Checking Program Synthesizer Input/Output

Emanuel S. Grant'*, Jon Whittle?, and Rajani Chennamaneni’

! Department of Computer Science
University of North Dakota
Grand Forks, North Dakota, USA
grante@cs.und.edu
2 QSS Group Inc.

NASA Ames Research Center
Moffett Field, California, USA

jonathw@email.arc.nasa.gov

Abstract. The use of program synthesis systems to generate executable
code from high level specifications is growing. A fundamental issue faced
when using program synthesizers is testing that the synthesized code is
a correct implementation of the input specification. Program synthesiz-
ers are typically complex artifacts that make use of advanced software
engineering techniques such as generative programming and component
composition. This makes it difficult to check the relationship between
the inputs and outputs. We present an approach to checking the in-
put/output relation of program synthesizers that uses a domain-specific
modeling language to specify the expected input and output and con-
straints between them. We apply our ideas to AUTOFILTER, a program
synthesizer for mathematical state estimation problems.

1 Introduction

The goal of program synthesizers is the automatic generation of software for
families of applications within a specified domain. Program synthesizers are one
of the many approaches to delivering customized software products quickly and
cost efficiently from existing libraries of program components and/or parameter-
ized templates and schemas [2,7]. Program synthesis systems that can generate
fully executable code from high level behavioral specifications are rapidly ma-
turing (e.g. [11]), in some cases to the point of commercialization (e.g. SciNapse
[1]).

A fundamental issue faced when developing program synthesis technology is
that of checking the correctness of the derived output code with respect to the
input specification. Program synthesizers are typically complex pieces of code.
Testing such systems is especially difficult because it can be hard to predict
exactly how domain knowledge is instantiated/composed to produce concrete
programs — by design, program synthesizers must react to a wide variety of

* This work was partially funded under the RIACS/NASA Ames Summer 2002 Stu-
dent Research Program.

possibly unanticipated inputs. Program synthesizers may incorporate advanced
techniques that are difficult to test with traditional methods — for example, there
may be search involved during the code generation process which may lead to a
large number of possible paths to verify.

We will present a technique that addresses the problem of checking the input
and output of program synthesizers. Regression testing is not enough to vali-
date a domain extension or maintenance step because testing deals only with a
pre-defined set of example problems. We propose that the program synthesizer
developer create models of the input and output and specify constraints over
those models. The input and output of the synthesizer may then be checked for
conformance to these constraints, which are embedded in the DSML. Test cases
check only a single example, but the input/output constraints are defined at the
domain modeling level which means that they are applicable to all examples gen-
erated by the program synthesizer. Checking constraints is a lightweight checking
method that goes beyond testing but does not involve formal verification.

To model the input/output relation, we propose the use of models that
are derived from a domain-specific modeling languages (DSMLs). Our DSML
is based on the Unified Modeling Language (UML) and Object Constraint Lan-
guage (OCL) [4]. We will illustrate the use of these techniques on a specific
application — that of checking the input/output relation of AUTOFILTER, a pro-
gram synthesizer for mathematical state estimation problems.

2 Description of AUTOFILTER

In the following sections, we describe an application of our checking techniques
to the AUTOFILTER program synthesizer, a synthesizer for state estimation prob-
lems — i.e., problems concerning the estimation of the state of an object (e.g., its
position, attitude or noise characteristics) based on noisy sensor measurements.
The most common way of solving a state estimation problem is to use a recursive
update algorithm known as a Kalman filter [5] which provides a statistically opti-
mal estimate of a state based on a process model of the dynamics of the problem
under study and a measurement model of how the sensor measurements relate
to the state.

Given process and measurement models, a Kalman filter can be implemented
that optimally estimates the state. At each time step, the new measurement
is read in and used to provide an updated state estimate and updated error
covariance based on this new measurement information. Because measurements
are only available at discrete time steps, the state estimate and covariance is
projected ahead to when a new measurement will be available.

AUTOFILTER takes as input a mathematical specification including equations
for the process and measurement model but also descriptions of the noise char-
acteristics and filter parameters. From this specification, it generates code that
implements (some variant of) a number of standard Kalman filter algorithms.
There are many variations of the Kalman filter algorithm, each variation being
chosen according to the problem specifics. For example, a nonlinear problem is

usually solved by an extended Kalman filter. Generic Kalman filter algorithms
are represented in AUTOFILTER’s knowledge base as uninstantiated schemas or
programming language independent uninstantiated code fragments. By instanti-
ating and composing fragments, AUTOFILTER can generate code for highly com-
plex filter configurations. AUTOFILTER has been applied to a number of realistic
case studies, such as thruster control for automated spacecraft docking and code
generation of part of the attitude control system for Deep Space I, a deep space
probe.

