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Abstract. We propose a model-based approach for the generation of
graphical tools for MDA. Our approach is to define the appearance and
behaviour of graphical editors by specifying mappings from MDA-related
domain model constructs to graphical representations and constraints on
those representations. From these mappings, we may generate the view
and controller aspects of Model-View-Controller-based editors. In this
paper, we discuss the merits of this tool-focused approach and describe
how our prototype, JANE, generates graphical editors for Eclipse Mod-
elling Framework (EMF) models.

1 Introduction

The OMG’s Model-Driven Architecture (MDA) provides a framework for the
generation of information systems through transformation and weaving of Plat-
form Independent Models (PIMs) that represent various aspects of each system.
While UML is often used to model these system aspects in light-weight ap-
proaches to MDA, the focus is shifting to domain-specific modelling for PIMs.
In this approach, each platform independent metamodel can be considered anal-
ogous to an abstract syntax for a domain-specific language. The EDOC [2] stan-
dard, with domain-specific metamodels for component collaboration and busi-
ness process modelling, is an example of the new wave of standards coming from
the OMG that are shaping MDA in this way. Thus, model-based domain-specific
languages and tools to support their definition and use play an important role
in MDA.

Technologies such as the Human Useable Textual Notation (HUTN) [3] pro-
vide mechanisms for the specification of model-based textual languages and tools
like TokTok [4], for the manipulation of instances of those languages. However,
many of the models used in MDA have graphical or diagrammatic notations in
addition to or instead of textual notations. Even for models without an exist-
ing concrete syntax, a diagrammatic notation is natural because their graph-like
structure usually maps more directly to a graphical notation than to linear text.
Thus, we identify a need for tools to allow model-based languages to be repre-
sented and manipulated via graphical tools.

In this paper, we propose a tool-focused approach for the generation of model-
specific graphical editors for MDA. Our approach is based on MDA principles:



We use models to represent the model, view and controller aspects of each graph-
ical tool, and use mappings (or transformations) between these models to express
how to parameterise the code generation performed by our prototype editor gen-
erator, JANE. We discuss the benefits of focusing on tool issues over a purely
language-based approach in Section 2. Then, in Section 3, we describe how we
realise these benefits through our prototype.

2 A Tool-Focused Approach for Model-Specific Editors

Initially, we focused on specifying graphical notations for models, with model-
specific editors being artefacts generated using existing Domain-Specific Lan-
guage (DSL) tools such as Diagen [6] and Grace [5]. Editors generated using
these tools provided basic model editing functionality, however, prototyping in-
dicated that in order to generate tools flexible enough to be used within the
context of MDA, some degree of parameterisation of the generation is required.
This is primarily because graphical languages that are used within the context of
MDA are almost always used within the context of tools, and hence need to take
into considerations issues related to tool-based graphical languages, while many
graphical DSL tools tend to be language-focused; defining graphical languages
of the type that people might draw on flip-charts, or whiteboards, and do not
focus on tool-related issues.

2.1 Characteristics of existing tools

Typically, graphical languages considered by existing DSL tools are small, purpose-
built languages that represent a single aspect or facet of a problem domain. Many
of the tools generated by such approaches are intended to be used by a mostly
homogeneous user base, with common expectations of the Ul. There is little
room for customisation of the UI of these generated tools.

Such tools often share the following characteristics:

— Based on graph grammars, not models in the MDA sense.

— Creation of diagrams or language instances is the main goal of generated
tools: Integration or interoperability with other tools or other languages is
typically not a consideration.

— Grammars that define the graphical languages represented by such tools can
be considered analogous to a model, however they are languages that are
isomorphic with their representation.

2.2 MDA Tool Considerations

When generating tools for model-specific languages within the context of MDA,
we believe that the following considerations need to be made:



Conformance to standards: The MDA vision relies on a number of core tech-
nologies from the OMG. These include the Meta Object Facility (MOF) [8],
XML Metadata Interchange (XMI) [7] and MOF Queries/Views/Transformations
(QVT) [9]. Hence, support for thse standards is vital for model-specific ed-
itors for MDA, so that models and language definitions can be exchanged
between MDA tools and so that MDA-based generation techniques can be
applied to the models produced by these editors.

Tool evolution: One of the main goals of MDA is to facilitate evolution of
systems based on a model-driven approach. The same principles apply to
evolution of the tools used to manipulate MDA-based languages themselves.
As the underlying models change, or as requirements for the MDA tools
change, it should be possible to use MDA techniques such as model trans-
formation to enact the appropriate changes in the model-specific tools.

Metamodel expressiveness: The MOF metamodel includes concepts such as
containment, reference, association, and cardinality constraints that can be
valuable in selecting appropriate visual representations and controllers for
an editor. We want to be able to use the same concepts with the same level of
expressive power from the modelling framework used to define each domain-
specific model to also define the notation for that model. In a generalised
graph-based metamodel these concepts generally do not exist, and so are not
available for use in generation of an editor.

