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Abstract
Some important characteristics of model-based development are the ability to see more of a
design at a time (at a higher level of abstraction), and to see its interactions more directly
than ASCII text can support. This works well until the design scales so large that the model
becomes overwhelming. To address large designs, models are often broken up into systems of
interacting models. However this can obscure important interactions. A cross-model query
and viewing capability makes it possible to specify the components and interactions that are
of interest so that cross-aspect and cross-model interactions can be seen in a single view
without excess clutter.

1. Introduction

A key objective of domain-specific modeling is to represent a design in a more intuitive
manner than textual programming languages and to show relationships between components.
In large part because graphical representations can be more intuitive compared to text, they
can be more concise, showing us more of a design. Also connections can be represented as
arcs between components; and so, relationships among various components become
immediately clear. This is something that cannot be accomplished with text.

Due to these and other benefits, model-based design is being applied to increasingly large
systems.  Scalability then becomes a critical property of domain-specific modeling (DSM)
tools.  The first such hurdle that occurs with only tens or hundreds of modeling entities is the
problem of partitioning the design into multiple logical sheets.  The assumption is that a large
design partitioned into a number of sheets is easier to comprehend than one that is viewed as
a single model.  Typically, this partitioning is performed by the user and is based upon
primary functionality.

This approach detracts from the original draw of model-based design, however, because
components that interact in important ways may appear in different views. Current DSM
tools provide little support for visualization based upon alternative partitionings.  Hence, the
so-called tyranny of the dominant decomposition [4] is the result.

Additionally, as systems become more complex, it is also desirable to capture multiple
aspects of system designs. For example, an embedded system design should represent the
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hardware as well as the software and connect the two. These aspects are often represented
with different modeling notations.

2. Dynamic Views
We believe that users should be free to customize temporary views in order to visualize
designs based upon arbitrary partitionings. These views need not (and indeed, should not) be
maintained. Instead they provide a dynamic snapshot of the aspects of interest. As such, they
should be easy to create and recreate. In these views the user should be able to interact with
the model as in the standard persistent views. That is properties can be changed and
components can be added or removed.  They should also be domain independent, so cross-
aspect interactions become viewable.  We refer to these as dynamic views.

Figure 1 through Figure 4 illustrate this approach on a component interaction model of a
simple flight control system. Figure 1 shows a system model.

Figure 1 A component interaction model of a simple flight control system

A typical partitioning of this design might break the model into two sheets.  One of these
would show the sensor, pilot input, and control law components, while the other would show
the display components.  (See Figure 2 and Figure 3.1)

                                                
1 Note that a number of components (SensorFusion, Sensor3, SystemMode, ControlLaw) appear on both sheets
in order to anchor arcs to other components.  These duplicated components represent a single logical
component.



Figure 2 A sheet from the model in Figure 1 that has been partitioned with respect to
control functionality

Figure 3 A sheet from the model in Figure 1 that has been partitioned with respect to
display functionality

In the development of large systems, multiple engineers collaborate.  Each engineer might be
focused on a different aspect of the system.  Hence, there is some kind of partitioning of the
work effort.  This partitioning may not always conform to the partitioning of the design into
multiple sheets.  For example, a sensor stream engineer might be interested in a view that
shows the interaction slice from timers to sensors to displays. However, under the
partitioning shown in Figure 2 and Figure 3, this slice does not exist in a single view.
Instead, it will be necessary to jog between views to visualize the interactions. Essentially,



the benefits of partitioning the design are lost to the sensor stream engineer. This view is
shown in Figure 4.

Figure 4 A view of the model from Figure 1 that involves the timer to sensor to display
interaction slices.

Cross-aspect views are even more important in development environments that are composed
of multiple modeling notations or tools.  Here, integrated modeling notations implemented in
one or more DSM tools are used to cooperatively specify the various aspects of a complex
design [1][2][3].  Such integration enables the specification of designs as systems of
disparate, yet interacting models. Current DSM tools cannot in general visualize entities from
other modeling notations. This capability is useful for designs involving cross-aspect
interactions.

Suppose the component interaction model from the example above was linked to a particular
hardware model such that components (from the component interaction model) could be
allocated to processors (from the hardware model).  Such an allocation might be computed
automatically for a subset of the components based upon certain criteria.  The remainder of
the components would be allocated by hand.  At such a time, it would be useful for the user
to be able see a dynamic view of the state of the system of models that includes all
unallocated components and their interactions along with all processors with available
computation and memory resources. Figure 5 illustrates such a view.