The Kalman filter domain is a complex one. AUTOFILTER also has a complex
schema instantiation and composition mechanism. As a result, AUTOFILTER can
generate code in unpredictable ways. This is both a strength and a weakness of
AUTOFILTER. It allows interesting solutions to be generated to deep problems
but also makes it difficult to keep track of the correctness of the results of code
generation. In order to address the latter issue, we applied our input/output
checking techniques to AUTOFILTER. The main concern with AUTOFILTER gen-
erated code is that code fragments will be composed that are inconsistent with
each other. A schema can be thought of as having a number of slots which can be
instantiated by the schema itself or calls to other schemas. If two schemas instan-
tiate different slots, however, there is a danger that the slots will be instantiated
inconsistently due to a bug in the domain implementation. It is time-consuming
to check slot consistency by hand but by developing independent models of how
slots should be connected, it is possible to check slot consistency automatically.

3 DSML Development

From the analysis of the family of state estimation problems and Kalman fil-
ters a DSML is developed that captures the key concepts of the input/output
domains as first-class primitives. The syntax of the DSML is determined from
the domain models that result from the domain analysis [9] activity. The seman-
tics is determined from the domain-specific constraints specified during domain
analysis. There are four tasks involved in developing DSML, briefly described as
(for full details see [3]):

1. Create Static Concept Stereotypes A stereotype is a UML extension mech-
anism that gives additional semantics to a UML model element. This se-
mantics can be specified informally or formally. In our work, stereotypes are
specified formally using UML’s OCL, as illustrated in Table 1.

2. Create Dynamic Concept Stereotypes Dynamic concepts are stereotyped in
a similar way to static concepts. Since our example does not use dynamic
concepts, we defer to [3] for a description of dynamic concept stereotypes.

3. Packaging Stereotypes For scoping purposes, stereotypes may be packaged
into separate profiles. These profiles are then packaged into a “super-profile”.

4. Create and Package Domain Meta-Models A meta-model can be defined to
describe the relationships between stereotypes in the DSML. These relation-
ships may be existing UML model elements (e.g., aggregation) or may be
domain-specific (e.g., specialized UML associations).

The DSML is used to to model the input/output of the program synthesizer.
Models were developed for AUTOFILTER’s using static models of state estimation
problems and Kalman filter implementations. The domain models created were
UML class diagrams (CDs) that captured the static components of the input
and output of AUTOFILTER, and are illustrated in Figures 1 and 2.

Table 1. Class Process Model stereotype

Stereotype|process model

Base Class|Class

Parent N/A

Tag mandatory

Constraint |context <process_model> inv:

self.isAbstract = true and self.isLeaf = false and
self.isRoot = true and self.mandatory = true and
self. < state_vector>—size() = 1 and

self. process_noise>>—ssize() = 1 and

(self.< control_vector>>—ssize() = 0 or

self. < control_vector>>—size() = 1) and

self. € measurement_model’>—ssize() = 1 and
self. € equation>>.multiplicity = 1 and

self. € equation’>.changeability = frozen and
self. € equation’>.visibility = public and

self. < linear>>.multiplicity = 1 and

self. < time_variant>.multiplicity = 1 and
self. < value_type>>.multiplicity = 1 and

(self.<equation>>—forAll(eq | eq.initialValue.body = ‘discrete’) xor
self.€equation>>—forAll(eq | eq.initialValue.body = ‘continuous’)) and
(self.<linear>>—forAll(Ir | Ir.initialValue.body = ‘true’) xor
self.<linear>>—forAll(Ir | Ir.initialValue.body = ‘false’)) and

(self. <time_variant>>—forAll(tv | tv.initialValue.body = ‘true’) xor

self. < time_variant>—forAll(tv | tv.initialValue.body = ‘false’)) and
(self.«value_type>>—forAll(vt | vt.initialValue.body = ‘absolute’) xor

self. K value_type>>—forAll(vt | vt.initialValue.body = ‘incremental’)) and
self. < control_vector>>—notEmpty() implies
(self.<control_vector>>. < time_variant>>—forAll(tv | tv.initialValue.body = ‘true’)

Xor
self. < control_vector>>.<time_variant>>— forAll(tv | tv.initialValue.body = ‘false’))

4 Input/Output Checking

The checking of AUTOFILTER input/output was carried out in a semi-automatic
manner with the use of an analysis tool for UML. The USFE tool is used in ver-
ifying the syntactic and semantic constraints expressed in UML models. USE
is a UML OCL verifier, developed as a PhD research project and available at:
www. db.informatik.uni-bremen.de/projects/USE/. A USE specification is a de-
scription of a UML CD model with OCL constraints, and an object diagram
description. USE verifies the object diagram description against the CD model
and constraints.