Reuse: The graphical languages used to represent models within MDA tools
will often reuse graphical primitives and relationships for similar or related
concepts. For example, UML reuses the rectangular notation used for its
static structural concepts (Class, Interface, Datatype) for instances in object
diagrams, collaboration diagrams and interaction diagrams. Such reuse will
usually occur in the presence of inheritance, however, it may also occur due
to other relationships in the metamodel, or due to meta-relationships such
as the concept of containment.

Scalability: A scalability concern that arises for all graphical tools is how to
deal with large model instances. Visual representations may need to be split
into parts in order to be able to be displayed, and some objects may need
to appear more than once for presentation or layout reasons.

Non-isomorphic representations: Sometimes the graphical language defined
for a model is not isomorphic with the model. For example, a single icon in
the graphical language may indicate the presence of a large chunk of boiler
plate in the model. This may be because the model has been retrofitted to
the language, as may be the case when an established graphical language is
modelled for the purposes of using it within the context of MDA. Alterna-
tively, it may be because the model is designed for more than one purpose,
and the graphical notation corresponds to only a subset of those purposes.

Decoupling of views: A related issue is that although a language may cor-
respond closely to its model, there may be several views on the same model
(for example, outline vs expanded vs properties view). Views may hide some
detail for each object, may represent only a subset of a model, or may em-



phasise particular parts of the model, especially those likely to be changed
most frequently by the intended users of the tool.

Customisation of View and Control There may be many different users
of an MDA-related language, with different requirements for model-specific
tools. Hence, it may be necessary to generate multiple configurations of a
particular tool, such as an editor, for a given model-based language. Typically
this will require some customisation of both the View and the Control within
such tools. The MDA way is to generate all configuration of a particular
tool from a model, using parameterisation to configure these aspects of the
generated tools.

Extended command set: DSL tools typically provide commands based on
creating instances of a language, usually based on the structure of the lan-
guage, for example, to create or delete nodes or create, re-target or delete
links between nodes (ie editing commands). In order to generate tools other
than editors, we will need to be able to parameterise MDA-tool generation
from models to include extended command sets. (Note that some existing
DSL tools, it is already possible to define some additional commands.)

Domain model vs MVC model: The models that are manipulated by and
interchanged between MDA tools may differ from the model implemented
as the model in the MVC sense. This is because typically the M in MVC
represents state that will be persisted as domain model instances as well as
transient state that is used by the tool, often for the purposes of layout. MDA
models to be persisted by generated tools may require addition of default
values, or information that is tool-specific and not part of the actual MDA
model will need to be persisted in such a way so that it can be restored,
but does not pollute the MDA-model instances. Approaches to represent
this additional information include persisting it as a model in its own right
(for example, layout models), or to use different XML namespaces within an
XMI representation of a model instance this extra information.

While existing MetaCASE tools demonstrate many of the features described
in this section, we believe that the first three considerations are particularly
important for seamless integration of domain-specific modelling tools with ex-
isting MDA standards and practises. Through our prototype editor generator,
JANE, we aim to address these considerations by providing specific support for
MDA-enabling technologies and tool evolution through use of MDA techniques.

3 JANE: A Model-Specific Editor Generator

We have developed a prototype, JANE, to demonstrate how MDA techniques
can be used to generate customised model-specific editors. JANE is a plug-in for
the Eclipse platform, which generates plug-ins based on the Eclipse Modeling
Framework (EMF) [10] and the Eclipse Graphical Editing Framework (GEF)
[11]. JANE uses EMF’s JET framework, described in [12] to generate code rep-
resenting the view and controller classes for a particular model, based on the



input mappings. Currently, the input is very basic, and the languages gener-
ated by JANE are based on boxes and lines, much like a UML Class diagram.
However we are expanding it to take models of MVC as parameterisations to
the generation of editors. These MVC models will eventually be mapped from
(domain) MDA models using QVT [9].

Our project is investigating how to model different types of controllers and to
identify features that may be parameterised in the generation of graphical editors
for model-specific notations. The controller model is being based on a survey of
existing tools and paradigms for the manipulation of graphical notations. The
JANE prototype is currently being modified to allow mappings between the
domain model and the controller model to be used as additional inputs to the
editor generation.

4 Future work

JANE is currently focused on single-model-based editors. We intend to investi-
gate how to generate tools that make use of multiple model-based languages. An
example is a graphical model transformation tool. Such a tool could potentially
make use of several graphical languages - the languages used to represent the
source model(s), languages used to represent the target model(s) and a graphical
representation of the transformation between them.

We also intend to evaluate and test the capabilities of the prototype. We will
create test cases for JANE based on large domain models with corresponding
graphical notations. The generated editors can then be acceptance tested by
users. The default ‘'mapping’ that is currently hardcoded in JANE will also be
improved and formalised, so that editors can be generated for models without
an existing graphical notation.

5 Concluding Remarks

Using the approach described in this paper, we automate the generation of
model-specific editors for use within MDA. One of the goals of MDA is to sim-
plify system evolution by evolving the models that specify the structure and
behaviour of a system, and then using transformation and code generation tech-
niques, to evolve the system itself. As model-based languages evolve, the tools
that manipulate them must also evolve rapidly, while retaining customisations
to make manipulating model instances with the tools easier for their intended
users. Our approach brings us closer to this goal and demonstrates how MDA
techniques can be used to achieve it.
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