Figure 5 A portion of the model from Figure 1 along with two modeling entities that
represent CPUs from a hardware model

A related cross-aspect viewing problem exists in the context of heterogeneous hierarchical
model composition.  Hierarchical composition of models is a commonly used mechanism for
reducing model complexity.  Under this framework, modeling entities may encapsulate one
or more subdiagrams that describe internal details.  Typically, modeling entities encapsulate
subdiagrams that conform to the same modeling notation as the parent entity.  By this
mechanism, hierarchical model composition is supported.  However, it is also useful to allow
subdiagrams to describe different aspects from their parents.  (That is, the parent and child
modeling notations are not the same.)  An example is hybrid systems, in which each state of a
state-transition diagram contains a subdiagram describing the continuous behavior that is
associated with it [5][6][7][8].  The problem here is that there is no capability to view
flattened designs that span modeling notations.

Figure 6 and Figure 7 show an example.  Figure 6 models the behavior of the SensorFusion
component from Figure 1.  In particular, after the Sensor2 and DSP components make their
data available, the SensorFusion component runs a sensor fusion algorithm.  Then it makes
the fused data available to the ControlLaw component.  Figure 7 shows a merged view of a
portion of the component interaction model along with the internal behavioral model of the
SensorFusion component.  This unique view is enabled by the domain independent nature of
dynamic views.



Figure 6 A model of the internal behavior of the SensorFusion component

Figure 7 A cross-aspect dynamic view of a portion of the component interaction model
along with the internal behavioral details of the SensorFusion component.

3. Query Model
One way to specify dynamic views is with a model query. As we are working in visual
domains, a visual query language seems appropriate [9]. We use a domain-independent query
language; with it a user can create queries for designs across modeling notations.  The user
specifies the properties and connections of interest in a query model and a dynamic view of
the result is automatically generated.  Since these queries are models they can be saved and
reused; thereby supporting the easy recreation of dynamic views.



Figure 8 shows the query model that results in the dynamic view from Figure 7.  The
dynamic view will contain all items with names beginning with "Timer" or "Sensor", all
items named "SensorFusion" and its subdiagram components, arcs connecting timers to
sensors, objects to which SensorFusion is connected, and anything between a sensor and
SensorFusion2.

Figure 8 The query model that results in the dynamic view from Figure 7

In this example, queries are based on pattern matches with object names and connectivity.
Sets of components with matching names and connections will be returned. Additionally a
user can specify object type or property values or ranges of values. Nodes that appear in
multiple views (e.g. ControlLaw) will appear only once in the resulting graph; however, if
two distinct nodes match a query, both will be returned.

4. Conclusions
As DSM technologies increase in popularity, they are being applied to more complex designs
at greater levels of detail. These larger models can be used for additional analyses and more
complete automatic code and test generation. Unfortunately, they also lose the
comprehensibility that was initially a key attraction. Domain-independent dynamic views
help to improve scalability by addressing this problem.  By querying for relevant portions of
a system of models, a user can interact with all of the components of interest to him or her
and only those components.

Dynamic views are domain-independent to support views across modeling notations. As a
result, working in these views lacks some of the benefits of domain specific modeling.
Among the considerations is constraint checking. If components are added or removed and
properties set in a dynamic view, the constraints will have to be checked when the changes
are committed to the model. Taking this further, it may be possible to reference the relevant
metamodels when working in a dynamic view to enforce such constraints and derive other
domain-specific benefits. The work on metamodel composition by Ledeczi et al. [10] and
aspect-oriented metamodeling by Clark et al. [13] might be relevant here.

Our current query modeling notation is preliminary and still evolving.  Furthermore, the
query engine behind this notation is still rather ad hoc in nature. It has not been optimized or
analyzed for efficiency and correctness. Of particular interest is how this query mechanism
deals with cycles and recursive subdiagrams. Further work in this area can be guided by
previous graphical query research [9][11]. Additionally, the OMG is working toward
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Sensor2 to SensorFusion.



Query/View/Transformation standard that may prove relevant. An initial open-source
implementation of dynamic views and query models can be found as components of the
DOME metamodeling tool suite [12] at http://www.htc.honeywell.com/dome.
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