
Tool support for generating implementations
of MOF-based modeling languages

Lutz Bichler
Institute for Software Technology

University of the German Federal Armed Forces Munich
85577 Neubiberg, Germany

Abstract

The upcoming version 2.0 of the UML standard will be the basis for
many domain specific modeling languages. Therefore, tool support for im-
plementing support for domain specific languages has to be built based on
the MOF 2.0 standard, which defines the language used to specify the UML.
Because manually implementing tools for domain specific modeling lan-
guages is time-consuming, generative tools are needed, which are flexible
enough to be used in a variety of use cases, such as implementing reposito-
ries, case tools, model compilers a.s.o.

In this paper we present a part of the MOF Meta-modeling Tools (MOmo)
project, which aims to create tools which support the MOF 2.0 standard.
The MOmo toolbox will contain tools for defining and compiling MOF 2.0
models. Additionally, the tools are extensible for other MOF-based model-
ing languages such as UML and UML profiles. Within this paper we focus
on the compiler component and describe the single processing steps which
are carried out to generate an implementation from a model definition.

1 Introduction
The upcoming version 2.0 of the Unified Modeling Language (UML) ([7], [8])
will be the basis for many future domain specific modeling languages. UML is
specified by a metamodel which defines the properties of the model elements.
Extensions and adaptations will be done by redefining existing model elements
and by adding new elements to the metamodel. The UML 2.0 meta-model is an
instance of the Meta Object Facility (MOF) 2.0 ([1]) meta-modeling language.

Modeling languages need to be tool supported in order to be really useful.
Tool development is time and cost intensive. Therefore it needs to be supported
by tools which facilitate the development of tools which implement the specific
modeling languages. One of these "meta-tools" is the MOF Meta-model Compiler
(MOmoC) which is presented in the following section. The standard configuration

of MOmoC reads XMI representations of MOF models and generates implemen-
tation code. In the following section we describe the compilation process, present
a brief example and provide an overview over the MOmoC implementation.

2 Transformation Steps
Figure 1 provides an overview over the steps which are carried out to transform
an XMI representation into implementation code. The first step is to read a MOF-
model and build an object representation. This object representation can be mod-
ified by user modules in order to prepare it for a specific target language. The
adapted object representation is used to build an internal XML-representation of
the MOF-model. Finally, the internal representation is transformed into target
language code.

Parsing
object model

Adapting

Generating (I)

XML representation

Generating (II)

object model

XMI

Code

Figure 1: Transformation steps

The storage format for MOF-models is standardized by the OMG in the XMI
specification ([6]). Therefore MOmoC processes an XMI file to generate imple-
mentation code for the contained model. As XMI was designed to be a flexible
representation of model data in XML, the representation of object data in XMI
is configurable. This resulted in many slightly different XMI dialects. Thus, in
order to be able use XMI as input we need to transform it into one specific XMI-
configuration or to use another representation of the MOF-model internally.

We decided to use an own XML representation of a MOF model, which is bet-
ter suited for code generation than XMI. The main difference between XMI and
our XML representations is that XMI in most cases contains the XML represen-
tations of several model elements, while our internal representation contains one
XML document per model element.

The mapping from the object representation to the internal XML represen-
tation is straightforward. Each model element is mapped to an XML document

which contains a root node with the name of the model element. Each reference
is mapped to an XML node with the name of the referenced object which con-
tains the reference. In section 3 we show an example for the mapping of object
representation to XML representation. Additionally to the mappings of the single
objects a document for the model is created. This document contains references
to the root level objects of the model and can be used as starting point for tar-
gets which exist only once per model, such as an interface for reading and writing
XMI.

This representation has two main advantages over processing XMI directly.
It is easier to read than XMI, because each document contains only a small part
of the model and secondly, and it facilitates the use of Extensible Stylesheet Lan-
guage Transformations (XSLT) ([9]) to transform it to implementation code for
the same reason.

XSLT is a language to transform XML documents to other representations
which is standardized by the W3C. Using XSLT for the transformation has several
advantages. XSLT is a standard, it is well documented and many implementations
are available. The basics are easy to learn and therefore simple changes to adapt
the backend to a specific use case are straightforward. On the other hand XSLT is
powerful enough to be used for complex code generation tasks.

Our internal XML-format mitigates the most important disadvantages of XSLT
with regard to readability and performance. XSLT is often critisied for its ver-
bosity, which makes stylesheets hard to read and understand. But the complex-
ity of an XSLT stylesheet depends on the complexity of the input file. Our
XML-documents are quite simple and therefore processable by relatively sim-
ple stylesheets. Although this does not avoid the verbosity of XSLT, it makes the
stylesheets easier to read and write.

