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Abstract— This paper presents Pheasant, a framework for analyzing data collected during high energy
physics experiments. Our approach features a visual query language especially adapted to the needs of
the physicists analyzing the data. We also provide interfaces to the currently applied tools, so that users
can still do the same work as before, but on a higher level of abstraction. This helps users to concentrate
on their actual job by hiding the intricacies. Although Pheasant is domain-specific, we introduce enough
extensibility to enable it to meet future demands.
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I. INTRODUCTION

The process of manipulating analysis data in high energy physics (HEP) experiments is a time
consuming and cumbersome chore. Although many different tools exist, most of them were
written for a specifical purpose in an ad-hoc manner and then extended and patched to meet
growing and changing demands. Consequently, using these tools makes the analyzing process
unnecessarily complex — by times even cumbersome — because users need a lot of knowledge
about the intrinsics. For example, users are forced to combine disperse utility libraries that
follow different programming paradigms (procedural, object-oriented, etc.). Usually learning
the different programming languages for the various tools is the first obstacle. However,
improper programming styles will have a direct impact on the quality of the resulting code in
terms of understandability and efficiency. Furthermore, presently there is a lack of transparency,
i.e. users have to know the physical layout of the data. Having to learn many details that are
completely unrelated to physics distracts the scientists from their real work.

This motivated us to develop a prototype of a framework tailored to the needs of physicists
analyzing experimental data, giving us the chance to learn about the domain. Physics analysis in
this environment is complex and takes deep physics knowledge to fully understand the process.
The multiplicity of library tools available together with the lack of proper documentation implies
a difficult engineering task while looking for a solution for this environment. The experts in
the field do not always agree in relevant matters concerning the analysis requirements, so as a
first step we had to conduct a requirements analysis to determine the demands as thoroughly as
possible. Having done this we proceeded by modeling the environment in which our framework
would be employed. In developing the framework, we had to keep important requisites in mind.
The main goal was to significantly reduce the programming and other non-physics related effort
of the user. For that reason we decided to supply a simple-to-use interface in the form of a
visual query language (VQL). In this way allow the use of the current tools, albeit on a more
abstract level. The results of our efforts is Pheasant, a framework for analyzing data from HEP
experiments. Our achievement goes beyond mere theoretical thoughts on the subject, as we
have implemented a prototype of the framework that will soon be tested by physicists involved
in the HERA-B experiment at DESY'.

In the following section, we will give a brief description of high energy physics and its
requirements concerning an analysis framework. Section IIl.discusses visual query languages
in the context of physics and covers related work. In Section 1V, the main focus of this paper,
we describe the basis of our data model and the visual query language. We also take a quick
glance at implementation aspects in Section V.In Section VI.we give a summary and an outlook.
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II. A SHORT OVERVIEW ON HIGH ENERGY PHYSICS (HEP)

An in depth review of HEP is beyound the scope of this paper. A good introduction to the
subject can be found in [16] and [15]. Generally speaking, physicists discover new, short-lived
particles and their properties in order to develop a model of the real world at a subatomic level.
Using large accelerators in which particles are brouth into collision.

They do this with the help of large accelerators in which particles collide with other particles.
An accelerator supplies the particles, which are grouped into bunches, with energy taking them
close to the speed of light. As soon as the system stabilizes, a period of data acquisition,
a so called run begins. The time span during which two bunches collide is called an event.
Large detectors record the results of these events. Unfortunately,in any currentbig experiment
like LHC[23],CDF[24],HERA-B[22], it is technically infeasible to gather all information of all
collisions (due to the sheer volume of data), so the physicists filter the data with several levels
of triggers. The resulting data is initially stored on tape.

The reconstruction and investigation of decays and decay chains of short-lived particles is one
of the main tasks of the data analysis after collecting the data. Physicists have to reconstruct
segments of the trajectories of particles, match them with other segments to reproduce full
tracks, extract further properties and deduce complete decay chains.

