
DIAGRAM DEFINITION FACILITIES BASED ON METAMODEL
MAPPINGS

Edgars Celms, Audris Kalnins, Lelde Lace

University of Latvia, IMCS, Riga, Latvia
{ Edgars.Celms, Audris.Kalnins, Lelde.Lace }@mii.lu.lv

The paper proposes a new technique for diagram definition in a generic modeling tool,
which permits to build several diagrammatic presentations for one domain. The main idea of the
proposed method is a mapping from presentation to domain part of a metamodel. The paper
describes the semantics of mappings, using a fragment of UML activity diagram as a definition
example. In conclusion suggestions are given how the approach could be applied in MDA context.

 Introduction
Besides the traditional modeling tools built for a specific modeling notation such as

object modeling in UML, business modeling etc. there is a significant niche for generic
modeling tools where any modeling notation can be supported without programming in the
traditional sense. Typically the modeling notation (language) in generic modeling tools is
specified by means of a metamodel, which is then augmented by a tool specific annotation,
markup etc, to define the actual tool functionality. The main application area for generic
modeling tools is domain-specific visual languages for various industry domains. The current
key players in this area are ISIS GME [1], DOME [2], MetaEdit [3] etc, which have gained
certain maturity now.

The classical graphical modeling by means of sets of related diagrams can also be
considered to be a domain-specific area, especially the business modeling, where there is no
one leading modeling language, but a number of quite similar competing notations. UML
with its Activity diagrams is just one of the possible notations there. Therefore the generic
modeling approach is valid also for the domain of business modeling. This domain poses
some specific requirements for the tool, the most important one being the necessity to
represent the same domain concepts via several graphic notations simultaneously. The paper
discusses the Generic Modeling Tool (GMT), developed by University of Latvia together
with Exigen company, built especially for the abovementioned purpose. Namely the
requirement for access to the same model data via several graphical notations demands a
number of specific solutions for defining the relations between diagrams and domain
metamodel (the diagram definition language), which can not be so easily accomplished in the
well-known metamodel-based tools [1,2,3]. For example, there it is practically impossible to
have some domain object represented as a symbol in one notation and as a line in another.

The main such idea is the mapping between the parts of the metamodel – the domain
and the presentation part (the latter ones may be several). Some preliminary presentation of
the approach has been given in [4,5], but this paper concentrates on precise definition of the
mapping semantics, using UML and OCL. Though developed completely independently, the
style of the semantics definition bears some similarity to the more theoretical paper [6],
where the concept of set-theoretical relation between metamodel parts is used.

It should be noted that the requirement for alternative graphical notations is present in
the UML itself (including the version 2.0) – interactions can be shown both as sequence and
collaboration diagrams, there are alternative forms of showing action performers in activity
diagrams. The paper will demonstrate the mapping idea on a small fragment of UML 2.0
activity diagram metamodel [7], finally showing how the same model data could be presented
as ARIS eEPC [8] diagrams – the most popular business process notation.

Today the hottest area in UML related modeling is MDA [9]. The paper concludes
with some suggestions, how the proposed approach can be used for this goal too.

 Structuring of metamodels
Strictly speaking, a metamodel for a modeling notation such as UML describes only the

domain concepts – the abstract syntax in other terms. But any modeling tool must manipulate
also the elements of the diagrammatic presentation – the concrete graphical syntax. UML
documents [7] does not specify that part of the metamodel, a very generic description of the
presentation part is given in [10], however with another goal in mind – defining an easy
interchange format for graphics. Therefore as a rule modeling tools internally use another
presentation metamodel, and so it is in our approach. Similarly to [10], we assume a diagram
to be a directed graph consisting of nodes (boxes) and edges (lines). The presentation
metamodel is also the only natural place, where various constraints on diagram building can
be easily specified.