Additionally the breaking-up of the XML-representation into one document
per model element increases the performance of the XSLT processing, because
only the parts relevant for code generating need to be processed. Additionally
the performance loss compared to backends which are written in a programming
language can be descreased by compiling the XSLT stylesheets to Java classes.

3 Example
This section shows an example from the MOF 1.4 specification, which shows the
steps of the generation process carried out by the MOmoC. The processing starts
with an XMI-file, which contains the representation of the MOF model. At first
the XMI file is transformed into an object representation and afterwards into the
XML representation.

<?xml version="1.0" encoding="ISO8859_1"?>
<class name="Classifier" namespace="Model">
 <superclasses>
 <classref href="Model.GeneralizableElement"
 isParent="true"
 isInherited="true"/>
 <classref href="Model.Namespace"
 isParent="false"
 isInherited="true"/>
 <classref href="Model.ModelElement"
 isParent="false"
 isInherited="true"/>
 </superclasses>
 <ownedAttributes/>
 <ownedOperations/>
 <subclasses/>
</class>

Figure 2: Internal representation of MOF 1.4 meta-class Classifier in XML

Figure 2 shows the representation of the meta-class Classifier from the MOF
1.4 specification in the internal XML format. The document contains a root node
<class> which contains subnodes for the properties of the class. The <super-
classes> node contains sub-nodes that reference each inherited class. By two
attributes, isParent and isInherited, directly inherited classes are separated from
the classes which are indirectly inherited. This facilitates the mapping of the mul-
tiple inheritance of MOF 2.0 to programming languages which only provide single
inheritance.

The internal representation is transformed into target language code by ap-
plying stylesheets. Figure 3 shows a cut-out from the stylesheet which trans-
forms class representations into nsuml-compatible Java interfaces. It is shown
that XSLT templates are used to generate the implementation code. The content
of the templates is Java code mixed with XSLT processing instructions. The Java
code defines a template which is specific for a certain type of modeling element.
The XSLT code is responsible for filling in the parts which are specific for each
instance of the modeling element type.

The result of applying the stylesheet from figure 3 to the XML document
shown in figure 2 is shown in figure 4. It can be seen that the name of the class,
prefixed by an M, is used as the interface name and that the <xsl:for-each>-loop
has added the superclass to the extends list in the interface definition.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="interface-attribute.xsl"/>
 ...
 <xsl:template match="class">
 <xsl:variable name="basepackage">
 ...
 <xsl:call-template name="copyright"/>
 ...
 public interface M<xsl:value-of select="@name"/>

 <xsl:if test="not(@name=’Base’)">
 extends
 <xsl:if test="count(superclasses/classref)=0">
 MBase
 </xsl:if>
 </xsl:if>

 <xsl:for-each select="superclasses/classref[@isParent=’true’]">
 <xsl:variable name="class" select="document(@href)/class"/>
 <xsl:choose>
 <xsl:when test="not($class/@namespace=$actualpackage)">
 <xsl:call-template name="createFullyQualifiedClassName">
 <xsl:with-param name="basepackage" select="$basepackage"/>
 <xsl:with-param name="actualpackage" select="$class/@namespace"/>
 <xsl:with-param name="class" select="$class/@name"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 M<xsl:value-of select="$class/@name"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:if test="not(position()=last())">,</xsl:if>
 </xsl:for-each>
 {
 ...
 }
 </xsl:template>
</xsl:stylesheet>

Figure 3: Example of stylesheet implementation

package de.unibwm.ist.mof.model;

import de.unibwm.ist.mof.*;
import de.unibwm.ist.mof.undo.*;

import java.util.Collection;
import java.util.List;

public interface MClassifier extends MGeneralizableElement {
 //attributes
 // association ends
 // resources
}

Figure 4: Example of generated code

4 Implementation
The implementation of MOmoC corresponds closely to the transformations steps
which were described in section 2. Basically it consists of a frontend which gen-
erates the internal XML representation and a backend which controls the XSLT
processing. We decided to implement the frontend in Java. This allows us to
use generated code for the parser and the object representation. These parts can
be generated for all MOF-based languages in order to facilitate the building of
model compilers for domain-specific modeling languages. Additionally the fron-
tend contains the generator for the internal representation which serves as interface
between frontend and backend.

The MOmoC package consists of the four main subpackages, which are rep-
resented by the UML packages Parsers, Modules, Generators and Formatters
in figure 5. The fifth package, MOMOC, contains the "driver program", which
controls the generation process.

Formatters

Modules

Parsers

Generators

MOMOC

Figure 5: Architecture of the MOmoC

The Parsers package mainly contains generated code to read XMI documents
and build an object representation of the MOF model. Currently, the generated
code is compatible to the code of the nsuml-library ([5]), which is the basis for
the ArgoUML ([2] modeling tool.

