
INTRODUCTION TO THE 3rd WORKSHOP ON
DOMAIN-SPECIFIC MODELING

Workshop web site: http://www.cis.uab.edu/info/OOPSLA-DSM03/

Juha-Pekka Tolvanen
MetaCase Consulting

Ylistonmentie 31
FIN-40500 Jyvaskyla,

Finland
jpt@metacase.com

Jeff Gray
University of Alabama at Birmingham

Computer & Information Sciences
115A Campbell Hall, 1300 University Blvd.

Birmingham, AL 35294-1170, USA
gray@cis.uab.edu

Matti Rossi
Helsinki School of Economics
FIN-00100 Helsinki, Finland

mrossi@hkkk.fi

ABSTRACT

Current modeling languages are based on the concepts taken from programming languages,
leading to working on problems of the solution domain instead of the problem domain.
Domain-specific modeling allows faster development of applications, based on models of the
products rather than on models of the code. A domain-specific modeling language applies
concepts and rules that are natural for the experts of the domain. Together with generators
and components it can automate a large portion of software production. This can be
especially useful for companies that use product families or product platforms. In these
proceedings we report on recent advancements in this area.

1 INTRODUCTION
Domain-driven development (3D) has recently popularized the importance of model-based
research. A broad range of new research topics in this space have emerged and are being
explored in numerous contexts. At the past two OOPSLA DSVL workshops, an international
group of researchers assembled to discuss topics related to modeling and domain-specific
visual languages. The prior workshops had a wide selection of topics (including
generative/transformation techniques from models to code), but this version of the OOPSLA
2003 DSM workshop will focus solely on issues at the modeling level. There are two reasons
for this: first, we believe that there is now a sufficient body of work on the modeling domain,
which is evident in these proceedings, and second, there are separate workshops on
generators and model driven architectures.

A contributing factor to the rising interest in domain specific modeling comes from the
realization of productivity gains that have been attributed to a shift in focus toward software
represented at higher levels of abstraction. In the past, abstraction was improved when
programming languages evolved towards higher levels of specification. Today, domain-
specific modeling provides a trajectory for continuing to raise the description of software to
more abstract levels. Much investigation is still needed in order to advance the acceptance
and viability of model-driven techniques.

Domain-specific modeling raises the level of abstraction, while at the same time narrowing
down the design space, often to a single range of products for a single company. When
applying DSM, and domain specific languages, the models are made up of elements

representing things that are part of the domain world, not the code world [5]. The language
follows the domain abstractions and semantics, allowing developers to perceive themselves
as working directly with domain concepts. The models are simultaneously the design,
implementation and documentation of the system, which can, and should, be generated
directly from them [1].

This is unlike current visual modeling languages that are based on the code world using the
semantically well-defined concepts of programming languages (like UML, SA/SD). Here,
developers have to leap straight from requirements into implementation concepts, and map
back and forth between domain concepts, UML concepts, and program code. This requires a
lot of time and resources and easily leads to errors.

The final products are automatically generated from the high level models with domain-
specific code generators [4, 5]. There is no longer any need to make error-prone mappings
from domain concepts to design concepts and on to programming language concepts.
Industrial experiences of this approach show major improvements in productivity, time-to-
market responsiveness and training time [2, 6].

2 DOMAIN SPECIFIC MODELING PREREQUISITES
Three things are necessary to achieve full automatic code generation from domain modeling:
firstly a modeling tool supporting a domain-specific modeling language, secondly a code
generator, and lastly a domain-specific component library. The top level is made once by the
organization for a given domain. This forms the start-up cost of the DSM approach.

Normally one or two experts will make the DSM metamodel and code generation, normally
with a metaCASE tool [4, 5]. The metamodel is the implementation of the domain-specific
modeling language, and captures the essential concepts of the domain. In a sufficiently well
known domain there should be concrete implementation components available and thus large
portion of the systems can be generated from high level models.

Once the modeling language has been specified by the method experts the models can be
drawn by normal developers, i.e. domain experts, which are not necessarily implementation
experts. Development time can often be further reduced by reusing chunks of models which
are common to several products. The code generation and component instantiation require no
effort by the developer. Similarly documentation is handled by the model generators. In this
scenario work can be divided by the domain specializations of the modelers (for example
usability, processes, functions) instead of programming capabilities.

