper were developed because there was a need to have a
domain specific and implementation language independent language, which can overcome
limitations of OSI based graphical notation[8] and UML[18][20]. These concepts have been
used in different phases of protocol engineering, including specification, design, implementa-
tion, and documentation in author’s organization.They are also used in ETSI Guideline docu-
ment [5].

Due to limitations of available tools in the past these concepts are not used fully in code
generation. They are used as stereotypes in different UML tools in a protocol design phase,
but due to the limitations of automatic code generation in those tools, it is not possible to use
the whole potential of the concepts. Nowadays there exist versatile domain modeling tools,
which will be used to develop a graphical modeling language and code generation based on
concepts introduced in this paper.

The author has also used these concepts in his lectures on protocol engineering at Helsinki
University of Technology to teach newcomers. They are also used internally in the author’s
organization as a learning aid for new employees, or when there was a need to change from
one protocol implementation environment to another.
There are two important tasks for future work: improve further domain concepts of communi-
cation protocols; develop a prototype for protocol development environment using these con-
cepts and domain modeling tool.

Figure 11. Mapping between SDL[17] and domain concepts for communication protocols

Storage

Peer InterfaceEntity Interface

Protocol Behavior

Process

Attribute

Signal Route

Channel Process

Signal List

Block Protocol Entity

Protocol Entity

Peer Interface
Entity Interface
Protocol Behavior
Storage

Protocol Entity

5 References
[1] J. Pärssinen, Conceptual Modeling of Protocol Systems, Licentiate Thesis, 2003, Hels-

inki University of Technology Department of Computer Science and Engineering.
[2] J. Pärssinen, Classes of Communication Systems, 8th Summer School of Telecommuni-

cations, Lappeenranta, 1999.
[3] J. Pärssinen, N. von Knorring, J. Heinonen, M. Turunen, UML for Protocol Engineer-

ing - Extensions and Experience, Tools Europe 2000, 2000.
[4] J. Pärssinen, M. Turunen, Patterns for Protocol System Architecture, PLoP2000, Au-

gust 13-16, 2000, Allerton Park, Monticello, Illinois, USA.
[5] S. Randall, Juha. Pärssinen, B. Koch, J-L. Roux, Methodological approach to the use

of object-orientation in the standards making process, EG 201 872 V1.2.1, ETSI/MTS
2001.

[6] J. Pärssinen, M. Turunen, Pattern Language for Architecture of Protocol Systems,
EuroPLoP2001, 4 - 8 July 2001, Irsee, Germany.

[7] W. Stallings, Data and Computer Communications, 4th edition, MacMillan, 1994.
[8] M. T. Rose, The Open Book, A Practical Perspective on OSI, Prentice-Hall, 1990.
[9] A. S. Tanenbaum, Computer Networks, 2nd edition, Prentice-Hall International, 1989.
[10] ITU-T, Information Technology - Open Systems Interconnection - Basic Reference

Model: The Basic Model, Recommendation X.200, ITU, 1994.
[11] D. E. Comer, Internetworking with TCP/IP Volume I: Principles Protocols, and Archi-

tecture, 3rd edition, Prentice-Hall International, 1995.
[12] M. Mouly, M. Pautet, The GSM System for Mobile Communications, Telecom Pub,

1992.
[13] H. Hüni, R. Johnson, R. Engel, A Framework for Network Protocol Software, ACM,

1995.
[14] A. Karila, Portable Protocol Development and Run-Time Environment, Licentiate’s

Thesis, Helsinki University of Technology, 1986.
[15] J. Malka, E. Ojanperä, CVOPS User´s Guide, Technical Research Center of Finland,

1998.
[16] Lappeenranta University of Technology, OVOPS Home Page, http://

ovops.lut.fi/, 2003.
[17] ITU-T, Recommendation Z.100 “Specification and description language (SDL)”, 1993
[18] J. Rumbaught, I. Jacobson, G. Booch, The Unified Modeling language Reference Man-

ual, Addison-Wesley, 1999.
[19] WAP Forum, WAP Architecture Version 30-Apr-1998, Wireless Application Protocol

Forum Ltd., 1998.
[20] Object Management Group, UML 2.0 Superstructure,

http://www.omg.org/uml, OMG, 2003.