The compatibility facilitates the building of modeling tools for MOF or UML
profiles using ArgoUML as basis for the user interface implementation. There-
fore,the backend for nsuml-compatible libraries was developed first and the MOMo
Compiler was initially built using the code for its internal model representation. It

is planned to switch to a generated JMI ([3]) implementation, when JMI is avail-
able for MOF 2.0.

Beside the generated parser the Parsers package contains hand-written parsers
for MOF 1.4 and UML 1.5 which were used to bootstrap the compiler and are cur-
rently used to import models from UML tools as long as no MOF modeling tool is
available. The handwritten parsers were originally implemented for MOF 1.4 and
are now implementing the rules for transforming MOF 1.4 to MOF 2.0, which are
specified in [1], chapter 11.

The object representation created by the parser can be modified by modules
before the internal XML representation is generated. Currently the MOmoC im-
plementation contains modules for resolving naming conflicts and mapping types.
Naming conflicts are resolved by adding a number to the end of one of the con-
flicting names. The type mapping is needed to map the MOF model to an imple-
mentation technology. This is especially needed for models which contain their
own datatype definitions, which need to be mapped to MOF or target language
data types. The user can implement his own modules to do whatever manipula-
tion he wants. Every module has to implement the interface Module, which is
defined in the package Modules.

The Generators package contains two generators. The XML generator trans-
forms the modified object representation to the internal representation in XML.
Currently, the generator for the internal representation creates XML representa-
tion for MOF-models only. For other languages, e.g. UML, the XML generator
needs adaptation. It is planned to replace the current XML generator by a generic
implementation in a later version of the MOmoC.

The internal representation is used as basis for the code generation by the
Code generator afterwards. The code generator applies XSLT stylesheets to the
XML document to generate code in the target language. The code generator is
configurable to apply a number of stylesheets to documents containing specific
model elements. For example in JMI ([3]) for each class in a MOF model an
interface of the class and a proxy which serves as factory for instantiating the class
are generated. To achieve this generation with the MOmoC two stylesheets need to
be applied to all documents which contain informations about classes. Therefore,
it is possible to configure the system in a way that it searches for all documents
which represent classes and apply a set of stylesheets to these documents.

After finishing the code generation process an optional code formatting pro-
cess can be started. The formatters for the different target languages are located
in the Formatters package. This optional step is included, because the output
of the XSLT transformation is in many cases ugly formatted and therefore diffi-
cult to read and debug. Thus, the code formatters only exist to facilitate backend
development.

5 Summary
In this paper we describe the MOmo Compiler, a flexible tool to generate im-
plementations from meta-model definitions. In its default configuration the tool
conforms to the MOF 2.0 standard, but it is extensible to support other languages
as well. In order be as flexible as possible, the compilation process is done in two
steps. Firstly the XMI input is transformed into an internal XML representation
and secondly transformed to code by applying XSLT stylesheets.

In the first phase of the MOmo project we concentrated on the mechanisms
to implement the model compiler. Our main goal for the next project phases
is to increase the usability of the compiler by developing suitable interfaces for
configuration and backend development. Additionally we plan to build tools for
designing meta-models based on ArgoUML ([2]) or Eclipse ([4]).

References
[1] Adaptive Ltd, Ceira Technologies Inc., Compuware Corporation, Data Access

Technologies Inc., DSTC, Gentleware, Hewlett-Packard, International Busi-
ness Machines, IONA Technologies, MetaMatrix, Rational Software, Soft-
eam, Sun Microssystems, Telelogic AB, Unisys, and WebGain. Meta Object
Facility (MOF) 2.0 Core Proposal, April 2003. ad/2003-04-07.

[2] ArgoUML. http://www.argouml.org.

[3] Ravi Dirckze. JavaTMMetadata Interface (JMI) Specification, Version 1.0.
Unisys, 1.0 edition, Juni 2002.

[4] Eclipse. http://www.eclipse.org.

[5] Novosoft. Novosoft UML Library (NSUML). http://nsuml.sourceforge.net.

[6] Object Management Group. Meta Object Facility (MOF) 2.0 XMI Mapping,
April 2003. ad/2003-04-04.

[7] U2 Partners. Unified Modeling Language: Infrastructure, Version 2.0, März
2003. ad/2003-03-01.

[8] U2 Partners. Unified Modeling Language: Superstructure, Version 2.0, April
2003. ad/2003-04-01.

[9] W3C. XSL Transformations (XSLT) Version 1.0, November 1999. W3C Rec-
ommendation, http://www.w3.org/TR/xslt.