We were able to identify the major requirements of a HEP analysis framework. They are
listed in the following (further reading on the general requirements from the HEP community
can be found in [15]):

e The framework should be flexible. Users should be able to extend it with new algorithms.
Furthermore, it should not only allow retrieval of previously stored objects, but should be
able to compute new objects to represent a decay chain more precisely.

o Physicists describe the results of their analysis statistically, so the output of our framework
should support several types of histogramming.

e Queries can be computationally expensive. So the framework should not just translate
queries in a straightforward fashion, but also be able to optimize the queries. For example,
intermediate results that are used repeatedly can be cached and we can exploit the fact that
we have almost exclusively read accesses.

e At the moment, many different frameworks are used to analyze the data from different
experiments (for some examples, see the lower part of figure 1, more technical details can
be found in [1]). This makes the lives of physicists unnecessarily difficult, as the users are
rarely experienced IT professionals.
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Figure 1: Unified framework

Our goal is to provide an unified framework with an intuitive interface that models the world
as a physicist sees it (see the upper part of figure 1). The interfaces of this framework consist
of a visual query language (VQL) interface and several code generation modules (marked with
g:; in Figure 1) that connect Pheasant to the existing tools. Here we will focus on the VQL
interface; the code generation modules are beyond the scope of this paper.



III. DISCUSSION OF VISUAL QUERY LANGUAGES AND RELATED WORK

Visual Languages (VL) are usually easier to use than text-based interfaces. Thus they make it
possible for inexperienced or untrained users to use information systems. An important subset
of VL are the visual query languages (VQL), whose purpose is to extract information from
stored data.

Experience shows that many VLs and VQLs lack formality. This is one of the reasons
why complete surveys with thorough comparisons are rare [8]. In our opinion this is a severe
drawback, as a query language should allow no ambiguities. We lean toward diagrammatic and
graph-based languages as they are easier to formalize [3] than other approaches like metaphor-
based, form-based, or iconic-based. They are also better suited to object-oriented or semantic
data models [9]. However, metaphor-based approaches should not be dismissed from the outset,
as they are usually closer to the user’s perception of the world. Therefore we opted to enrich a
graph-based language with elements of metaphor-based concepts, i.e., we avoided to just create
a visual layer for an existing textual interface.

Our next design decision concerned the specificity of the language. The question was
whether to develop a general purpose or a domain specific language. There are advantages and
disadvantages for each approach. General purpose languages are very flexible and easier to
design, as it is not necessary to consider details of specific domains, but work with more general
concepts.

However, this comes at a price. The language will be harder to learn and to master, especially
for inexperienced computer users. Moreover, the user has to adapt his way of thinking to
this general framework, which might employ paradigms totally different from the domain. A
domain specific language, on the other hand, utilizes terminology that is familiar to the end-user.
Thus it is easier to learn for people acquainted with the domain, but not with computers. There
are also disadvantages. First of all, the language is limited to the specific domain, it will be
difficult to apply it in a totally different environment. It is also harder to design, as the designer
has to have a computer science background as well as knowledge of the domain. We have
decided to go ahead with a domain specific language, as we wanted to avoid exactly those
problems illustrated for general purpose languages. Our language is used exclusively for HEP
data analysis.

This leaves us with the problem of balancing the domain specificity and the generality of the
language [7]. If the language is too general, we will experience the same problems as with
general purpose languages. If it is too specific, no one will use it, as potential users may not
be able to formulate their queries. Since it is very difficult to get this balance exactly right, we
lean toward specificity, but introduce extendibility into our approach to be able to meet future
demands.

Examples of visual domain specific languages (VDSL) can be found in areas such as robot
control [10], VLSI design [4, 13], CASE tools [18] , languages for software modeling design
like UML [6], and GIS [17]. An interesting description of Domain-Specific Languages can
be found in[7]. To our knowledge no VDSL exists for analyzing data collected in physics
experiments, and our paper aims to present what we believe to be a new area of application of
DSVL concepts.

IV. DATA MODEL AND LANGUAGE

In designing a consistent VQL, we took into account — based on previous works in the area of
VL - that it should satisfy three major user activities: understanding the structure of the data,
query formulation and result set visualization. In HEP analysis the conceptual structure of the
data does not change much, so we refrained from explicitly showing the whole domain as in
other VLs. We hide the metadata to avoid a confusing layout of the interface, as we expect the
users to be very familiar with the structure. Via the operators the corresponding parts of the
metadata can be accessed.

Furthermore, we did not limit ourselves to retrieving a subset of existing data or selective
zooming in on the data, but also allow the computation of new objects at run-time. A query has
a tree-like structure and its result can be visualized with the help of different histogram layouts,
which is the usual approach in physics to handle statistical data.