In our approach any metamodel is built according to MOF standards – it is a class
diagram using the syntax features permitted by MOF. The elements of a metamodel may be
grouped into packages, so we can speak of domain and presentation packages. Fig. 1 shows
the domain package for the UML 2.0 activity diagram (actually a small fragment of the
original one in [7], but sufficient for demonstrating the ideas). It should be reminded, that the
Activity class plays the role of the “domain diagram” – its instances correspond to instances
of visible activity diagrams.

ControlFlow
name:String
guard:String

Activity

CallBehaviorActionBehavior
name:String

owner

edge

 1

 *
target

incoming
 1

 *

source
outgoing 1

 *

owner

action

 1

 *
behavior

 *
 1

Figure 1. Domain package for UML activity diagram

To reflect the fact that any diagram is a graph, a special DiagramCore package is
introduced which defines the general properties of a graph. Any specific presentation package
inherits these properties from the core and may add some specific features required by the
graphic syntax (actually the DiagramCore is more than a graph – it supports element nesting
etc., but we omit this for simplicity). The DiagramCore elements also contain attributes
characterizing their geometrical properties, but we ignore them here. Fig. 2 shows the
DiagramCore package together with the presentation package for activity diagram.

DiagramCore

ActivityPresentation

ControlFlowLine

Box

ActionSymbol

Line

ActivityDiagram

Diagramoutgoing
start *

 1

diagram line 1 *

diagram

symbol 1
 *

incoming end * 1

Figure 2. Diagram core and Activity presentation packages

Similarly, for any diagrammatic notation there is one domain package and one or more
presentation packages, all of which inherit their essential properties from the DiagramCore.
In a sense, it is an extension of the original domain metamodel, but with the domain packages
left unmodified. The only elements, which will be added to the domain part of the

metamodel, will be some new associations – mapping associations, which are the basis of our
approach and which will be discussed in the next sections.

One more consequence of the DiagramCore is that we can use a separate component –
Graphical Diagramming Engine (GDE) – to support the graphical functionality of
diagrams. This component is based upon complicated graph drawing algorithms [11] and
implements all tool features, which can be expressed in terms of extended directed graphs.
This way we isolate the pure graphical functionality of diagram building. GDE supports
creating a new and opening an existing diagram and allows to perform all graphical
operations with diagram elements (add, delete, move, etc.). GDE supports also automatic
high quality layouts of a diagram and enables style modification of diagram elements.

 General principles of mapping
The domain and presentation parts of the metamodel for a modeling notation must be

linked together to define the real modeling functionality. In most cases, a class in the domain
part corresponds to a class in the presentation part, but these correspondences may be also
more complicated. The main facility for defining a relation between the domain and
presentation parts of the metamodel is mapping.

In the simplest case, the mapping consists of a class in the presentation package, the
corresponding class in the domain package and an association connecting them. It expresses
the fact that as soon as there is a presentation class instance (e.g., action symbol) there must
also be the corresponding domain class instance (CallBehaviorAction) and vice versa, and
they must be linked by the association instance (link). Typical association multiplicities are 1
– 1 (for one graphical notation). The associations (called mapping associations), navigable
to both ends, form the base for efficient data management in the Generic Modeling Tool.

However, there is more semantics related to a mapping. Thus, the action symbol must
be in the diagram, which is mapped to the activity containing the action. Even more
complicated rules constrain mappings for lines, where natural conditions tie a line mapping to
its end box mappings. Thus, mappings form hierarchical structures, corresponding to basic
diagrammatic constructs or patterns. Each such pattern corresponds to a mapping type in our
approach. Some basic mapping types will be discussed in the next section. Each of these
mapping types will have its syntax – the involved metamodel elements, and semantics –
what constraints must be true for the mapping to be in place (or in other words, what must be
done, if one of the mapping ends has changed).

The mapping semantics is based on the hierarchy of mapped elements. There is one
common principle in this semantics, so called scaffolding principle, explained in Fig. 3. The
scaffolding principle specifies how mappings must be consistent with the element hierarchy
on both ends. The explanation of the principle to a certain degree reminds the relation
principle in [6], but is simpler.