	1 Introduction
	2 Communication protocols
	2.1 Communication Protocol Specification
	Figure 1. OSI Reference model [10] (a), and service layering [8] (b)
	Figure 2. Comparison between the service interface at the Service Access Point (SAP) (a.), and the Interface and the Port of the UML2 (b.).

	2.2 Communication Protocol Implementation
	Figure 3. Common parts of protocol entity implementation

	2.2.1 Protocol Engineering Frameworks
	Conduits+
	Figure 4. Simplified TCP/IP protocol stack using the Conduits+[13]

	SDL
	Figure 5. TCP and IP layers in a protocol stack using SDL [17](a.) and structure of the IP layer using SDL [17] (b.)

	3 Domain Concepts for Communication Protocols
	Figure 6. Concepts for Communication Protocols
	Figure 7. An example of concepts for protocols: the object diagram of the TCP protocol.
	Figure 8. The Entity Interface centric view of the IP.
	Figure 9. The Peer Interface centric view of the IP
	3.1 Mapping Domain Concepts for Communication Protocols to Conduits+ and SDL
	Conduits+
	Figure 10. Mapping between Conduits+[13] and domain concepts for communication protocols

	SDL
	Figure 11. Mapping between SDL[17] and domain concepts for communication protocols

	4 Conclusions and Future Work
	5 References
	[1] J. Pärssinen, Conceptual Modeling of Protocol Systems, Licentiate Thesis, 2003, Helsinki University of Technology Department of Computer Science and Engineering.
	[2] J. Pärssinen, Classes of Communication Systems, 8th Summer School of Telecommunications, Lappeenranta, 1999.
	[3] J. Pärssinen, N. von Knorring, J. Heinonen, M. Turunen, UML for Protocol Engineering - Extensions and Experience, Tools Europe 2000, 2000.
	[4] J. Pärssinen, M. Turunen, Patterns for Protocol System Architecture, PLoP2000, August 13-16, 2000, Allerton Park, Monticello, Illinois, USA.
	[5] S. Randall, Juha. Pärssinen, B. Koch, J-L. Roux, Methodological approach to the use of object-orientation in the standards making process, EG 201 872 V1.2.1, ETSI/MTS 2001.
	[6] J. Pärssinen, M. Turunen, Pattern Language for Architecture of Protocol Systems, EuroPLoP2001, 4 - 8 July 2001, Irsee, Germany.
	[7] W. Stallings, Data and Computer Communications, 4th edition, MacMillan, 1994.
	[8] M. T. Rose, The Open Book, A Practical Perspective on OSI, Prentice-Hall, 1990.
	[9] A. S. Tanenbaum, Computer Networks, 2nd edition, Prentice-Hall International, 1989.
	[10] ITU-T, Information Technology - Open Systems Interconnection - Basic Reference Model: The Basic Model, Recommendation X.200, ITU, 1994.
	[11] D. E. Comer, Internetworking with TCP/IP Volume I: Principles Protocols, and Architecture, 3rd edition, Prentice-Hall International, 1995.
	[12] M. Mouly, M. Pautet, The GSM System for Mobile Communications, Telecom Pub, 1992.
	[13] H. Hüni, R. Johnson, R. Engel, A Framework for Network Protocol Software, ACM, 1995.
	[14] A. Karila, Portable Protocol Development and Run-Time Environment, Licentiate’s Thesis, Helsinki University of Technology, 1986.
	[15] J. Malka, E. Ojanperä, CVOPS User´s Guide, Technical Research Center of Finland, 1998.
	[16] Lappeenranta University of Technology, OVOPS Home Page, http:// ovops.lut.fi/, 2003.
	[17] ITU-T, Recommendation Z.100 “Specification and description language (SDL)”, 1993
	[18] J. Rumbaught, I. Jacobson, G. Booch, The Unified Modeling language Reference Manual, Addison-Wesley, 1999.
	[19] WAP Forum, WAP Architecture Version 30-Apr-1998, Wireless Application Protocol Forum Ltd., 1998.
	[20] Object Management Group, UML 2.0 Superstructure, http://www.omg.org/uml, OMG, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