A. Data Model

We have modeled the HEP analysis data in an ER diagram that is depicted in Figure 2. It consists
of three major entities: Run, Event and Particle. The attributes of the entity Run define the
parameters of the experiment, e.g. the setup of the detectors, the time span during which data
acquisition took place and general quality issues. As events can only exist within a run, they
are modeled as a weak entity (dependent on the entity Run). Its attributes describe properties of
particle bunches involved in an event. The remainder of the diagram consists of various entities
for describing particles. We have particles that actually leave traces in the detector. These are
described by their tracks. Particles reconstructed by computations, i.e. whose existence has
been derived from the data, are called vertices. We have to be able to store simulation results as
well as experimental data results from Monte Carlo simulation algorithms.With the data gained
from simulations the plausibility of the measured results is verified.
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Figure 2: Patterned ER model of the HEP analysis data,which excludes detector related data

B. Query Pattern

When observing the analysis process, we found a common pattern in the way physicists queried
their experimental data. Generally speaking, we can distinguish three different steps. In the
first step they select parts of all runs and events supplying predicates for extracting interesting
data (e.g. run periods or certain configurations of detectors). The second step involves using
data collected in the first step to reconstruct decay chains.

However, they are not interested in all decays that took place, but want to sort out data that is
irrelevant to their current investigations. This also involves computing and caching intermediate
results. The third and last step consists of visualizing the results (in form of histograms, tree-like
structures, n-tuples, etc.). Querying does not necessarily stop here: users can go back to the
second or even the first step and reformulate their query.

B.1. Syntax and Semantics of Our VOL

We are going to introduce the basic building blocks of our language with the help of a running
example. Let us start with the theoretical thoughts of a physicist doing analysis. Figure 3 shows
the schematics of a typical decay chain that can be the center of an investigation. Particle D* (on
the left hand side) eventually decays into particles IT* and IT~ (on the right hand side). A typical
query of medium complexity is to find the D" particle with the highest energy level for each
event.? The particles on the right hand side are the ones whose presence is directly recorded by

2We will make use of the notation D+(D*) Pi+(ITt) Pi-(IT") from now on



Figure 3: Example of D decay schematics

a detector. Physicists use these as a starting point to search for the original particles, which are
too short-lived to be detected.

We are now going to translate these thoughts into a query. First of all we have to decide which
run and event data to use. This is the task of the collection operator, which is represented by a
small disk symbol (see Figure 4). Associated with this operator is a list of attributes and a list
of filter predicates. Assume for a moment that we are only interested in the data from the third
run, so in a first step, we have a collection operator that selects this data for us. Collections can
be combined using the standard set operators N,U, and \.
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Figure 4: From left to right operators: Collection,Selection, Aggregation, Transformation and Result Set Specifi-
cation symbols for 1D,2D,3D and Value Result

For the second step we need three more operators: Selection, Aggregation, and Transfor-
mation (see Figure 4 for their symbols). Selection works on the data retrieved by a collection
operator and selects actual particles detected during these runs and events according to predi-
cates that refer to particles. Aggregation and Transformation operators work on the results of
selection operators. An aggregation sums up information on particles per event, i.e. we get
one result for each event. Transformation combines the results of two (or more) selections
according to predicates that refer to attributes of all participating selections. Usually this results
in the construction of a particle higher up in the decay chain. So, the transformation operator
creates new particle objects with the data from previous selections.

We now need a way to connect the objects. For this we use a simple line with an arrow that
describes the data flow from one operator to another.

And last, but not least, we have to describe how to visualize the result of the query in the third
step. We provide four different operators for the description of the result (see Figure 4): three
operators to create one-, two-, and three-dimensional histograms, and one operator to output
numeric values.

Figure 5(a) shows the complete query. The two operators in the upper part of Figure 5(a) tell
the system that we are interested in the data from the third run and want an one-dimensional
histogram output of the result. We begin on the right hand side with extracting all IT* and
[T~ particles from the events of the third run. With the help of a transformation operator (7;)

we reconstruct a K* particle. Another transformation operator (7>) helps us find D* particles.
Finally, an aggregation operation filters out the particles with the maximal energy level for each
event.

B.2. The graph grammar

In this section we introduce a BNF-like grammar of our visual query language (see Figure
6). Let us give some explanatory notes. First of all, we decided to use the symbols of the
language itself as terminals in the grammar, so there is no problem to recognize the components
introduced in the last section. Non-terminals have a grayish background, while for the terminals
the regular background is used. Associated with each operator is some additional data, like
attribute lists and condition lists. During query construction this information is hidden most of
the time. Therefore we describe this hidden data associated with each operator with the symbol

Furthermore, we distinguish between two different collection types: run collections and event
collections. When no collections are given in a query, the query considers all available data. If
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Figure 5: Complete query layout
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Figure 6: Simplified version of the BNF grammar of our language

we define a run collection, only data from the selected runs will be considered. We can restrict
this further by additionally supplying a description of an event collection. Then only a subset of
the events of the run collection will be taken into account. When specifying an event collection
without any run collection, we regard the relevant events from all runs. When connecting
collections via set operators, we have to differentiate between commutative operators (U, N) and
non-commutative operators (\).