The DSM language captures the semantics of the domain and the production rules of the
instantiation environment. The code generator transforms the concept structures into physical
implementations in code. In some cases the code will be fully self-contained; more often
significant parts of the code will be calls to components. Since the code is generated, syntax
and logic errors do not occur, given that the semantics and modeling rules of the DSM are
sufficiently well captured in the metamodel of the language.

3 ABOUT THE ARTICLES IN THESE PROCEEDINGS
The papers in this compilation present ten different views to DSM research and practice. The
papers are divided into three sections, each comprising one workgroup in the actual
workshop. In the first section we have three papers that present different cases of practical
implementations of DSM languages. This section begins Grunske’s a visual language for
embedded systems that uses hypergraphs. The second Chapter presents Amaral et al’s
approach to a domain specific query language for the domain of high energy physics. In the
third article Deng et al proposes a model driven approach to inventory tracking.

The second section considers model management in DSM’s. The first article by Celms
Kalnins & Lace considers mapping of different diagrams into a common metamodel. In
chapter five Wang and Liu present a formal model for integrating different models. Oglesby
et al. present a dynamic view generation approach to model-based development in Chapter
six. More transformational approaches to DSM are presented by the articles “Model
Migration through Visual Modeling” by Sprinkle & Karsai and “Checking Program
Synthesizer Input/Output” by Grant & al.

The third section finalizes this volume by two views to tools for DSM modeling. First paper
presents UDM, a tool infrastructure for implementing DSM’s, and is written by Magyari &
al. The last paper in this compilation, by Bichler, discusses tool support for generating
implementations of MOF-based DSM’s. Together these papers give an excellent snapshot of
the current state-of-the-art in DSM research.

REFERENCES
[1] Tolvanen, J-P, Kelly, S., Gray, J., Lyytinen, K., Proceedings of OOPSLA workshop on

Domain-Specific Visual Languages, Tampa Bay, Florida, USA, University of Jyväskylä,
Technical Reports, TR-26, Finland, 2001.

[2] Kelly, S., Tolvanen, J.-P., (2000) Visual domain-specific modeling: Benefits and
experiences of using metaCASE tools, International workshop on Model Engineering,
ECOOP 2000, (ed. J. Bezivin, J. Ernst)

[3] Kieburtz, R. et al., A Software Engineering Experiment in Software Component
Generation, Proceedings of 18th International Conference on Software Engineering,
Berlin, IEEE Computer Society Press, March, 1996.

[4] Lédeczi, A., et al., “Composing Domain-Specific Design Environments,” IEEE
Computer, November 2001.

[5] Pohjonen, R., and Kelly, S., “Domain-Specific Modeling,” Dr. Dobbs Journal, August
2002.

[6] Weiss, D., Lai, C. T. R., Software Product-line Engineering, Addison Wesley Longman,
1999

Contents

Introduction to the 3rd workshop on Domain-Specific Modeling

DSM practice:
Approaches for implementing DSMs

1. A Visual Architecture Description Language for Embedded Systems with
Hierarchical Typed Hypergraphs
Lars Grunske

1

2. A Domain Specific Visual Query Language for High Energy physicists
Vasco Amaral, Sven Helmer, Guido Moerkotte

9

3. Model Driven Development of Inventory Tracking System
Gan Deng, Tao Lu, Emre Turkay, Andrey Nechypurenko

15

Model management:
Approaches for model integration and transformation

4. Diagram Definition Facilities Based on Metamodel Mappings
Edgars Celms, Audris Kalnins, Lelde Lace

25

5. A Formal Model Integration
Jiayang Wang, Mengchi Liu

35

6. Cross-aspect Queries and Dynamic Views for Model-based Development
David Oglesby, Kirk Schloegel, Eric Engstrom

43

7. Model Migration through Visual Modeling
Jonathan Sprinkle, Gabor Karsai

51

8. Checking Program Synthesizer Input/Output
Emanuel Grant, Jon Whittle, Rajani Chennamaneni

59

Tools:
Tools for implementing and using DSMs

9. UDM: An Infrastructure for Implementing Domain-Specific Modeling Languages
Endre Magyari, Arpad Bakay, Andras Lang, Tamas Paka, Attila Vizhanyo, Aditya
Agarwal, Gabor Karsai

 69

10. Tool support for generating implementations of MOF-based modeling languages
Lutz Bichler

77