State Vaviable Process Variable ‘ Control Variable ‘

value: REAL mean: REAL = 0.0 value: REAL
noise: STRING = white
1.0 value: REAL 1.

1.0

1. 1. 1.

Linear Discrete Proces ‘ State Vector ‘ ‘ Process Noise ‘ ‘ Control Vector ‘
linear = true ‘ ‘ ‘ ‘ ‘ time_variant: BOOLEAN ‘
1.1 1.1 0.1
Discrete Process
P equation - discrete

Linear Measurement

Nonlinear Discrete Process .
linear = false
Process Model Measurement Model

_ linear = true
equation: STRING proc._meas equation: STRING = discrete
linear: BOOLEAN time_variant: BOOLEAN
time_variant: BOOLEAN 1. 1| linear: BOOLEAN
Linear Continuous Process value_type: STRING value_type:STRING Nonlinear Measurement

linear = false

linear = true 1.
1.1 1.1
Continuous Process I State Vector | [Measurement Noise |
1. 1.0
Nonlinear Continuous Process ?1 . ?\ .

linear = aise [State variable | Variable

value: REAL mean: REAL = 0.0
noise: STRING = white
value: REAL

Fig. 1. AUTOFILTER’s input CD domain model

In our example, the object diagrams (specifications of instances of AUTOFIL-
TER’s input and output) are checked against the domain CDs of Figures 1 and
2. The UML CD and OCL constraints of the DSML stereotypes are converted
to USE format that are used in the checking of the object diagram specifi-
cations. A segment of the USE-specific OCL constraints is listed in Table 2.
USE requires that all constraints be labeled (KalmanFilter00, KalmanFilter30,
Initialization20, etc).

Table 2. AUTOFILTER stereotype constraints for USE

context Kalman_Filter inv KalmanFilter00 :
(self.process_Model.equation = ’discrete’ xor self.process_Model.equation = ’continuous’)
context Kalman_Filter inv KalmanFilter12 :
self.process_Model.control_Vector—notEmpty() xor self.process_Model.control_Vector—isEmpty()
context Kalman_Filter inv KalmanFilter30 :
self.process_Model.control_Vector—notEmpty implies
self.process_Model.control _Vector.oppositeAssociationEnds() —»forAll(oae | oae.ordering =
#ordered.)
context Initialization inv KalmanInitialization20 :
self.imax—forAll(im | self.kalman_Filter.declaration.dmax—includes(im))
context Transition_Update inv TransitionUpdate02 :
(self.loop.kalman_Filter.measurement Model—forAll(mm | mm.time_variant = true) implies
self.measurement_Transition—notEmpty()) xor
(self.loop.kalman_Filter.measurement_ Model—forAll{(mm | mm.time_variant = false) implies
self.measurement_Transition—isEmpty())

o o

. d

.

[state Estimate projeq | [_State Estimate updt eq

Gain eq

| [Error Covariance projeq | [Eror Covariance updt eq |

1.1 1.1

1.1 1.1

1.1

Measurement Processing

1.1

o

0

0.1|__ Control Transition

Update Transition | 0.

o.1] Measurement Transition

N

Kalman Filter

step: INTEGER
updat interval: REAL

* | make_discrete(): MATRIX

11‘ 11‘

make_linear(): MATRIX

0.1

01 State Transition

Matrix

kmax

Nominal

7] col_size: INTEGER
‘ row_size: INTEGER 1

1.1

Tran Hold |

‘ values|0.."): REAL

[Control Input Control Transition

[Error Covariance project |

[Error Covariance update | [Filter Output

[Gain I Identity

Measurement

I Covariance |

[Predict | |

Tran Hold |

[Measurement Transition Nominal

Process Covariance

| [state Estimate project

[state Estimate update | [State Transition

Fig. 2. AUTOFILTER’s output CD domain model

The checking of AUTOFILTER’s input equation specification and output filter
intermediate code is made up of the following tasks: (1) checking the input spec-
ification against the input model (syntactic checking); (2) checking the output
filter against the output model (syntactic checking); (3) mutual checking of the

input and output semantic constraints (semantic checking).

Syntactic checking Syntactic checking of AUTOFILTER input equation specifi-
cation and output filter intermediate code are conducted independently of each
other. Checking of the input specification may be done before invoking AUTOFIL-
TER, S0 as to ensure that any error in the output filter code is not as a result of

an incorrect input specification. The syntactic checking includes:

1. Ensuring mandatory classes and associations are included in the input spec-

ification and output filter.