At the moment our framework can be extended in two places. Users can integrate their
own aggregation functions (the system currently provides a max- and min-function) into an
aggregation operator. This is denoted by UDF in the grammar. When connecting particle sets
via a transformation operator, a user can also supply his or her own transformation function.
Presently the system provides a function to reconstruct vertices.



V. IMPLEMENTING A PROTOTYPE

A. Engineering methodology

Since the natural complexity of the domain entails that we probably did not get all the details right

in the first design, we opted for a prototyping approach. We expect some more iterations will

be needed to assure a perfect match between the requirements of the users and our framework.
Our strategy in developing the framework consisted of several important steps:

o Identifying the problem domain.

o Gathering all relevant knowledge in this domain (by re-engineering the existing frameworks
and observing the query patterns of the physicist doing analysis).

e Summarizing this knowledge in a handful of semantic notions and operations on them.

e Designing a VDSL that concisely describes applications in the domain.

e Designing and implementing a framework that translates the language into an abstract
syntax graph that can be understood by the different existing tools.

o Getting feedback from the real users and reiterating some steps.

B. Designing the Interface

We opted for a syntax-assisted editor, as it is a good compromise between a free hand editor
and a syntax-directed editor. A free hand editor is very flexible, but its input is sometimes very
hard to interpret. A syntax-directed editor, on the other hand, is too strict, so users are going
to run into the same problems formulating queries as with textual editors. Figure 5(b) shows
the query from Figure 5(a) in the layout of our editor. Note the pop-up menu in the lower right
corner of the figure. This is used to input the before mentioned attribute and condition lists.

The query is transformed into an Abstract Syntax Graph (ASG). The responsibility of parsing
the query is delegated to the module? that generates the code or data structure for the appropriate
target framework tool (e.g. C/C++/Fortran code for ARTE[1], Fortran for PAW, C++ Code for
ROOT, SQL for DB2). The subject of code generation as well as subjects of security, network
distribution or physical data storage fall outside the immediate scope of this paper.

C. Further Details

For fast development, the technology used was the TCL/TK[20] scripting language integrating
the C++ ROOT[21] framework solely for histogramming/layout purposes, (not implemented
the data storage interface). The development of the interface between our framework and
the present ARTE framework is almost finished,(this involved the design and implementation
of a layer that implements algebraic operators over the libraries of functions available, and a
mapping between the DAGs generated by Pheasant into a query plan).

VI. CONCLUSION AND FUTURE WORK

This work is one important step in the ongoing effort to support the analysis process in HEP
experiments. We have acquainted the HEP community with visual query languages and hope
to be able to convince them of the usefulness of this approach. In our opinion the advantages
of a framework like Pheasant are manifold. We add an abstraction layer between the physicists
and the low-level data processing. So, the user can work with concepts that is familiar and does
not need to learn the details of several different tools. As we have recognized typical access
patterns, we now have found a basis for optimizing the query processing in this environment.
Furthermore, our framework offers a flexibility that is not found in the tools that are currently
used. A complete assertion of the user satisfaction and requirements was being done at the time
this paper was written, a preliminary assertion with some individuals was very positive, giving
us the feeling we are following the the right approach (full details of how we plan to proceed
with this evaluation are described in [2]).

From our perspective, work in this specific area is far from being completed. We see it as a
first study in providing adequate tools for physicists involved in HEP analysis. We decided to
use a more empirical approach in designing our framework, due to the many contradictory views
expressed by different physicists during the requirements analysis, rather than doing a more
formal metamodeling. In the near future we plan to refine the prototype with insights gained
from the feedback given by physicists applying our framework in a real world data analysis.

3The code generation modules are represented by g; to gs in Figure 1



We also plan to finish the implementation of the remaining code generation modules to cover
all tools currently used. As a next step we want to exploit the optimization possibilities of our
framework, as we expect that the amount of data to be processed in coming HEP experiments
will be two orders of magnitude larger than now.
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