A B

AContainer BContainerACforBC
BCforAC 0..1

 0..1

AforB
BforA 0..1
 0..1

owner
contents

 1
 * contents

owner

 *

 1

Figure 3. Scaffolding principle for mappings

Let A and B be classes in the presentation and domain packages respectively, involved
in a mapping, and let AContainer and BContainer be their corresponding owners in the
hierarchy (typically, a diagram and its domain equivalent), also having their own mapping.

Both mapping associations are displayed bold. These elements are assumed to be really
present in the metamodel. Fig. 3 actually represents a general scaffolding schema.

In a totally correct model the mapping association multiplicities must be 1 – 1 (we
consider here the one-one case, the one-to-many case is a completely different pattern).
However, for an in-process model (being modified by the tool) some mapping instances may
be temporary missing, therefore multiplicities in the schema are set to 0..1.

According to the principle, the following two constraints given by OCL expressions
must always hold for the scaffolding schema involving the abovementioned mappings:

Context A inv:
BforA->notEmpty() implies owner.BCforAC = BforA.owner

and
Context B inv:
AforB->notEmpty() implies owner.ACforBC = AforB.owner

These constraints express the fact that A to B mapping is consistent with the
corresponding container mapping – e.g., a symbol maps to an action in the right “domain
diagram”.

The most important condition for this schema is the local completeness for one
container (diagram), which can be expressed by the following OCL constraint:

Context AContainer inv:
contents -> forAll (a | a.BforA->notEmpty()) and
BCforAC->notEmpty() and
BCforAC.contents -> forAll (b | b.AforB->notEmpty())

The constraint says that for this container all its elements are mapped (consistently with
the container mapping) and, in addition, are mapped to all elements of the partner (domain)
container – the mapping is complete both ways for the given container. Mapping for any
diagram type will try to maintain its local completeness for the current diagram instance.

The scaffolding principle is the base for all mapping types to be discussed in the next
section.

 Mapping types for the activity diagram example
 Now the mapping types to be used for the activity diagram example can be defined.

The base for all other mappings is the diagram mapping – a special singleton mapping.
Fig.4 shows the diagram mapping for activity diagrams. It says that each activity diagram
instance must correspond to an Activity class instance, having a consequence that creating a
diagram in the tool must invoke a new Activity instance creation.

ActivityDiagram Activity
diagram

mappedActivity 0..1
 0..1

Figure 4. Diagram mapping

 The simplest non-trivial mapping type is for a kind of diagram symbols to be mapped
to a domain metamodel class. In our simplified activity diagram example there is only one
symbol kind – ActivitySymbol, which must be mapped to the CallBehaviorAction in the
domain. This mapping type will be named 1OT (symbol to 1 Object Type).

Each mapping type defines its mapping schema, based on the scaffolding principle. The
mapping schema contains a number of metamodel elements both from presentation and
domain packages – the mapping syntax, which must be substituted by concrete metamodel
elements when concrete mapping is defined. The mapping semantics is, firstly, inherited
from the scaffolding principle (its constraints), and more constraints can be added for a
mapping type definition. But a concrete mapping, as a rule, adds no OCL constraints
(however, there is such a possibility in the modeling tool), so concrete diagram definitions

typically requires no explicit use of OCL and constraints inherited from mapping types can be
implemented in a more efficient way by the modeling tool.

Fig. 5 shows the mapping schema for the mapping type 1OT. The mapping syntax (list
of parameters) contains the classes Diagram and Symbol, which must be located in the
metamodel presentation package, and the classes DomainDiagram and DomainElement,
which must be in the domain package. The two associations (Diagram to Symbol and
DomainDiagram to DomainElement) are also part of the syntax and must be found in the
metamodel. The mapping association for diagrams must already be defined. But the mapping
association for the Symbol (actually, for its real counterpart in the metamodel) must be
specially created before a concrete mapping is defined.