2. Ensuring that the multiplicities of the domain CDs are not violated.

3. Ensuring that all entities of the input specification and output filter are
defined in the domain CDs.

Semantic checking Semantic checking, like the syntactic checking is conducted
partly as a manually and partly as an automatic process and is intended to
check aspects of the input specification and output filter that are other than
structural. The semantic checking involves satisfying the constraints associated
with the meaning of the input specification and output filter components.

Checking process The input specification and output filter must first be trans-
lated from its concrete syntax to the syntax of the DSML. This involves “lifting”
from the concrete syntax to the domain-specific concepts defined by the DSML
(Figures 1 and 2). This results in the generation of UML object diagrams of the
input specification and output filter intermediate code.

The next step is the translation of the UML object diagrams to its USE
format. The USFE object diagram representation is then inputted to USE and
both syntactic and semantic checking is automatically conducted. Any error
reported from USE has to be checked against the object models to determine
whether the manual translation processes introduced the error, or the error was
as a result of modifications done to the program synthesizer.

5 Related Works

Our approach to input/output constraint-checking is a form of lightweight veri-
fication that emphasizes the role of modeling to highlight what is to be checked.
The approach is a form of product-oriented verification in that we verify the
result of the synthesizer rather than attempting to verify the synthesizer itself.
There has been some other work on product-oriented certification. [10] checks
the result of the program synthesizer AUTOBAYES? for the violation of simple
safety properties, such as safe array bounds access and absence of division by
zero. The approach is to encode the safety properties as a set of rules (a safety
policy) that can be used to generate verification conditions to be proved by a
theorem prover. A similar approach is pursued in [7] in which term rewriting
is used to check functional properties of the AUTOFILTER system. The product-
oriented approach is derived from the ideas of proof-carrying code [6] in which a
compiler is augmented with certificates of partial correctness of the object code
generated. A related approach is that of run-time result-checking [8] in which
correctness of a particular run of a system is checked at run-time rather than
checking the correctness of the software itself — e.g., for a sorting algorithm, it
is easier to check that a given sorted list is indeed sorted rather than check the
correctness of the algorithm.

3 AUTOBAYES and AUTOFILTER are built on the same infrastructure but AUTOBAYES
works in the domain of data analysis.

6 Conclusion

In this report a DSML-based technique has been presented for partial checking
of the input specification and output code of program synthesizers. The rationale
for this work lies in the need to be able to use automatic program generation
with an acceptable degree of confidence. The technique presented in this re-
port integrates formal constructs (e.g. OCL) with informal graphical modeling
notation (e.g. UML) to create domain-specific modeling languages.

The technique was applied to a program synthesizer for state estimation
problems from an industrial domain. The experience gained in this exercise
demonstrates that this constraint-checking technique can provide a high level
of confidence in the use of program synthesizers. But the processes used in the
technique have to be nearly fully automated in order to derive the full benefits
from the use of such techniques.

References

1. R. Akers, E. Kant, C. Randall, S. Steinberg, and R. Young. Scinapse: A problem-
solving environment for partial differential equations. IEEE Comp. Sci. and Eng.,
4:32-42, 1997.

2. Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty
Sirkin. The genvoca model of software-system generators. IEEE Software,
11(5):89-94, September/October 1994.

3. Emanuel S. Grant. Defining Domain-Specific Object-Oriented Modeling Languages
as UML Profiles. PhD thesis, Colorado State University, Ft. Collins, Colorado,
USA, December 2002.

4. Object Management Group. OMG Unified Modeling Language (UML) Specifica-
tion. Object management Group, Needham, Massachusetts, USA, uml 1.5 edition,
March 2003.

5. R. Grover Brown and P.Y.C. Hwang. Introduction to Random Signals and Applied
Kalman Filtering. John Wiley & Sons, 1997.

6. G.C. Necula. Proof-carrying code. In Symposium on Principles of Programming
Languages (POPL), 1997.

7. Grigore Rosu and Jonathan Whittle. Towards certifying domain-specific prop-
erties of synthesized code. In Verification and Computational Logic (VCL’02),
Pittsburgh, PA, USA, October 2002.

8. H. Wasserman and M. Blum. Software reliability via run-time result-checking.
Journal of the ACM, 44:826-849, 1997.

9. David M. Weiss. Defining families: The Commonality Analysis. Technical Report
Submitted to IEEE TSE, Lucent Technologies, 1998.

10. Michael Whalen, Johann Schumann, and Bernd Fischer. Synthesizing certified
code. In Formal Methods Europe, pages 431-450. Springer, 2002.

11. J. Whittle, J. van Baalen, J. Schumann, P. Robinson, , T. Pressburger, J Penix,
P. Oh, M. Lowry, and G. Brat. Amphion/NAV: Deductive synthesis of state esti-
mation software. In Proceedings of Conference on Automated Software Engineering
(ASE(Q1), San Diego, CA, USA, 2001.