Symbol DomainElement

DomainDiagramDiagram

diagram
symbol

 1
 *

owner
element

 1
 *

symbol
mappedSymbol 0..1

 0..1

diagram
mappedDiagram 0..1

 0..1

Figure 5. 1OT Mapping schema

The mapping type 1OT adds no new constraints to those inherited from scaffolding
schema. Let us remind, that it requires also the local completeness condition to be true for a
mapping to be complete. In practice, these constraints imply that creating a new symbol in a
diagram means also the creation of the domain element – thus the “operational semantics”
required by the tool is also defined by the mapping type.

There is also a variation of the mapping type 1OT named 1OTD (Object Type with
Definition), which adds one more class in the domain, linked by an association to the
DomainElement), this additional class serves as a common “definition” for the domain
elements. Namely the variation 1OTD is used for the activity example – see the concrete
action mapping in Fig. 6, with Behavior in the role of the definition (the association
refinement is explained below). Associations inherited from the DiagramCore here (and in
the next figure) are shown directly between the presentation classes.

ActivitySymbol

Activity

CallBehaviorAction

Behavior
name:String

ActivityDiagram

diagram
symbol

 1
 *

owner

action

 1

 *

diagram
mappedActivity 0..1

 0..1

symbol
mappedAction 0..1

 0..1

refinement

refinedSymbol

 0..1

 * behavior

 *

 1

Figure 6. Action mapping according to 1OTD

We will demonstrate one more extension of the type 1OT – 1OTR (1OT with
refinement). An action referencing another Activity (not a simple Behavior) implies that the
corresponding ActionSymbol must be displayed as refined (with the rake icon in it) and must
support hyperlinking to the appropriate diagram. Due to restricted space the definition of
1OTR is not given, just its application is shown in the same Fig. 6. This extension requires
new OCL constraints, which here will be demonstrated directly in the application (not in the
schema definition, as it in fact is). The idea is that we select an association in the presentation
package (with the role refinement), which makes the ActionSymbol to be refined. This
association should be paired to an association in the domain between the relevant classes, in
this situation the same behavior association may be used, in case if it leads to another Activity
(as a subclass of Behavior). The same refinement association also enables hyperlinking to the
appropriate diagram. 1OTR schema requires the following additional OCL constraints (here
shown in the concrete context of Fig. 6)

Context ActionSymbol inv:
refinement->notEmpty() implies (mappedAction.behavior.oclIsTypeOf(Activity) and
 refinement= mappedAction.behavior.diagram)

The next essential mapping type is for lines in diagram, which correspond to classes in
the domain. This mapping type is named L1OT. To save the space, we again do not present
separately its schema, but show its application for defining control flows in activity diagram.
The basis again is the scaffolding schema, but a similar principle here has to be applied
directly in a specific context, in order to specify that line ends (the boxes to which the line is
attached) are mapped accordingly. Fig. 7 shows this definition.

Activity

CallBehaviorActionActionSymbol

ControlFlowLine

ActivityDiagram

ControlFlow
name:String
guard:String

diagram
symbol

 1
 *

target

incoming

 1

 *

source

outgoing

 1

 *

end

incoming

 1

 *

start

outgoing

 1

 *

owner

action

 1

 *

owner

edge

 1

 *

diagram

line

 1

 *

diagram
mappedActivity 0..1

 0..1

symbol
mappedAction 0..1

 0..1

line
mappedFlow 0..1

 0..1

Figure 7. Control flow Line Mapping

A direct application of the scaffolding schema here links the line mapping to the
diagram mapping, with the corresponding constraints inherited. But the action mapping is
repeated here to specify the line ends. In this simple example there is only one symbol type,
but if a control flow could be drawn between different symbol types (as it is in real activity
diagrams), all these mappings had to be present in the definition. However, this is required
only for the semantics definition, in real diagram definition facility only the relevant pairs of
symbol types are to be listed (and also the relevant association roles in the domain), the
corresponding OCL constraints are inherited from the L1OT schema (here shown only as its
application in Fig. 7). The additional OCL constraints express the fact that both the line start
and end boxes are mapped to domain elements, which serve as a source and target
respectively for the domain image of the line. The constraints are the following:

Context ControlFlowLine inv:
start=mappedFlow.source.symbol and
end= mappedFlow.target.symbol

Here the assumption is made that start leads to the “geometrical” start box of the line.
The described mapping types are sufficient for defining this simplified activity

diagram. But certainly our environment has more mapping types, which cover all the typical
diagramming patterns (the mapping type library contains about 20 such mappings). All of
them can be defined in a way similar to those presented in this paper – their syntax as
mapping schemas and semantics as OCL constraints.

 Diagram definition facilities in GMT
Mappings between the domain and presentation packages of the metamodel form the

basis for diagram definition in our GMT approach. To define a diagram type, mappings for
the diagram itself and all its elements – boxes and lines must be defined. To define a mapping
in GMT environment, one has to select the appropriate mapping type from the library and to
specify all the required syntax elements – appropriate metamodel classes and associations.
The semantics of each mapping type is predefined in GMT (in the way presented in this
paper), therefore there is no need for explicit OCL in normal cases. Certainly, for each
mapping a lot of technical details may be specified – one or more default styles for diagram

elements, corresponding icons in the palette etc. For lines an important aspect is to specify,
between which pairs of box types they may be drawn. Normally it is just a list of type pairs.
But it is also one of the places where explicit OCL may be of use, in order to specify context
dependent constraints, especially on multiplicities, present in some modeling notations. These
constraints typically are defined in the presentation package. Some other diagram integrity
constraints expressible in OCL are also available. A special case of line mapping is that
mapped to a “pseudoline” – box nesting, available in our core and used e.g., for nested states
in UML statecharts.

Yet another aspect is how the model data – attributes of domain classes and contents of
subordinate classes (e.g., class operations) are mapped to graphical text slots of diagram
symbols (lines) – compartments. For each compartment an OCL-style “navigation
expression” points to the domain attribute, which supplies that value. For example, in the
case of mapping 1OT this expression contains just the role name of the mapping link and the
attribute name. More than one data supplier expression can be used for complex
compartments, and navigation expressions yielding a set of values are used for “list
compartments”, such as class attributes or operations in UML. The way how the actual string
in a complex compartment is composed from the selected data values is specified by means
of a “pattern” - a simple regular grammar. Certainly, the definition component in GMT
always prompts the most typical values for compartment definitions, so in simple cases
nearly everything is provided automatically.

When the appropriate diagram definitions are supplied, GMT acts as a commercial
modeling tool for the given notation, with all typical services enabled.

 Alternative diagrammatic representations
One interesting aspect of GMT is the possibility to have different graphical

representations for the same domain data. This is accomplished by defining more than one
mapping (including a diagram and all of its elements) for a domain diagram, such as Activity.
Then all of these mappings are active simultaneously, and all the representations can be used
to view or edit the model data. Which views are really visible, is defined via the model
browser (tree) specifications – a topic out of scope for this paper. When the model (domain)
data are modified through one of the diagram views, the alternative ones have to be
automatically updated also – this process is called consolidation in GMT. Since the
mappings actually are bidirectional (due to symmetrical constraints in the scaffolding
schema), the updates of diagram elements when domain elements change in general are
straightforward. In some special cases OCL preconditions for consolidation may be used. But
certainly all this assumes the existence of a “domain diagram” (Activity, StateMachine,
Interaction etc), which determines what really must be inside one graphical diagram. Though
some other patterns (mapping types) in GMT permit a situation such as for UML class
diagrams where no “domain diagram” exists, alternative representations require such one.

To give some insight into alternative graphical representations, we will sketch briefly,
how our simple activity domain could be represented via simplified ARIS eEPC [8] diagrams
(see example in Fig.10). Here we assume that a (mandatory) named event symbol (hexagon)
between two function (=action) symbols actually represents a named control flow (possibly
with a guard). The event could be treated also as an object flow in activity notation, but then
eEPC had no control flows at all and the alternative mapping would be nearly the same as
that for activity diagram with object flows, having only different presentation classes. Fig. 8
shows the set of mappings between a simplified eEPC diagram presentation package and the
same activity domain (with DiagramCore in the leftmost column). We remind that mapping
associations are displayed bold in the picture.

Diagram

Box

eEPCdiagram Activity

FunctionSymbol

Line

EventSymbol

Behavior
name:String

InEventLine

OutEventLine

CallBehaviorAction

ControlFlow
name:String
guard:String

ediagram
mappedActivity 0..1

 0..1

diagram

symbol

 1

 *

end

incoming

 1

 *outgoing

start

 *

 1

diagram

line

 1

 *

behavior

 *

 1

linestart
startMap *

 1

owner

action

 1

 *

linestart

startMap

 *

 1

fSymbol

mappedAction

 0..1

 0..1

source

outgoing

 1

 *

target

incoming

 1

 *

owner

edge

 1

 *

event

mappedFlow

 0..1

 0..1

Figure 8. ARIS eEPC Mapping to activity domain

It can be seen, that the eEPC function symbol is mapped in a normal way (as for
activity diagram) to CallBehaviorAction, using the mapping type 1OTD. The event symbol is
mapped to ControlFlow (which was mapped to a line in activity diagram!) – the mapping
type is 1OT. The attributes of ControlFlow – name and guard are combined into the event
name compartment. Both lines types in eEPC (from function to event and vice versa) have a
new mapping type L1LT – each of them actually corresponds to a domain association, but not
a class. This type of mapping is based on so-called startMap – a specially built association to
the domain class, where the desired association starts, with the required association role
specified as a constraint (e.g., target from ControlFlow for the inEventLine). It should be
noted that L1LT–mapped lines can have no texts – there is no place for data in the domain.

Receive Order

Fill Order Ship Order

Close Order

Order Filled

[order
accepted]

[order rejected]

Order
shipped

Figure 9. Activity diagram example

Thus the alternative mapping of the activity domain has been defined (certainly, the
mapping details are visible only in the real GMT definition component). The consequences
for GMT are the following – if we draw an activity diagram (in Fig.9), then the equivalent
eEPC diagram (in Fig. 10) is drawn automatically via the consolidation process mentioned
above. The activity diagram is clearly a fragment of the real notation – only the elements
defined in Fig. 1 and 2 are used.

Order accepted Fill Order Order Filled

Ship Order

Order shipped Close Order

Receive Order

Order rejected

Figure 10. Equivalent ARIS eEPC diagram example

Alternative mappings for the same domain, provided in GMT, can be extended to
complete UML 2.0 activity diagram (actually, its business modeling subset, full domain is
much richer than that meaningful for ARIS) and complete ARIS eEPC diagram. In most
cases the mappings are quite similar (the same domain concept is represented by boxes in
both notations, e.g., flow join symbol and AND-rule). The non-trivial cases are when a box is
used in one notation and line in another – besides the one explained in Fig. 8 a similar
problem is for performer notation.

In general, when a domain for one modeling notation is found to be usable (from the
semantics point of view) for another one, the building of alternative mapping can be started.
It is done by drawing a candidate mapping association from a presentation class to the
domain class, which most naturally corresponds to this presentation class and contains the
main data to be shown in the symbol. Then, looking at adjacent domain classes, which may
also contain relevant data or determine the connections, the appropriate mapping type from
the library is found (there may be cases, when one presentation class maps to a structure of 2
or 3 domain classes). And conversely, two presentation classes may map to the same domain
class (the “derived” mapping types are also provided). For lines, the possibility for L1LT
mapping (as in Fig. 8) must also be checked, as well as “pseudoline” (box nesting) case. All
this determines the supported variations between both notations – what is one symbol in one
notation, can be several ones in another, a box may become a line and vice versa, but there
must be some “local correspondence” anyway. Currently there is no formal procedure for
deciding whether an alternative mapping can be built, it is a subject for future research.
Simply, in all practical situations we have succeeded – it is more a question of the mapping
library completeness. And, certainly, the main question – whether two modeling notations are
semantically equivalent and in principle can have a common domain – is completely out of
scope for this formal approach.

It should be noted that a price has to be paid for the universality of our approach – even
in simple cases where no alternative representations of a domain are planned, two sets of
classes – for domain and presentation are required by the basic technology. To avoid this
excessive metamodel complexity for simple notations, a special “identity mapping” – domain
and presentation classes coincide – is also provided in GMT.

 Conclusions
The described method of diagram definition by mappings from presentation to

domain packages is powerful enough to define the complete UML notation, including
alternative presentations of interactions as UML sequence and collaboration diagrams. In
addition, processes can be presented both as UML activity diagrams and traditional business
process notations, such as ARIS eEPC diagrams. The approach has been tested in the GMT
environment, yielding a modeling tool of industrial quality, including the efficiency for large-
scale models. The alternative notations were really used for business modeling purposes,
where different members of a team were provided their favorite notation. The mapping
library occurred to be sufficient for diagrams of all reasonable types.

However, the approach is applicable also to a completely different area of modeling –
that of MDA [9]. There series of models, typically called PIM (platform independent model)
and PSM (platform specific model) are built, in order to provide a model transformation
based path from requirements to system code. A typical example of a fragment of such path
could be the transition from a UML class diagram for persistent data of a system (in the role
of PIM) to SQL-based Data model (or ER model) in the role of PSM. Since not only the
forward path is important in practice, but also the reverse one, it is reasonable to consider
them as two representations of common domain data. Then classes correspond to tables,
associations to relations based on foreign/primary keys and so on, each presentation showing

only the relevant aspects of the common domain. This example can completely be covered by
the proposed approach and has been tested within GMT. However, some other MDA
applications require true transformations of models at the domain level. We expect that the
proposed metamodel mapping principles can be applied in this completely new context too.

References
[1] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom

G., Sprinkle J., Volgyesi P. The Generic Modeling Environment, Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

[2] DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm
[3] MetaEdit resources, http://www.metacase.com/papers/index.html
[4] Kalnins A., Barzdins J., Celms E., Lace L., Opmanis M., Podnieks K., Zarins A. The

First Step Towards Generic Modelling Tool, Proceedings of Baltic DB&IS 2002,
Tallinn, 2002, v. 2, pp. 167-180.

[5] Lace L., Celms E., Kalnins A. Diagram definition facilities in a generic modeling tool,
Proceedings of International Conference Modelling and Simulation of Business
systems, Vilnius, 2003, pp. 220-224.

[6] Akehurst D. H, Kent S. A Relational Approach to Defining Transformations in a
Metamodel. In J.-M. Jezequel, H. Hussmann, S. Cook (Eds.), Lecture Notes in
Computer science, Vol. 2460. Springer, 2002, pp.243-258.

[7] Unified Modeling Language: Superstructure (version 2.0),
http://www.omg.org/docs/ptc/03-08-02.pdf

[8] Scheer, A.-W. ARIS Business Process Modeling, 3rd edn. Springer-Verlag, Berlin
Heidelberg New York (2000).

[9] MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
[10] UML 2.0 Diagram Interchange, http://www.omg.org/docs/ad/03-02-07.pdf
[11] Kikusts, P., Rucevskis, P. Layout Algorithms of Graph-like Diagrams for GRADE-

Windows Graphical Editors, Lecture Notes in Computer science, Vol. 1027. Springer-
Verlag, 1996, pp.361-364.

	Introduction
	Structuring of metamodels
	General principles of mapping
	Mapping types for the activity diagram example
	Diagram definition facilities in GMT
	Alternative diagrammatic representations
	Conclusions
	
	References

